diff --git a/src/lag_interp.F90 b/src/lag_interp.F90 new file mode 100644 index 0000000000000000000000000000000000000000..db2afc48fff13af5868e2764eca4e73d2f0c4f08 --- /dev/null +++ b/src/lag_interp.F90 @@ -0,0 +1,256 @@ +#include "redef.h" +!! This source is taken from GENE https://genecode.org/ !! +!>lagrange_interpolation contains subroutines to perform +!!a mid-point lagrange interpolation of order 3 +MODULE lagrange_interpolation + IMPLICIT NONE + PUBLIC:: lag3interp, lag3deriv, lag3interp_2d + PUBLIC:: lag3interp_complex + PRIVATE + + INTERFACE lag3interp + MODULE PROCEDURE lag3interp_scalar, lag3interp_array + END INTERFACE + + INTERFACE lag3deriv + MODULE PROCEDURE lag3deriv_scalar, lag3deriv_array + END INTERFACE + +CONTAINS + + !> Third order lagrange interpolation + SUBROUTINE lag3interp_scalar(y_in,x_in,n_in,y_out,x_out) + INTEGER, INTENT(IN) :: n_in + REAL, DIMENSION(n_in), INTENT(IN) :: y_in,x_in + REAL, INTENT(IN) :: x_out + REAL, INTENT(OUT) :: y_out + + REAL, DIMENSION(1) :: xout_wrap, yout_wrap + + xout_wrap = x_out + call lag3interp_array(y_in,x_in,n_in,yout_wrap,xout_wrap,1) + y_out = yout_wrap(1) + + END SUBROUTINE lag3interp_scalar + + !> Third order lagrange interpolation + subroutine lag3interp_array(y_in,x_in,n_in,y_out,x_out,n_out) + INTEGER, INTENT(IN) :: n_in,n_out + REAL, DIMENSION(n_in), INTENT(IN) :: y_in,x_in + REAL, DIMENSION(n_out), INTENT(IN) :: x_out + REAL, DIMENSION(n_out), INTENT(OUT) :: y_out + + REAL :: x,aintm,aint0,aint1,aint2,xm,x0,x1,x2 + INTEGER :: j,jm,j0,j1,j2 + INTEGER :: jstart,jfirst,jlast,jstep + + IF (x_in(n_in) > x_in(1)) THEN + jstart=3 + jfirst=1 + jlast=n_out + jstep=1 + ELSE + jstart=n_in-2 + jfirst=n_out + jlast=1 + jstep=-1 + END IF + + j1=jstart + DO j=jfirst,jlast,jstep + x=x_out(j) + DO WHILE (x >= x_in(j1) .AND. j1 < n_in-1 .AND. j1 > 2) + j1=j1+jstep + END DO + + j2=j1+jstep + j0=j1-jstep + jm=j1-2*jstep + + !... extrapolate inside or outside + + x2=x_in(j2) + x1=x_in(j1) + x0=x_in(j0) + xm=x_in(jm) + + aintm=(x-x0)*(x-x1)*(x-x2)/((xm-x0)*(xm-x1)*(xm-x2)) + aint0=(x-xm)*(x-x1)*(x-x2)/((x0-xm)*(x0-x1)*(x0-x2)) + aint1=(x-xm)*(x-x0)*(x-x2)/((x1-xm)*(x1-x0)*(x1-x2)) + aint2=(x-xm)*(x-x0)*(x-x1)/((x2-xm)*(x2-x0)*(x2-x1)) + + y_out(j)=aintm*y_in(jm)+aint0*y_in(j0) & + +aint1*y_in(j1)+aint2*y_in(j2) + + END DO + + END SUBROUTINE Lag3interp_array + + + !> Third order lagrange interpolation for complex arrays + SUBROUTINE lag3interp_complex(y_in,x_in,n_in,y_out,x_out,n_out) + INTEGER, INTENT(IN) :: n_in,n_out + COMPLEX, DIMENSION(n_in), INTENT(IN) :: y_in + REAL, DIMENSION(n_in), INTENT(IN) :: x_in + COMPLEX, DIMENSION(n_out), INTENT(OUT) :: y_out + REAL, DIMENSION(n_out), INTENT(IN) :: x_out + + REAL :: x,aintm,aint0,aint1,aint2,xm,x0,x1,x2 + INTEGER :: j,jm,j0,j1,j2 + INTEGER :: jstart,jfirst,jlast,jstep + + IF (x_in(n_in) > x_in(1)) THEN + jstart=3 + jfirst=1 + jlast=n_out + jstep=1 + ELSE + jstart=n_in-2 + jfirst=n_out + jlast=1 + jstep=-1 + END IF + + j1=jstart + DO j=jfirst,jlast,jstep + x=x_out(j) + DO WHILE (x >= x_in(j1) .AND. j1 < n_in-1 .AND. j1 > 2) + j1=j1+jstep + END DO + + j2=j1+jstep + j0=j1-jstep + jm=j1-2*jstep + + !... extrapolate inside or outside + + x2=x_in(j2) + x1=x_in(j1) + x0=x_in(j0) + xm=x_in(jm) + + aintm=(x-x0)*(x-x1)*(x-x2)/((xm-x0)*(xm-x1)*(xm-x2)) + aint0=(x-xm)*(x-x1)*(x-x2)/((x0-xm)*(x0-x1)*(x0-x2)) + aint1=(x-xm)*(x-x0)*(x-x2)/((x1-xm)*(x1-x0)*(x1-x2)) + aint2=(x-xm)*(x-x0)*(x-x1)/((x2-xm)*(x2-x0)*(x2-x1)) + + y_out(j)=aintm*y_in(jm)+aint0*y_in(j0) & + +aint1*y_in(j1)+aint2*y_in(j2) + + END DO + + END SUBROUTINE lag3interp_complex + + + !>2D interpolation + !\TODO check whether a "real" 2D interpolation would + !! be more appropriate + SUBROUTINE lag3interp_2d(y_in,x1_in,n1_in,x2_in,n2_in,& + &y_out,x1_out,n1_out,x2_out,n2_out) + INTEGER, INTENT(IN) :: n1_in,n2_in,n1_out,n2_out + REAL, DIMENSION(n1_in,n2_in), INTENT(IN) :: y_in + REAL, DIMENSION(n1_in) :: x1_in + REAL, DIMENSION(n2_in) :: x2_in + REAL, DIMENSION(n1_out), INTENT(IN) :: x1_out + REAL, DIMENSION(n2_out), INTENT(IN) :: x2_out + REAL, DIMENSION(n1_out,n2_out), INTENT(OUT) :: y_out + + !local variables + REAL, DIMENSION(n2_in) :: y2_in_tmp + REAL, DIMENSION(n2_out) :: y2_out_tmp + REAL, DIMENSION(n1_in,n2_out) :: y_tmp + INTEGER :: i + + DO i=1,n1_in + y2_in_tmp = y_in(i,:) + call lag3interp(y2_in_tmp,x2_in,n2_in,& + y2_out_tmp,x2_out,n2_out) + y_tmp(i,:) = y2_out_tmp + ENDDO + + DO i=1,n2_out + call lag3interp(y_tmp(:,i),x1_in,n1_in,& + y_out(:,i),x1_out,n1_out) + END DO + + END SUBROUTINE lag3interp_2d + + !> Third order lagrange interpolation + SUBROUTINE lag3deriv_scalar(y_in,x_in,n_in,dydx_out,x_out) + + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n_in + REAL, DIMENSION(n_in), INTENT(IN) :: y_in,x_in + REAL, INTENT(IN) :: x_out + REAL, INTENT(OUT) :: dydx_out + + REAL, DIMENSION(1) :: xout_wrap, dydxout_wrap + + xout_wrap = x_out + call lag3deriv_array(y_in,x_in,n_in,dydxout_wrap,xout_wrap,1) + dydx_out = dydxout_wrap(1) + + END SUBROUTINE lag3deriv_scalar + + + +!>Returns Derivative based on a 3rd order lagrange interpolation + subroutine lag3deriv_array(y_in,x_in,n_in,dydx_out,x_out,n_out) + INTEGER :: n_in,n_out + REAL, DIMENSION(n_in), INTENT(IN) :: y_in,x_in + REAL, DIMENSION(n_out), INTENT(IN) :: x_out + REAL, DIMENSION(n_out), INTENT(OUT) :: dydx_out + + REAL :: x,aintm,aint0,aint1,aint2,xm,x0,x1,x2 + INTEGER :: j,jm,j0,j1,j2 + INTEGER :: jstart,jfirst,jlast,jstep + + IF (x_in(n_in) > x_in(1)) THEN + jstart=3 + jfirst=1 + jlast=n_out + jstep=1 + ELSE + jstart=n_in-2 + jfirst=n_out + jlast=1 + jstep=-1 + END IF + + j1=jstart + DO j=jfirst,jlast,jstep + x=x_out(j) + DO WHILE (x >= x_in(j1) .AND. j1 < n_in-1 .AND. j1 > 2) + j1=j1+jstep + END DO + + j2=j1+jstep + j0=j1-jstep + jm=j1-2*jstep + + !... extrapolate inside or outside + + x2=x_in(j2) + x1=x_in(j1) + x0=x_in(j0) + xm=x_in(jm) + + aintm=((x-x1)*(x-x2)+(x-x0)*(x-x2)+(x-x0)*(x-x1)) & + /((xm-x0)*(xm-x1)*(xm-x2)) + aint0=((x-x1)*(x-x2)+(x-xm)*(x-x2)+(x-xm)*(x-x1)) & + /((x0-xm)*(x0-x1)*(x0-x2)) + aint1=((x-x0)*(x-x2)+(x-xm)*(x-x2)+(x-xm)*(x-x0)) & + /((x1-xm)*(x1-x0)*(x1-x2)) + aint2=((x-x0)*(x-x1)+(x-xm)*(x-x1)+(x-xm)*(x-x0)) & + /((x2-xm)*(x2-x0)*(x2-x1)) + + dydx_out(j)=aintm*y_in(jm)+aint0*y_in(j0) & + +aint1*y_in(j1)+aint2*y_in(j2) + + END DO + + end subroutine Lag3deriv_array + + +end module lagrange_interpolation diff --git a/src/miller_geometry.F90 b/src/miller_geometry.F90 new file mode 100644 index 0000000000000000000000000000000000000000..15f705399e96204712b3880dd1f4dfe804bb8d1a --- /dev/null +++ b/src/miller_geometry.F90 @@ -0,0 +1,589 @@ +#include "redef.h" +!! This source has been adapted from GENE https://genecode.org/ !! +!>Implementation of the local equilibrium model of [R.L. Miller et al., PoP 5, 973 (1998) +!>and [J. Candy, PPCF 51, 105009 (2009)] +MODULE miller_mod + ! use coordinates,only: gcoor, get_dzprimedz + ! use discretization + use lagrange_interpolation + ! use par_geom + ! use par_in, only: beta, sign_Ip_CW, sign_Bt_CW, n_pol + ! use par_other, only: print_ini_msg + + implicit none + public:: get_miller, set_miller_defaults + public:: rho, kappa, delta, s_kappa, s_delta, drR, drZ, zeta, s_zeta + public:: thetaShift + public:: mMode, nMode + public:: thetak, thetad + public:: aSurf, Delta2, Delta3, theta2, theta3, Raxis, Zaxis + public:: Deltam, Deltan, s_Deltam, s_Deltan, thetam, thetan + public:: cN_m, sN_m, cNdr_m, sNdr_m + + private + + REAL :: rho, kappa, delta, s_kappa, s_delta, drR, drZ, zeta, s_zeta + + INTEGER :: mMode, nMode + REAL :: thetaShift + REAL :: thetak, thetad + REAL :: aSurf, Delta2, Delta3, theta2, theta3, Raxis, Zaxis + REAL :: Deltam, Deltan, s_Deltam, s_Deltan, thetam, thetan + + INTEGER, PARAMETER :: IND_M=32 + REAL, DIMENSION(0:IND_M-1) :: cN_m, sN_m, cNdr_m, sNdr_m + +CONTAINS + + !>Set defaults for miller parameters + subroutine set_miller_defaults + rho = -1.0 + kappa = 1.0 + s_kappa = 0.0 + delta = 0.0 + s_delta = 0.0 + drR = 0.0 + drZ = 0.0 + zeta = 0.0 + s_zeta = 0.0 + + + thetak = 0.0 + thetad = 0.0 + + aSurf = 0.54 + Delta2 = 1.0 + Delta3 = 1.0 + theta2 = 0.0 + theta3 = 0.0 + Raxis = 1.0 + Zaxis = 0.0 + + mMode = 2 + nMode = 3 + Deltam = 1.0 + Deltan = 1.0 + s_Deltam = 0.0 + s_Deltan = 0.0 + thetam = 0.0 + thetan = 0.0 + + cN_m = 0.0 + sN_m = 0.0 + cNdr_m = 0.0 + sNdr_m = 0.0 + end subroutine set_miller_defaults + + !>Get Miller metric, magnetic field, jacobian etc. + subroutine get_miller(geom,edge_opt) !previously: get_miller_a + type(geomtype),intent(inout):: geom + real, intent(in):: edge_opt + integer:: np, np_s, n_pol_ext, n_pol_s + + real, dimension(500*(n_pol+2)):: R,Z,R_rho,Z_rho,R_theta,Z_theta,R_theta_theta,Z_theta_theta,dlp,Rc,cosu,sinu,Bphi + real, dimension(500*(n_pol+2)):: drRcirc, drRelong, drRelongTilt, drRtri, drRtriTilt, drZcirc, drZelong, drZelongTilt + real, dimension(500*(n_pol+2)):: drZtri, drZtriTilt, dtdtRcirc, dtdtRelong, dtdtRelongTilt, dtdtRtri, dtdtRtriTilt + real, dimension(500*(n_pol+2)):: dtdtZcirc, dtdtZelong, dtdtZelongTilt, dtdtZtri, dtdtZtriTilt, dtRcirc, dtRelong + real, dimension(500*(n_pol+2)):: dtRelongTilt, dtRtri, dtRtriTilt, dtZcirc, dtZelong, dtZelongTilt, dtZtri, dtZtriTilt + real, dimension(500*(n_pol+2)):: Rcirc, Relong, RelongTilt, Rtri, RtriTilt, Zcirc, Zelong, ZelongTilt, Ztri, ZtriTilt + real, dimension(500*(n_pol+2)):: drrShape, drrAng, drxAng, dryAng, dtdtrShape, dtdtrAng, dtdtxAng + real, dimension(500*(n_pol+2)):: dtdtyAng, dtrShape, dtrAng, dtxAng, dtyAng, rShape, rAng, xAng, yAng + real, dimension(500*(n_pol+2)):: theta, thAdj, J_r, B, Bp, D0, D1, D2, D3, nu, chi, psi1, nu1 + real, dimension(500*(n_pol+2)):: tmp_reverse, theta_reverse, tmp_arr + + real, dimension(500*(n_pol+1)):: theta_s, thAdj_s, chi_s, theta_s_reverse + real, dimension(500*(n_pol+1)):: R_s, Z_s, R_theta_s, Z_theta_s, Rc_s, cosu_s, sinu_s, Bphi_s, B_s, Bp_s, dlp_s + real, dimension(500*(n_pol+1)):: dtRcirc_s, dtRelong_s, dtRelongTilt_s, dtRtri_s, dtRtriTilt_s, dtZcirc_s + real, dimension(500*(n_pol+1)):: dtZelong_s, dtZelongTilt_s, dtZtri_s, dtZtriTilt_s, Rcirc_s, Relong_s, RelongTilt_s + real, dimension(500*(n_pol+1)):: Rtri_s, RtriTilt_s, Zcirc_s, Zelong_s, ZelongTilt_s, Ztri_s, ZtriTilt_s, dtrShape_s + real, dimension(500*(n_pol+1)):: dtrAng_s, dtxAng_s, dtyAng_s, rShape_s, rAng_s, xAng_s, yAng_s + real, dimension(500*(n_pol+1)):: psi1_s, nu1_s, dchidx_s, dB_drho_s, dB_dl_s, dnu_drho_s, dnu_dl_s, grad_nu_s + real, dimension(500*(n_pol+1)):: gxx, gxy, gxz, gyy, gyz, gzz, dtheta_dchi_s, dBp_dchi_s, jacobian, dBdx, dBdz + real, dimension(500*(n_pol+1)):: g_xx, g_xy, g_xz, g_yy, g_yz, g_zz, tmp_arr_s, dxdR_s, dxdZ_s, K_x, K_y !tmp_arr2 + + real, dimension(0:nz0-1):: gxx_out,gxy_out,gxz_out,gyy_out,gyz_out,gzz_out,Bfield_out,jacobian_out, dBdx_out, dBdz_out, chi_out + real, dimension(0:nz0-1):: R_out, Z_out, dxdR_out, dxdZ_out + real:: d_inv, drPsi, dxPsi, dq_dx, dq_dpsi, R0, Z0, B0, F, D0_full, D1_full, D2_full, D3_full + !real :: Lnorm, Psi0 ! currently module-wide defined anyway + real:: pprime, ffprime, D0_mid, D1_mid, D2_mid, D3_mid, dx_drho, pi, mu_0, dzprimedz + real:: rho_a, psiN, drpsiN, CN2, CN3, Rcenter, Zcenter, drRcenter, drZcenter + logical:: bMaxShift + integer:: i, k, iBmax + + n_pol_ext = n_pol+2 + n_pol_s = n_pol+1 + np = 500*n_pol_ext + np_s = 500*n_pol_s + + if (rho.lt.0.0) rho = trpeps*major_R + if (rho.le.0.0) stop 'flux surface radius not defined' + trpeps = rho/major_R + gcoor%x0=rho + + q0 = sign_Ip_CW * sign_Bt_CW * abs(q0) + + R0=major_R + B0=1.0*sign_Bt_CW + F=R0*B0 + Z0=major_Z + pi = acos(-1.0) + mu_0=4.0*pi + + theta=linspace(-pi*n_pol_ext,pi*n_pol_ext-2*pi*n_pol_ext/np,np) + d_inv=asin(delta) + + thetaShift = 0.0 + iBmax = 1 + + !flux surface parametrization + thAdj = theta + thetaShift + select case (magn_geometry) + case ('miller') + if (zeta/=0.0 .or. s_zeta/=0.0) then + R = R0 + rho*Cos(thAdj + d_inv*Sin(thAdj)) + Z = Z0 + kappa*rho*Sin(thAdj + zeta*Sin(2*thAdj)) + + R_rho = drR + Cos(thAdj + d_inv*Sin(thAdj)) - s_delta*Sin(thAdj)*Sin(thAdj + d_inv*Sin(thAdj)) + Z_rho = drZ + kappa*s_zeta*Cos(thAdj + zeta*Sin(2*thAdj))*Sin(2*thAdj) & + + kappa*Sin(thAdj + zeta*Sin(2*thAdj)) + kappa*s_kappa*Sin(thAdj + zeta*Sin(2*thAdj)) + + R_theta = -(rho*(1 + d_inv*Cos(thAdj))*Sin(thAdj + d_inv*Sin(thAdj))) + Z_theta = kappa*rho*(1 + 2*zeta*Cos(2*thAdj))*Cos(thAdj + zeta*Sin(2*thAdj)) + + R_theta_theta = -(rho*(1 + d_inv*Cos(thAdj))**2*Cos(thAdj + d_inv*Sin(thAdj))) & + + d_inv*rho*Sin(thAdj)*Sin(thAdj + d_inv*Sin(thAdj)) + Z_theta_theta = -4*kappa*rho*zeta*Cos(thAdj + zeta*Sin(2*thAdj))*Sin(2*thAdj) & + - kappa*rho*(1 + 2*zeta*Cos(2*thAdj))**2*Sin(thAdj + zeta*Sin(2*thAdj)) + else + Rcirc = rho*Cos(thAdj - thetad + thetak) + Zcirc = rho*Sin(thAdj - thetad + thetak) + Relong = Rcirc + Zelong = Zcirc + (-1 + kappa)*rho*Sin(thAdj - thetad + thetak) + RelongTilt = Relong*Cos(thetad - thetak) - Zelong*Sin(thetad - thetak) + ZelongTilt = Zelong*Cos(thetad - thetak) + Relong*Sin(thetad - thetak) + Rtri = RelongTilt - rho*Cos(thAdj) + rho*Cos(thAdj + delta*Sin(thAdj)) + Ztri = ZelongTilt + RtriTilt = Rtri*Cos(thetad) + Ztri*Sin(thetad) + ZtriTilt = Ztri*Cos(thetad) - Rtri*Sin(thetad) + R = R0 + RtriTilt + Z = Z0 + ZtriTilt + + drRcirc = Cos(thAdj - thetad + thetak) + drZcirc = Sin(thAdj - thetad + thetak) + drRelong = drRcirc + drZelong = drZcirc - (1 - kappa - kappa*s_kappa)*Sin(thAdj - thetad + thetak) + drRelongTilt = drRelong*Cos(thetad - thetak) - drZelong*Sin(thetad - thetak) + drZelongTilt = drZelong*Cos(thetad - thetak) + drRelong*Sin(thetad - thetak) + drRtri = drRelongTilt - Cos(thAdj) + Cos(thAdj + delta*Sin(thAdj)) & + - s_delta*Sin(thAdj)*Sin(thAdj + delta*Sin(thAdj)) + drZtri = drZelongTilt + drRtriTilt = drRtri*Cos(thetad) + drZtri*Sin(thetad) + drZtriTilt = drZtri*Cos(thetad) - drRtri*Sin(thetad) + R_rho = drR + drRtriTilt + Z_rho = drZ + drZtriTilt + + dtRcirc = -(rho*Sin(thAdj - thetad + thetak)) + dtZcirc = rho*Cos(thAdj - thetad + thetak) + dtRelong = dtRcirc + dtZelong = dtZcirc + (-1 + kappa)*rho*Cos(thAdj - thetad + thetak) + dtRelongTilt = dtRelong*Cos(thetad - thetak) - dtZelong*Sin(thetad - thetak) + dtZelongTilt = dtZelong*Cos(thetad - thetak) + dtRelong*Sin(thetad - thetak) + dtRtri = dtRelongTilt + rho*Sin(thAdj) - rho*(1 + delta*Cos(thAdj))*Sin(thAdj + delta*Sin(thAdj)) + dtZtri = dtZelongTilt + dtRtriTilt = dtRtri*Cos(thetad) + dtZtri*Sin(thetad) + dtZtriTilt = dtZtri*Cos(thetad) - dtRtri*Sin(thetad) + R_theta = dtRtriTilt + Z_theta = dtZtriTilt + + dtdtRcirc = -(rho*Cos(thAdj - thetad + thetak)) + dtdtZcirc = -(rho*Sin(thAdj - thetad + thetak)) + dtdtRelong = dtdtRcirc + dtdtZelong = dtdtZcirc - (-1 + kappa)*rho*Sin(thAdj - thetad + thetak) + dtdtRelongTilt = dtdtRelong*Cos(thetad - thetak) - dtdtZelong*Sin(thetad - thetak) + dtdtZelongTilt = dtdtZelong*Cos(thetad - thetak) + dtdtRelong*Sin(thetad - thetak) + dtdtRtri = dtdtRelongTilt + rho*Cos(thAdj) - rho*(1 + delta*Cos(thAdj))**2*Cos(thAdj + delta*Sin(thAdj)) & + + delta*rho*Sin(thAdj)*Sin(thAdj + delta*Sin(thAdj)) + dtdtZtri = dtdtZelongTilt + dtdtRtriTilt = dtdtRtri*Cos(thetad) + dtdtZtri*Sin(thetad) + dtdtZtriTilt = dtdtZtri*Cos(thetad) - dtdtRtri*Sin(thetad) + R_theta_theta = dtdtRtriTilt + Z_theta_theta = dtdtZtriTilt + endif + case default + write (*,*) "ERROR: invalid analytic geometry specification" + end select + + !dl/dtheta + dlp=(R_theta**2+Z_theta**2)**0.5 + + !curvature radius + Rc=dlp**3*(R_theta*Z_theta_theta-Z_theta*R_theta_theta)**(-1) + + ! some useful quantities (see papers for definition of u) + cosu=Z_theta/dlp + sinu=-R_theta/dlp + + !Jacobian J_r = (dPsi/dr) J_psi = (dPsi/dr) / [(nabla phi x nabla psi)* nabla theta] + ! = R * (dR/drho dZ/dtheta - dR/dtheta dZ/drho) = R dlp / |nabla r| + J_r=R*(R_rho*Z_theta-R_theta*Z_rho) + + !From definition of q = 1/(2 pi) int (B nabla phi) / (B nabla theta) dtheta: + !dPsi/dr = sign_Bt sign_Ip / (2 pi q) int F / R^2 J_r dtheta + ! = F / (2 pi |q|) int J_r/R^2 dtheta + tmp_arr=J_r/R**2 + drPsi=sign_Ip_CW*F/(2.*pi*n_pol_ext*q0)*sum(tmp_arr)*2*pi*n_pol_ext/np !dlp_int(tmp_arr,1.0) + + !Poloidal field (Bp = Bvec * nabla l) + Bp=sign_Ip_CW * drPsi / J_r * dlp + + !toroidal field + Bphi=F/R + + !total modulus of Bfield + B=sqrt(Bphi**2+Bp**2) + + bMaxShift = .false. + if (thetaShift==0.0.and.trim(magn_geometry).ne.'miller_general') then + do i = 2,np-1 + if (B(iBmax)<B(i)) then + iBmax = i + end if + enddo + if (iBmax/=1) then + bMaxShift = .true. + thetaShift = theta(iBmax)-theta(1) + end if + end if + + !definition of radial coordinate! dx_drho=1 --> x = r + dx_drho=1. !drPsi/Psi0*Lnorm*q0 + if (mype==0.and.print_ini_msg) write(*,"(A,ES12.4)") 'Using radial coordinate with dx/dr = ',dx_drho + dxPsi=drPsi/dx_drho + geom%C_y=dxPsi*sign_Ip_CW + geom%Cyq0_x0=geom%C_y(gpdisc%pi1gl)*q0/rho + geom%C_xy=abs(B0*dxPsi/geom%C_y) + + if (mype==0.and.print_ini_msg) then + write(*,"(A,ES12.4,A,ES12.4,A,ES12.4)") & + "Setting C_xy = ",geom%C_xy(gpdisc%pi1gl),' C_y = ', geom%C_y(gpdisc%pi1gl)," C_x' = ", 1./dxPsi + write(*,'(A,ES12.4)') "B_unit/Bref conversion factor = ", q0/rho*drPsi + write(*,'(A,ES12.4)') "dPsi/dr = ", drPsi + if (thetaShift.ne.0.0) write(*,'(A,ES12.4)') "thetaShift = ", thetaShift + endif + + + !--------shear is expected to be defined as rho/q*dq/drho--------! + dq_dx=shat*q0/rho/dx_drho + dq_dpsi=dq_dx/dxPsi + pprime=-amhd/q0**2/R0/(2*mu_0)*B0**2/drPsi + + !neg. dpdx normalized to magnetic pressure for pressure term + geom%dpdx_pm_geom=amhd/q0**2/R0/dx_drho + + !first coefficient of psi in varrho expansion + psi1 = R*Bp*sign_Ip_CW + + !integrals for ffprime evaluation + do i=1,np + tmp_arr=(2./Rc-2.*cosu/R)/(R*psi1**2) + D0(i)=-F*dlp_int_ind(tmp_arr,dlp,i) + tmp_arr=B**2*R/psi1**3 + D1(i)=-dlp_int_ind(tmp_arr,dlp,i)/F + tmp_arr=mu_0*R/psi1**3 + D2(i)=-dlp_int_ind(tmp_arr,dlp,i)*F + tmp_arr=1./(R*psi1) + D3(i)=-dlp_int_ind(tmp_arr,dlp,i)*F + enddo + tmp_arr=(2./Rc-2.*cosu/R)/(R*psi1**2) + D0_full=-F*dlp_int(tmp_arr,dlp) + tmp_arr=B**2*R/psi1**3 + D1_full=-dlp_int(tmp_arr,dlp)/F + tmp_arr=mu_0*R/psi1**3 + D2_full=-dlp_int(tmp_arr,dlp)*F + tmp_arr=1./(R*psi1) + D3_full=-dlp_int(tmp_arr,dlp)*F + D0_mid=D0(np/2+1) + D1_mid=D1(np/2+1) + D2_mid=D2(np/2+1) + D3_mid=D3(np/2+1) + + ffprime=-(sign_Ip_CW*dq_dpsi*2.*pi*n_pol_ext+D0_full+D2_full*pprime)/D1_full + + if (mype==0.and.print_ini_msg) then + write(*,'(A,ES12.4)') "ffprime = ", ffprime + endif + D0=D0-D0_mid + D1=D1-D1_mid + D2=D2-D2_mid + nu=D3-D3_mid + + nu1=psi1*(D0+D1*ffprime+D2*pprime) + + !straight field line angle defined on equidistant theta grid + !alpha = phi + nu = - (q chi - phi) => chi = -nu / q + chi=-nu/q0 + + !correct small scaling error (<0.5%, due to finite integration resolution) + chi=chi*(maxval(theta)-minval(theta))/(maxval(chi)-minval(chi)) + + !new grid equidistant in straight field line angle + chi_s = linspace(-pi*n_pol_s,pi*n_pol_s-2*pi*n_pol_s/np_s,np_s) + + if (sign_Ip_CW.lt.0.0) then !make chi increasing function to not confuse lag3interp + tmp_reverse = chi(np:1:-1) + theta_reverse = theta(np:1:-1) + call lag3interp(theta_reverse,tmp_reverse,np,theta_s,chi_s,np_s) + theta_s_reverse = theta_s(np_s:1:-1) + else + !lag3interp(y_in,x_in,n_in,y_out,x_out,n_out) + call lag3interp(theta,chi,np,theta_s,chi_s,np_s) + endif + dtheta_dchi_s=deriv_fd(theta_s,chi_s,np_s) + + !arrays equidistant in straight field line angle + thAdj_s = theta_s + thetaShift + + select case (magn_geometry) + case ('miller') + if (zeta/=0.0 .or. s_zeta/=0.0) then + R_s = R0 + rho*Cos(thAdj_s + d_inv*Sin(thAdj_s)) + Z_s = Z0 + kappa*rho*Sin(thAdj_s + zeta*Sin(2*thAdj_s)) + + R_theta_s = -(dtheta_dchi_s*rho*(1 + d_inv*Cos(thAdj_s))*Sin(thAdj_s + d_inv*Sin(thAdj_s))) + Z_theta_s = dtheta_dchi_s*kappa*rho*(1 + 2*zeta*Cos(2*thAdj_s))*Cos(thAdj_s + zeta*Sin(2*thAdj_s)) + else + Rcirc_s = rho*Cos(thAdj_s - thetad + thetak) + Zcirc_s = rho*Sin(thAdj_s - thetad + thetak) + Relong_s = Rcirc_s + Zelong_s = Zcirc_s + (-1 + kappa)*rho*Sin(thAdj_s - thetad + thetak) + RelongTilt_s = Relong_s*Cos(thetad - thetak) - Zelong_s*Sin(thetad - thetak) + ZelongTilt_s = Zelong_s*Cos(thetad - thetak) + Relong_s*Sin(thetad - thetak) + Rtri_s = RelongTilt_s - rho*Cos(thAdj_s) + rho*Cos(thAdj_s + delta*Sin(thAdj_s)) + Ztri_s = ZelongTilt_s + RtriTilt_s = Rtri_s*Cos(thetad) + Ztri_s*Sin(thetad) + ZtriTilt_s = Ztri_s*Cos(thetad) - Rtri_s*Sin(thetad) + R_s = R0 + RtriTilt_s + Z_s = Z0 + ZtriTilt_s + + dtRcirc_s = -(rho*Sin(thAdj_s - thetad + thetak)) + dtZcirc_s = rho*Cos(thAdj_s - thetad + thetak) + dtRelong_s = dtRcirc_s + dtZelong_s = dtZcirc_s + (-1 + kappa)*rho*Cos(thAdj_s - thetad + thetak) + dtRelongTilt_s = dtRelong_s*Cos(thetad - thetak) - dtZelong_s*Sin(thetad - thetak) + dtZelongTilt_s = dtZelong_s*Cos(thetad - thetak) + dtRelong_s*Sin(thetad - thetak) + dtRtri_s = dtRelongTilt_s + rho*Sin(thAdj_s) & + - rho*(1 + delta*Cos(thAdj_s))*Sin(thAdj_s + delta*Sin(thAdj_s)) + dtZtri_s = dtZelongTilt_s + dtRtriTilt_s = dtRtri_s*Cos(thetad) + dtZtri_s*Sin(thetad) + dtZtriTilt_s = dtZtri_s*Cos(thetad) - dtRtri_s*Sin(thetad) + R_theta_s = dtheta_dchi_s*dtRtriTilt_s + Z_theta_s = dtheta_dchi_s*dtZtriTilt_s + endif + case default + write (*,*) "ERROR: invalid analytic geometry specification" + end select + + if (sign_Ip_CW.lt.0.0) then + call lag3interp(nu1,theta,np,tmp_arr_s,theta_s_reverse,np_s) + nu1_s = tmp_arr_s(np_s:1:-1) + call lag3interp(Bp,theta,np,tmp_arr_s,theta_s_reverse,np_s) + Bp_s = tmp_arr_s(np_s:1:-1) + call lag3interp(dlp,theta,np,tmp_arr_s,theta_s_reverse,np_s) + dlp_s = tmp_arr_s(np_s:1:-1) + call lag3interp(Rc,theta,np,tmp_arr_s,theta_s_reverse,np_s) + Rc_s = tmp_arr_s(np_s:1:-1) + else + call lag3interp(nu1,theta,np,nu1_s,theta_s,np_s) + call lag3interp(Bp,theta,np,Bp_s,theta_s,np_s) + call lag3interp(dlp,theta,np,dlp_s,theta_s,np_s) + call lag3interp(Rc,theta,np,Rc_s,theta_s,np_s) + endif + + psi1_s = R_s*Bp_s*sign_Ip_CW + + dBp_dchi_s=deriv_fd(Bp_s,chi_s,np_s) + + Bphi_s=F/R_s + B_s=sqrt(Bphi_s**2+Bp_s**2) + cosu_s=Z_theta_s/dlp_s/dtheta_dchi_s + sinu_s=-R_theta_s/dlp_s/dtheta_dchi_s + + !radial derivative of straight field line angle + dchidx_s=-(nu1_s/psi1_s*dxPsi+chi_s*dq_dx)/q0 + + !Bfield derivatives in Mercier-Luc coordinates (varrho,l,phi) + dB_drho_s=-1./B_s*(F**2/R_s**3*cosu_s+Bp_s**2/Rc_s+mu_0*psi1_s*pprime) + dB_dl_s=1./B_s*(Bp_s*dBp_dchi_s/dtheta_dchi_s/dlp_s+F**2/R_s**3*sinu_s) + + dnu_drho_s=nu1_s + dnu_dl_s=-F/(R_s*psi1_s) + grad_nu_s=sqrt(dnu_drho_s**2+dnu_dl_s**2) + + !contravariant metric coefficients (varrho,l,phi)->(x,y,z) + gxx=(psi1_s/dxPsi)**2 + gxy=-psi1_s/dxPsi*geom%C_y(gpdisc%pi1gl)*sign_Ip_CW*nu1_s + gxz=-psi1_s/dxPsi*(nu1_s+psi1_s*dq_dpsi*chi_s)/q0 + gyy=geom%C_y(gpdisc%pi1gl)**2*(grad_nu_s**2+1/R_s**2) + gyz=sign_Ip_CW*geom%C_y(gpdisc%pi1gl)/q0*(grad_nu_s**2+dq_dpsi*nu1_s*psi1_s*chi_s) + gzz=1./q0**2*(grad_nu_s**2+2.*dq_dpsi*nu1_s*psi1_s*chi_s+(dq_dpsi*psi1_s*chi_s)**2) + + jacobian=1./sqrt(gxx*gyy*gzz + 2.*gxy*gyz*gxz - gxz**2*gyy - gyz**2*gxx - gzz*gxy**2) + + !covariant metric coefficients + g_xx=jacobian**2*(gyy*gzz-gyz**2) + g_xy=jacobian**2*(gxz*gyz-gxy*gzz) + g_xz=jacobian**2*(gxy*gyz-gxz*gyy) + g_yy=jacobian**2*(gxx*gzz-gxz**2) + g_yz=jacobian**2*(gxz*gxy-gxx*gyz) + g_zz=jacobian**2*(gxx*gyy-gxy**2) + + !Bfield derivatives + !dBdx = e_x * nabla B = J (nabla y x nabla z) * nabla B + dBdx=jacobian*geom%C_y(gpdisc%pi1gl)/(q0*R_s)*(F/(R_s*psi1_s)*dB_drho_s+(nu1_s+dq_dpsi*chi_s*psi1_s)*dB_dl_s) + dBdz=1./B_s*(Bp_s*dBp_dchi_s-F**2/R_s**3*R_theta_s) + + !curvature terms (these are just local and will be recalculated in geometry.F90) + K_x = (0.-g_yz/g_zz*dBdz) + K_y = (dBdx-g_xz/g_zz*dBdz) + + !(R,Z) derivatives for visualization + dxdR_s = dx_drho/drPsi*psi1_s*cosu_s + dxdZ_s = dx_drho/drPsi*psi1_s*sinu_s + + if (edge_opt==0.0) then + !gene z-grid + chi_out=linspace(-pi*n_pol,pi*n_pol-2*pi*n_pol/nz0,nz0) + else + !new parallel coordinate chi_out==zprime + !see also tracer_aux.F90 + if (n_pol>1) STOP "ERROR: n_pol>1 has not been implemented for edge_opt=\=0.0" + do k=0,nz0-1 + chi_out(k)=sinh((-pi+k*2.*pi/nz0)*log(edge_opt*pi+sqrt(edge_opt**2*pi**2+1))/pi)/edge_opt + enddo + !transform metrics according to chain rule + do k=1,np_s + dzprimedz=get_dzprimedz(chi_s(k)) + gxz(k)=gxz(k)*dzprimedz + gyz(k)=gyz(k)*dzprimedz + gzz(k)=gzz(k)*dzprimedz**2 + jacobian(k)=jacobian(k)/dzprimedz + dBdz(k)=dBdz(k)/dzprimedz + enddo + endif !edge_opt + + !interpolate down to GENE z-grid + call lag3interp(gxx,chi_s,np_s,gxx_out,chi_out,nz0) + call lag3interp(gxy,chi_s,np_s,gxy_out,chi_out,nz0) + call lag3interp(gxz,chi_s,np_s,gxz_out,chi_out,nz0) + call lag3interp(gyy,chi_s,np_s,gyy_out,chi_out,nz0) + call lag3interp(gyz,chi_s,np_s,gyz_out,chi_out,nz0) + call lag3interp(gzz,chi_s,np_s,gzz_out,chi_out,nz0) + call lag3interp(B_s,chi_s,np_s,Bfield_out,chi_out,nz0) + call lag3interp(jacobian,chi_s,np_s,jacobian_out,chi_out,nz0) + call lag3interp(dBdx,chi_s,np_s,dBdx_out,chi_out,nz0) + call lag3interp(dBdz,chi_s,np_s,dBdz_out,chi_out,nz0) + call lag3interp(R_s,chi_s,np_s,R_out,chi_out,nz0) + call lag3interp(Z_s,chi_s,np_s,Z_out,chi_out,nz0) + call lag3interp(dxdR_s,chi_s,np_s,dxdR_out,chi_out,nz0) + call lag3interp(dxdZ_s,chi_s,np_s,dxdZ_out,chi_out,nz0) + + !select local k range + do i=gpdisc%pi1gl,gpdisc%pi2gl + if (gdisc%yx_order) then + geom%gii(i,lk1:lk2)=gyy_out(lk1:lk2) + geom%gjj(i,lk1:lk2)=gxx_out(lk1:lk2) + geom%giz(i,lk1:lk2)=gyz_out(lk1:lk2) + geom%gjz(i,lk1:lk2)=gxz_out(lk1:lk2) + geom%dBdi(i,lk1:lk2)=0. + geom%dBdj(i,lk1:lk2)=dBdx_out(lk1:lk2) + else + geom%gii(i,lk1:lk2)=gxx_out(lk1:lk2) + geom%gjj(i,lk1:lk2)=gyy_out(lk1:lk2) + geom%giz(i,lk1:lk2)=gxz_out(lk1:lk2) + geom%gjz(i,lk1:lk2)=gyz_out(lk1:lk2) + geom%dBdi(i,lk1:lk2)=dBdx_out(lk1:lk2) + geom%dBdj(i,lk1:lk2)=0. + endif + geom%gij(i,lk1:lk2)=gxy_out(lk1:lk2) + geom%gzz(i,lk1:lk2)=gzz_out(lk1:lk2) + geom%Bfield(i,lk1:lk2)=Bfield_out(lk1:lk2) + geom%jacobian(i,lk1:lk2)=jacobian_out(lk1:lk2) + geom%dBdz(i,lk1:lk2)=dBdz_out(lk1:lk2) + if (Lref.gt.0.) then + geom%R(i,lk1:lk2)=R_out(lk1:lk2)*Lref + geom%Z(i,lk1:lk2)=Z_out(lk1:lk2)*Lref + else + geom%R(i,lk1:lk2)=R_out(lk1:lk2) + geom%Z(i,lk1:lk2)=Z_out(lk1:lk2) + endif + geom%R_hat(i,lk1:lk2)=R_out(lk1:lk2) + geom%Z_hat(i,lk1:lk2)=Z_out(lk1:lk2) + geom%dxdR(i,lk1:lk2)= dxdR_out(lk1:lk2) + geom%dxdZ(i,lk1:lk2)= dxdZ_out(lk1:lk2) + enddo + + geom%q_prof=q0 + geom%dqdx_prof=shat*q0/gcoor%x0 + + contains + + !> Generate an equidistant array from min to max with n points + function linspace(min,max,n) result(out) + real:: min, max + integer:: n + real, dimension(n):: out + + do i=1,n + out(i)=min+(i-1)*(max-min)/(n-1) + enddo + end function linspace + + !> Weighted average + real function average(var,weight) + real, dimension(np):: var, weight + average=sum(var*weight)/sum(weight) + end function average + + !> full theta integral with weight function dlp + real function dlp_int(var,dlp) + real, dimension(np):: var, dlp + dlp_int=sum(var*dlp)*2*pi*n_pol_ext/np + end function dlp_int + + !> theta integral with weight function dlp, up to index 'ind' + real function dlp_int_ind(var,dlp,ind) + real, dimension(np):: var, dlp + integer:: ind + + dlp_int_ind=0. + if (ind.gt.1) then + dlp_int_ind=dlp_int_ind+var(1)*dlp(1)*pi*n_pol_ext/np + dlp_int_ind=dlp_int_ind+(sum(var(2:ind-1)*dlp(2:ind-1)))*2*pi*n_pol_ext/np + dlp_int_ind=dlp_int_ind+var(ind)*dlp(ind)*pi*n_pol_ext/np + endif + end function dlp_int_ind + + !> 1st derivative with 2nd order finite differences + function deriv_fd(y,x,n) result(out) + integer, intent(in) :: n + real, dimension(n):: x,y,out,dx + + !call lag3deriv(y,x,n,out,x,n) + + out=0. + do i=2,n-1 + out(i)=out(i)-y(i-1)/2 + out(i)=out(i)+y(i+1)/2 + enddo + out(1)=y(2)-y(1) + out(n)=y(n)-y(n-1) + dx=x(2)-x(1) + out=out/dx + + end function deriv_fd + + + end subroutine get_miller + + +END MODULE miller_mod