diff --git a/src/numerics_mod.F90 b/src/numerics_mod.F90 index 5a29eda09542cbf67181fcdbf693dba5dc148d67..85005779f28df50640880173ff2591cddca5b273 100644 --- a/src/numerics_mod.F90 +++ b/src/numerics_mod.F90 @@ -217,178 +217,145 @@ END SUBROUTINE evaluate_ampere_op !******************************************************************************! SUBROUTINE compute_lin_coeff - USE array - USE model, ONLY: taue_qe, taui_qi, & - k_Te, k_Ti, k_Ne, k_Ni, CurvB, GradB, KIN_E,& - tau_e, tau_i, sigma_e, sigma_i + + USE array, ONLY: xnepj, & + ynepp1j, ynepm1j, ynepp1jm1, ynepm1jm1,& + zNepm1j, zNepm1jp1, zNepm1jm1,& + xnepp1j, xnepm1j, xnepp2j, xnepm2j,& + xnepjp1, xnepjm1,& + xphij_e, xphijp1_e, xphijm1_e,& + xpsij_e, xpsijp1_e, xpsijm1_e,& + xnipj, & + ynipp1j, ynipm1j, ynipp1jm1, ynipm1jm1,& + zNipm1j, zNipm1jp1, zNipm1jm1,& + xnipp1j, xnipm1j, xnipp2j, xnipm2j,& + xnipjp1, xnipjm1,& + xphij_i, xphijp1_i, xphijm1_i,& + xpsij_i, xpsijp1_i, xpsijm1_i + USE model, ONLY: k_Te, k_Ti, k_Ne, k_Ni, k_cB, k_gB, KIN_E,& + tau_e, tau_i, sigma_e, sigma_i, q_e, q_i USE prec_const USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, & ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i - IMPLICIT NONE - INTEGER :: p_int, j_int ! polynom. degrees - REAL(dp) :: p_dp, j_dp - !! Electrons linear coefficients for moment RHS !!!!!!!!!! - IF(KIN_E)THEN - DO ip = ips_e, ipe_e - p_int= parray_e(ip) ! Hermite degree - p_dp = REAL(p_int,dp) ! REAL of Hermite degree - DO ij = ijs_e, ije_e - j_int= jarray_e(ij) ! Laguerre degree - j_dp = REAL(j_int,dp) ! REAL of Laguerre degree - ! All Napj terms - xnepj(ip,ij) = taue_qe*(CurvB*(2._dp*p_dp + 1._dp) & - +GradB*(2._dp*j_dp + 1._dp)) - ! Mirror force terms - ynepp1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp+1._dp) - ynepm1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp) - ynepp1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp+1._dp) - ynepm1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp) - zNepm1j (ip,ij) = +SQRT(tau_e)/sigma_e * (2._dp*j_dp+1_dp)*SQRT(p_dp) - zNepm1jp1(ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1_dp)*SQRT(p_dp) - zNepm1jm1(ip,ij) = -SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp) - ENDDO - ENDDO - DO ip = ips_e, ipe_e - p_int= parray_e(ip) ! Hermite degree - p_dp = REAL(p_int,dp) ! REAL of Hermite degree - ! Landau damping coefficients (ddz napj term) - xnepp1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp + 1_dp) - xnepm1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp) - ! Magnetic curvature term - xnepp2j(ip) = taue_qe * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp)) - xnepm2j(ip) = taue_qe * CurvB * SQRT(p_dp * (p_dp - 1._dp)) - ENDDO - DO ij = ijs_e, ije_e - j_int= jarray_e(ij) ! Laguerre degree - j_dp = REAL(j_int,dp) ! REAL of Laguerre degree - ! Magnetic gradient term - xnepjp1(ij) = -taue_qe * GradB * (j_dp + 1._dp) - xnepjm1(ij) = -taue_qe * GradB * j_dp - ENDDO + + IF(KIN_E) THEN + CALL lin_coeff(k_Te,k_Ne,k_cB,k_gB,tau_e,q_e,sigma_e,& + parray_e(ips_e:ipe_e),jarray_e(ijs_e:ije_e),ips_e,ipe_e,ijs_e,ije_e,& + xnepj,xnepp1j,xnepm1j,xnepp2j,xnepm2j,xnepjp1,xnepjm1,& + ynepp1j,ynepm1j,ynepp1jm1,ynepm1jm1,zNepm1j,zNepm1jp1,zNepm1jm1,& + xphij_e,xphijp1_e,xphijm1_e,xpsij_e,xpsijp1_e,xpsijm1_e) ENDIF - !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - !! Ions linear coefficients for moment RHS !!!!!!!!!! - DO ip = ips_i, ipe_i - p_int= parray_i(ip) ! Hermite degree - p_dp = REAL(p_int,dp) ! REAL of Hermite degree - DO ij = ijs_i, ije_i - j_int= jarray_i(ij) ! Laguerre degree - j_dp = REAL(j_int,dp) ! REAL of Laguerre degree - ! All Napj terms - xnipj(ip,ij) = taui_qi*(CurvB*(2._dp*p_dp + 1._dp) & - +GradB*(2._dp*j_dp + 1._dp)) - ! Mirror force terms - ynipp1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp+1._dp) - ynipm1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp) - ynipp1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp+1._dp) - ynipm1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp) - ! Trapping terms - zNipm1j (ip,ij) = +SQRT(tau_i)/sigma_i* (2._dp*j_dp+1_dp)*SQRT(p_dp) - zNipm1jp1(ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1_dp)*SQRT(p_dp) - zNipm1jm1(ip,ij) = -SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp) - ENDDO - ENDDO - DO ip = ips_i, ipe_i - p_int= parray_i(ip) ! Hermite degree - p_dp = REAL(p_int,dp) ! REAL of Hermite degree - ! Landau damping coefficients (ddz napj term) - xnipp1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp + 1._dp) - xnipm1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp) - ! Magnetic curvature term - xnipp2j(ip) = taui_qi * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp)) - xnipm2j(ip) = taui_qi * CurvB * SQRT(p_dp * (p_dp - 1._dp)) - ENDDO - DO ij = ijs_i, ije_i - j_int= jarray_i(ij) ! Laguerre degree - j_dp = REAL(j_int,dp) ! REAL of Laguerre degree - ! Magnetic gradient term - xnipjp1(ij) = -taui_qi * GradB * (j_dp + 1._dp) - xnipjm1(ij) = -taui_qi * GradB * j_dp - ENDDO - !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - !! ES linear coefficients for moment RHS !!!!!!!!!! - IF (KIN_E) THEN - DO ip = ips_e, ipe_e - p_int= parray_e(ip) ! Hermite degree - DO ij = ijs_e, ije_e - j_int= jarray_e(ij) ! REALof Laguerre degree - j_dp = REAL(j_int,dp) ! REALof Laguerre degree - !! Electrostatic potential pj terms - IF (p_int .EQ. 0) THEN ! kronecker p0 - xphij_e(ip,ij) = +k_Ne+ 2.*j_dp*k_Te - xphijp1_e(ip,ij) = -k_Te*(j_dp+1._dp) - xphijm1_e(ip,ij) = -k_Te* j_dp - ELSE IF (p_int .EQ. 2) THEN ! kronecker p2 - xphij_e(ip,ij) = +k_Te/SQRT2 - xphijp1_e(ip,ij) = 0._dp; xphijm1_e(ip,ij) = 0._dp; - ELSE - xphij_e(ip,ij) = 0._dp; xphijp1_e(ip,ij) = 0._dp - xphijm1_e(ip,ij) = 0._dp; - ENDIF + + CALL lin_coeff(k_Ti,k_Ni,k_cB,k_gB,tau_i,q_i,sigma_i,& + parray_i(ips_i:ipe_i),jarray_i(ijs_i:ije_i),ips_i,ipe_i,ijs_i,ije_i,& + xnipj,xnipp1j,xnipm1j,xnipp2j,xnipm2j,xnipjp1,xnipjm1,& + ynipp1j,ynipm1j,ynipp1jm1,ynipm1jm1,zNipm1j,zNipm1jp1,zNipm1jm1,& + xphij_i,xphijp1_i,xphijm1_i,xpsij_i,xpsijp1_i,xpsijm1_i) + + CONTAINS + SUBROUTINE lin_coeff(k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a,& + parray_a,jarray_a,ips_a,ipe_a,ijs_a,ije_a,& + xnapj,xnapp1j,xnapm1j,xnapp2j,xnapm2j,xnapjp1,xnapjm1,& + ynapp1j,ynapm1j,ynapp1jm1,ynapm1jm1,zNapm1j,zNapm1jp1,zNapm1jm1,& + xphij_a,xphijp1_a,xphijm1_a,xpsij_a,xpsijp1_a,xpsijm1_a) + IMPLICIT NONE + ! INPUTS + REAL(dp), INTENT(IN) :: k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a + INTEGER, DIMENSION(ips_a:ipe_a), INTENT(IN) :: parray_a + INTEGER, DIMENSION(ijs_a:ije_a), INTENT(IN) :: jarray_a + INTEGER, INTENT(IN) :: ips_a,ipe_a,ijs_a,ije_a + ! OUTPUTS (linear coefficients used in moment_eq_rhs_mod.F90) + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xnapj + REAL(dp), DIMENSION(ips_a:ipe_a), INTENT(OUT) :: xnapp1j, xnapm1j, xnapp2j, xnapm2j + REAL(dp), DIMENSION(ijs_a:ije_a), INTENT(OUT) :: xnapjp1, xnapjm1 + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: ynapp1j, ynapm1j, ynapp1jm1, ynapm1jm1 + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: zNapm1j, zNapm1jp1, zNapm1jm1 + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xphij_a, xphijp1_a, xphijm1_a + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xpsij_a, xpsijp1_a, xpsijm1_a + INTEGER :: p_int, j_int ! polynom. dagrees + REAL(dp) :: p_dp, j_dp + !! linear coefficients for moment RHS !!!!!!!!!! + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + p_dp = REAL(p_int,dp) ! REAL of Hermite degree + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! Laguerre degree + j_dp = REAL(j_int,dp) ! REAL of Laguerre degree + ! All Napj terms + xnapj(ip,ij) = tau_a/q_a*(k_cB*(2._dp*p_dp + 1._dp) & + +k_gB*(2._dp*j_dp + 1._dp)) + ! Mirror force terms + ynapp1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp+1._dp) + ynapm1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp) + ! ynapp1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp+1._dp) ! Version of BJF + ! ynapm1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp) + ynapp1jm1(ip,ij) = +SQRT(tau_a)/sigma_a *(2._dp*j_dp-1._dp)*SQRT(p_dp+1._dp) + ynapm1jm1(ip,ij) = +SQRT(tau_a)/sigma_a *(2._dp*j_dp-1._dp)*SQRT(p_dp) + ! Trapping terms + zNapm1j (ip,ij) = +SQRT(tau_a)/sigma_a *(2._dp*j_dp+1._dp)*SQRT(p_dp) + zNapm1jp1(ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp) + zNapm1jm1(ip,ij) = -SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp) + ENDDO ENDDO - ENDDO - ENDIF - DO ip = ips_i, ipe_i - p_int= parray_i(ip) ! Hermite degree - DO ij = ijs_i, ije_i - j_int= jarray_i(ij) ! REALof Laguerre degree - j_dp = REAL(j_int,dp) ! REALof Laguerre degree - !! Electrostatic potential pj terms - IF (p_int .EQ. 0) THEN ! kronecker p0 - xphij_i(ip,ij) = +k_Ni + 2._dp*j_dp*k_Ti - xphijp1_i(ip,ij) = -k_Ti*(j_dp+1._dp) - xphijm1_i(ip,ij) = -k_Ti* j_dp - ELSE IF (p_int .EQ. 2) THEN ! kronecker p2 - xphij_i(ip,ij) = +k_Ti/SQRT2 - xphijp1_i(ip,ij) = 0._dp; xphijm1_i(ip,ij) = 0._dp; - ELSE - xphij_i(ip,ij) = 0._dp; xphijp1_i(ip,ij) = 0._dp - xphijm1_i(ip,ij) = 0._dp; - ENDIF - ENDDO - ENDDO - !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - !! EM linear coefficients for moment RHS !!!!!!!!!! - IF (KIN_E) THEN - DO ip = ips_e, ipe_e - p_int= parray_e(ip) ! Hermite degree - DO ij = ijs_e, ije_e - j_int= jarray_e(ij) ! REALof Laguerre degree - j_dp = REAL(j_int,dp) ! REALof Laguerre degree - !! Electrostatic potential pj terms - IF (p_int .EQ. 1) THEN ! kronecker p1 - xpsij_e (ip,ij) = +(k_Ne + (2._dp*j_dp+1._dp)*k_Te)* SQRT(tau_e)/sigma_e - xpsijp1_e(ip,ij) = - k_Te*(j_dp+1._dp) * SQRT(tau_e)/sigma_e - xpsijm1_e(ip,ij) = - k_Te* j_dp * SQRT(tau_e)/sigma_e - ELSE IF (p_int .EQ. 3) THEN ! kronecker p3 - xpsij_e (ip,ij) = + k_Te*SQRT3/SQRT2 * SQRT(tau_e)/sigma_e - xpsijp1_e(ip,ij) = 0._dp; xpsijm1_e(ip,ij) = 0._dp; - ELSE - xpsij_e (ip,ij) = 0._dp; xpsijp1_e(ip,ij) = 0._dp - xpsijm1_e(ip,ij) = 0._dp; - ENDIF + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + p_dp = REAL(p_int,dp) ! REAL of Hermite degree + ! Landau damping coefficients (ddz napj term) + xnapp1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp+1._dp) + xnapm1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp) + ! Magnetic curvature term + xnapp2j(ip) = tau_a/q_a * k_cB * SQRT((p_dp+1._dp)*(p_dp + 2._dp)) + xnapm2j(ip) = tau_a/q_a * k_cB * SQRT( p_dp *(p_dp - 1._dp)) ENDDO - ENDDO - ENDIF - DO ip = ips_i, ipe_i - p_int= parray_i(ip) ! Hermite degree - DO ij = ijs_i, ije_i - j_int= jarray_i(ij) ! REALof Laguerre degree - j_dp = REAL(j_int,dp) ! REALof Laguerre degree - !! Electrostatic potential pj terms - IF (p_int .EQ. 1) THEN ! kronecker p1 - xpsij_i (ip,ij) = +(k_Ni + (2._dp*j_dp+1._dp)*k_Ti)* SQRT(tau_i)/sigma_i - xpsijp1_i(ip,ij) = - k_Ti*(j_dp+1._dp) * SQRT(tau_i)/sigma_i - xpsijm1_i(ip,ij) = - k_Ti* j_dp * SQRT(tau_i)/sigma_i - ELSE IF (p_int .EQ. 3) THEN ! kronecker p3 - xpsij_i (ip,ij) = + k_Ti*SQRT3/SQRT2 * SQRT(tau_i)/sigma_i - xpsijp1_i(ip,ij) = 0._dp; xpsijm1_i(ip,ij) = 0._dp; - ELSE - xpsij_i (ip,ij) = 0._dp; xpsijp1_i(ip,ij) = 0._dp - xpsijm1_i(ip,ij) = 0._dp; - ENDIF - ENDDO - ENDDO + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! Laguerre degree + j_dp = REAL(j_int,dp) ! REAL of Laguerre degree + ! Magnetic gradient term + xnapjp1(ij) = -tau_a/q_a * k_gB * (j_dp + 1._dp) + xnapjm1(ij) = -tau_a/q_a * k_gB * j_dp + ENDDO + !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + !! ES linear coefficients for moment RHS !!!!!!!!!! + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! REALof Laguerre degree + j_dp = REAL(j_int,dp) ! REALof Laguerre degree + !! Electrostatic potential pj terms + IF (p_int .EQ. 0) THEN ! kronecker p0 + xphij_a(ip,ij) = +k_Na + 2._dp*j_dp*k_Ta + xphijp1_a(ip,ij) = -k_Ta*(j_dp+1._dp) + xphijm1_a(ip,ij) = -k_Ta* j_dp + ELSE IF (p_int .EQ. 2) THEN ! kronecker p2 + xphij_a(ip,ij) = +k_Ta/SQRT2 + xphijp1_a(ip,ij) = 0._dp; xphijm1_a(ip,ij) = 0._dp; + ELSE + xphij_a(ip,ij) = 0._dp; xphijp1_a(ip,ij) = 0._dp + xphijm1_a(ip,ij) = 0._dp; + ENDIF + ENDDO + ENDDO + !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + !! Electromagnatic linear coefficients for moment RHS !!!!!!!!!! + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! REALof Laguerre degree + j_dp = REAL(j_int,dp) ! REALof Laguerre degree + IF (p_int .EQ. 1) THEN ! kronecker p1 + xpsij_a (ip,ij) = +(k_Na + (2._dp*j_dp+1._dp)*k_Ta)* SQRT(tau_a)/sigma_a + xpsijp1_a(ip,ij) = - k_Ta*(j_dp+1._dp) * SQRT(tau_a)/sigma_a + xpsijm1_a(ip,ij) = - k_Ta* j_dp * SQRT(tau_a)/sigma_a + ELSE IF (p_int .EQ. 3) THEN ! kronecker p3 + xpsij_a (ip,ij) = + k_Ta*SQRT3/SQRT2 * SQRT(tau_a)/sigma_a + xpsijp1_a(ip,ij) = 0._dp; xpsijm1_a(ip,ij) = 0._dp; + ELSE + xpsij_a (ip,ij) = 0._dp; xpsijp1_a(ip,ij) = 0._dp + xpsijm1_a(ip,ij) = 0._dp; + ENDIF + ENDDO + ENDDO + END SUBROUTINE lin_coeff END SUBROUTINE compute_lin_coeff END MODULE numerics