diff --git a/src/nonlinear_mod.F90 b/src/nonlinear_mod.F90 index 7b6cf0cc76920bc22a58920c3322d81657071f53..1e0a8bca607c50440461a4ec303d66d1494703b9 100644 --- a/src/nonlinear_mod.F90 +++ b/src/nonlinear_mod.F90 @@ -98,7 +98,7 @@ SUBROUTINE compute_nonlinear G_cmpx(ikys:ikye,ikxs:ikxe) = G_cmpx(ikys:ikye,ikxs:ikxe) + & dnjs(in,ij,is) * moments_e(ip,is,ikys:ikye,ikxs:ikxe,iz,updatetlevel) ENDDO - !/!\ this function add its result to bracket_sum_r /!\ + ! this function add its result to bracket_sum_r CALL poisson_bracket_and_sum(F_cmpx,G_cmpx,bracket_sum_r) !-----------!! ELECTROMAGNETIC CONTRIBUTION -sqrt(tau)/sigma*{Sum_s dnjs [sqrt(p+1)Nap+1s + sqrt(p)Nap-1s], Kernel psi} @@ -113,7 +113,7 @@ SUBROUTINE compute_nonlinear dnjs(in,ij,is) * (sqrt_pp1*moments_e(ip+1,is,ikys:ikye,ikxs:ikxe,iz,updatetlevel)& +sqrt_p *moments_e(ip-1,is,ikys:ikye,ikxs:ikxe,iz,updatetlevel)) ENDDO - !/!\ this function add its result to bracket_sum_r (hard to read sorry) /!\ + ! this function add its result to bracket_sum_r CALL poisson_bracket_and_sum(F_cmpx,G_cmpx,bracket_sum_r) ENDIF ENDDO nloope @@ -161,7 +161,7 @@ ENDIF G_cmpx(ikys:ikye,ikxs:ikxe) = G_cmpx(ikys:ikye,ikxs:ikxe) + & dnjs(in,ij,is) * moments_i(ip,is,ikys:ikye,ikxs:ikxe,iz,updatetlevel) ENDDO - !/!\ this function add its result to bracket_sum_r (hard to read sorry) /!\ + ! this function add its result to bracket_sum_r CALL poisson_bracket_and_sum(F_cmpx,G_cmpx,bracket_sum_r) !-----------!! ELECTROMAGNETIC CONTRIBUTION -sqrt(tau)/sigma*{Sum_s dnjs [sqrt(p+1)Nap+1s + sqrt(p)Nap-1s], Kernel psi} IF(EM) THEN @@ -175,7 +175,7 @@ ENDIF dnjs(in,ij,is) * (sqrt_pp1*moments_i(ip+1,is,ikys:ikye,ikxs:ikxe,iz,updatetlevel)& +sqrt_p *moments_i(ip-1,is,ikys:ikye,ikxs:ikxe,iz,updatetlevel)) ENDDO - !/!\ this function add its result to bracket_sum_r (hard to read sorry) /!\ + ! this function add its result to bracket_sum_r CALL poisson_bracket_and_sum(F_cmpx,G_cmpx,bracket_sum_r) ENDIF ENDDO nloopi diff --git a/src/numerics_mod.F90 b/src/numerics_mod.F90 index a269468701760eaae11801f8a1b6299709dc7ae5..07154d85a5868882f7d5d1fe05dca9afdc79115c 100644 --- a/src/numerics_mod.F90 +++ b/src/numerics_mod.F90 @@ -1,3 +1,4 @@ +<<<<<<< HEAD !! MODULE NUMERICS ! The module numerics contains a set of routines that are called only once at ! the begining of a run. These routines do not need to be optimzed @@ -379,3 +380,365 @@ SUBROUTINE compute_lin_coeff END SUBROUTINE compute_lin_coeff END MODULE numerics +======= +!! MODULE NUMERICS +! The module numerics contains a set of routines that are called only once at +! the begining of a run. These routines do not need to be optimzed +MODULE numerics + USE basic + USE prec_const + USE grid + USE utility + + implicit none + + PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op + PUBLIC :: compute_lin_coeff + +CONTAINS + +!******************************************************************************! +!!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin +!******************************************************************************! +SUBROUTINE build_dnjs_table + USE array, ONLY : dnjs + USE FMZM, ONLY : TO_DP + USE coeff, ONLY : ALL2L + IMPLICIT NONE + + INTEGER :: in, ij, is, J + INTEGER :: n_, j_, s_ + + J = max(jmaxe,jmaxi) + + DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetry + n_ = in - 1 + DO ij = in,J+1 + j_ = ij - 1 + DO is = ij,J+1 + s_ = is - 1 + + dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0)) + ! By symmetry + dnjs(in,is,ij) = dnjs(in,ij,is) + dnjs(ij,in,is) = dnjs(in,ij,is) + dnjs(ij,is,in) = dnjs(in,ij,is) + dnjs(is,ij,in) = dnjs(in,ij,is) + dnjs(is,in,ij) = dnjs(in,ij,is) + ENDDO + ENDDO + ENDDO +END SUBROUTINE build_dnjs_table +!******************************************************************************! + +!******************************************************************************! +!!!!!!! Evaluate the kernels once for all +!******************************************************************************! +SUBROUTINE evaluate_kernels + USE basic + USE array, Only : kernel_e, kernel_i, HF_phi_correction_operator + USE grid + USE model, ONLY : sigmae2_taue_o2, sigmai2_taui_o2, KIN_E + IMPLICIT NONE + INTEGER :: j_int + REAL(dp) :: j_dp, y_, factj + +DO eo = 0,1 +DO ikx = ikxs,ikxe +DO iky = ikys,ikye +DO iz = izgs,izge + !!!!! Electron kernels !!!!! + IF(KIN_E) THEN + DO ij = ijgs_e, ijge_e + j_int = jarray_e(ij) + j_dp = REAL(j_int,dp) + y_ = sigmae2_taue_o2 * kparray(iky,ikx,iz,eo)**2 + IF(j_int .LT. 0) THEN + kernel_e(ij,iky,ikx,iz,eo) = 0._dp + ELSE + factj = GAMMA(j_dp+1._dp) + kernel_e(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj + ENDIF + ENDDO + IF (ijs_e .EQ. 1) & + kernel_e(ijgs_e,iky,ikx,iz,eo) = 0._dp + ENDIF + !!!!! Ion kernels !!!!! + DO ij = ijgs_i, ijge_i + j_int = jarray_i(ij) + j_dp = REAL(j_int,dp) + y_ = sigmai2_taui_o2 * kparray(iky,ikx,iz,eo)**2 + IF(j_int .LT. 0) THEN + kernel_i(ij,iky,ikx,iz,eo) = 0._dp + ELSE + factj = GAMMA(j_dp+1._dp) + kernel_i(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj + ENDIF + ENDDO + IF (ijs_i .EQ. 1) & + kernel_i(ijgs_i,iky,ikx,iz,eo) = 0._dp +ENDDO +ENDDO +ENDDO +ENDDO +!! Correction term for the evaluation of the heat flux +HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = & + 2._dp * Kernel_i(1,ikys:ikye,ikxs:ikxe,izs:ize,0) & + -1._dp * Kernel_i(2,ikys:ikye,ikxs:ikxe,izs:ize,0) + +DO ij = ijs_i, ije_i + j_int = jarray_i(ij) + j_dp = REAL(j_int,dp) + HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) & + - Kernel_i(ij,ikys:ikye,ikxs:ikxe,izs:ize,0) * (& + 2._dp*(j_dp+1.5_dp) * Kernel_i(ij ,ikys:ikye,ikxs:ikxe,izs:ize,0) & + - (j_dp+1.0_dp) * Kernel_i(ij+1,ikys:ikye,ikxs:ikxe,izs:ize,0) & + - j_dp * Kernel_i(ij-1,ikys:ikye,ikxs:ikxe,izs:ize,0)) +ENDDO + +END SUBROUTINE evaluate_kernels +!******************************************************************************! + +!******************************************************************************! +SUBROUTINE evaluate_EM_op + IMPLICIT NONE + + CALL evaluate_poisson_op + CALL evaluate_ampere_op + +END SUBROUTINE evaluate_EM_op +!!!!!!! Evaluate inverse polarisation operator for Poisson equation +!******************************************************************************! +SUBROUTINE evaluate_poisson_op + USE basic + USE array, Only : kernel_e, kernel_i, inv_poisson_op, inv_pol_ion + USE grid + USE model, ONLY : qe2_taue, qi2_taui, KIN_E + IMPLICIT NONE + REAL(dp) :: pol_i, pol_e ! (Z_a^2/tau_a (1-sum_n kernel_na^2)) + INTEGER :: ini,ine + + ! This term has no staggered grid dependence. It is evalued for the + ! even z grid since poisson uses p=0 moments and phi only. + kxloop: DO ikx = ikxs,ikxe + kyloop: DO iky = ikys,ikye + zloop: DO iz = izs,ize + IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN + inv_poisson_op(iky, ikx, iz) = 0._dp + ELSE + !!!!!!!!!!!!!!!!! Ion contribution + ! loop over n only if the max polynomial degree + pol_i = 0._dp + DO ini=1,jmaxi+1 + pol_i = pol_i + qi2_taui*kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ... + END DO + !!!!!!!!!!!!! Electron contribution + pol_e = 0._dp + IF (KIN_E) THEN ! Kinetic model + ! loop over n only if the max polynomial degree + DO ine=1,jmaxe+1 ! ine = n+1 + pol_e = pol_e + qe2_taue*kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ... + END DO + ELSE ! Adiabatic model + pol_e = qe2_taue - 1._dp + ENDIF + inv_poisson_op(iky, ikx, iz) = 1._dp/(qi2_taui - pol_i + qe2_taue - pol_e) + inv_pol_ion (iky, ikx, iz) = 1._dp/(qi2_taui - pol_i) + ENDIF + END DO zloop + END DO kyloop + END DO kxloop + +END SUBROUTINE evaluate_poisson_op +!******************************************************************************! + +!******************************************************************************! +!!!!!!! Evaluate inverse polarisation operator for Poisson equation +!******************************************************************************! +SUBROUTINE evaluate_ampere_op + USE basic + USE array, Only : kernel_e, kernel_i, inv_ampere_op + USE grid + USE model, ONLY : q_e, q_i, beta, sigma_e, sigma_i + USE geometry, ONLY : hatB + IMPLICIT NONE + REAL(dp) :: pol_i, pol_e, kperp2 ! (Z_a^2/tau_a (1-sum_n kernel_na^2)) + INTEGER :: ini,ine + + ! We do not solve Ampere if beta = 0 to spare waste of ressources + IF(SOLVE_AMPERE) THEN + ! This term has no staggered grid dependence. It is evalued for the + ! even z grid since poisson uses p=0 moments and phi only. + kxloop: DO ikx = ikxs,ikxe + kyloop: DO iky = ikys,ikye + zloop: DO iz = izs,ize + kperp2 = kparray(iky,ikx,iz,0)**2 + IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN + inv_ampere_op(iky, ikx, iz) = 0._dp + ELSE + !!!!!!!!!!!!!!!!! Ion contribution + pol_i = 0._dp + ! loop over n only up to the max polynomial degree + DO ini=1,jmaxi+1 + pol_i = pol_i + kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ... + END DO + pol_i = q_i**2/(sigma_i**2) * pol_i + !!!!!!!!!!!!! Electron contribution + pol_e = 0._dp + ! loop over n only up to the max polynomial degree + DO ine=1,jmaxe+1 ! ine = n+1 + pol_e = pol_e + kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ... + END DO + pol_e = q_e**2/(sigma_e**2) * pol_e + inv_ampere_op(iky, ikx, iz) = 1._dp/(2._dp*kperp2*hatB(iz,0)**2 + beta*(pol_i + pol_e)) + ENDIF + END DO zloop + END DO kyloop + END DO kxloop + ENDIF + +END SUBROUTINE evaluate_ampere_op +!******************************************************************************! + +SUBROUTINE compute_lin_coeff + + USE array, ONLY: xnepj, & + ynepp1j, ynepm1j, ynepp1jm1, ynepm1jm1,& + zNepm1j, zNepm1jp1, zNepm1jm1,& + xnepp1j, xnepm1j, xnepp2j, xnepm2j,& + xnepjp1, xnepjm1,& + xphij_e, xphijp1_e, xphijm1_e,& + xpsij_e, xpsijp1_e, xpsijm1_e,& + xnipj, & + ynipp1j, ynipm1j, ynipp1jm1, ynipm1jm1,& + zNipm1j, zNipm1jp1, zNipm1jm1,& + xnipp1j, xnipm1j, xnipp2j, xnipm2j,& + xnipjp1, xnipjm1,& + xphij_i, xphijp1_i, xphijm1_i,& + xpsij_i, xpsijp1_i, xpsijm1_i + USE model, ONLY: k_Te, k_Ti, k_Ne, k_Ni, k_cB, k_gB, KIN_E,& + tau_e, tau_i, sigma_e, sigma_i, q_e, q_i + USE prec_const + USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, & + ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i + + IF(KIN_E) THEN + CALL lin_coeff(k_Te,k_Ne,k_cB,k_gB,tau_e,q_e,sigma_e,& + parray_e(ips_e:ipe_e),jarray_e(ijs_e:ije_e),ips_e,ipe_e,ijs_e,ije_e,& + xnepj,xnepp1j,xnepm1j,xnepp2j,xnepm2j,xnepjp1,xnepjm1,& + ynepp1j,ynepm1j,ynepp1jm1,ynepm1jm1,zNepm1j,zNepm1jp1,zNepm1jm1,& + xphij_e,xphijp1_e,xphijm1_e,xpsij_e,xpsijp1_e,xpsijm1_e) + ENDIF + + CALL lin_coeff(k_Ti,k_Ni,k_cB,k_gB,tau_i,q_i,sigma_i,& + parray_i(ips_i:ipe_i),jarray_i(ijs_i:ije_i),ips_i,ipe_i,ijs_i,ije_i,& + xnipj,xnipp1j,xnipm1j,xnipp2j,xnipm2j,xnipjp1,xnipjm1,& + ynipp1j,ynipm1j,ynipp1jm1,ynipm1jm1,zNipm1j,zNipm1jp1,zNipm1jm1,& + xphij_i,xphijp1_i,xphijm1_i,xpsij_i,xpsijp1_i,xpsijm1_i) + + CONTAINS + SUBROUTINE lin_coeff(k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a,& + parray_a,jarray_a,ips_a,ipe_a,ijs_a,ije_a,& + xnapj,xnapp1j,xnapm1j,xnapp2j,xnapm2j,xnapjp1,xnapjm1,& + ynapp1j,ynapm1j,ynapp1jm1,ynapm1jm1,zNapm1j,zNapm1jp1,zNapm1jm1,& + xphij_a,xphijp1_a,xphijm1_a,xpsij_a,xpsijp1_a,xpsijm1_a) + IMPLICIT NONE + ! INPUTS + REAL(dp), INTENT(IN) :: k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a + INTEGER, DIMENSION(ips_a:ipe_a), INTENT(IN) :: parray_a + INTEGER, DIMENSION(ijs_a:ije_a), INTENT(IN) :: jarray_a + INTEGER, INTENT(IN) :: ips_a,ipe_a,ijs_a,ije_a + ! OUTPUTS (linear coefficients used in moment_eq_rhs_mod.F90) + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xnapj + REAL(dp), DIMENSION(ips_a:ipe_a), INTENT(OUT) :: xnapp1j, xnapm1j, xnapp2j, xnapm2j + REAL(dp), DIMENSION(ijs_a:ije_a), INTENT(OUT) :: xnapjp1, xnapjm1 + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: ynapp1j, ynapm1j, ynapp1jm1, ynapm1jm1 + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: zNapm1j, zNapm1jp1, zNapm1jm1 + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xphij_a, xphijp1_a, xphijm1_a + REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xpsij_a, xpsijp1_a, xpsijm1_a + INTEGER :: p_int, j_int ! polynom. dagrees + REAL(dp) :: p_dp, j_dp + !! linear coefficients for moment RHS !!!!!!!!!! + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + p_dp = REAL(p_int,dp) ! REAL of Hermite degree + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! Laguerre degree + j_dp = REAL(j_int,dp) ! REAL of Laguerre degree + ! All Napj terms + xnapj(ip,ij) = tau_a/q_a*(k_cB*(2._dp*p_dp + 1._dp) & + +k_gB*(2._dp*j_dp + 1._dp)) + ! Mirror force terms + ynapp1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp+1._dp) + ynapm1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp) + ynapp1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp+1._dp) + ynapm1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp) + ! Trapping terms + zNapm1j (ip,ij) = +SQRT(tau_a)/sigma_a *(2._dp*j_dp+1._dp)*SQRT(p_dp) + zNapm1jp1(ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp) + zNapm1jm1(ip,ij) = -SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp) + ENDDO + ENDDO + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + p_dp = REAL(p_int,dp) ! REAL of Hermite degree + ! Landau damping coefficients (ddz napj term) + xnapp1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp+1._dp) + xnapm1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp) + ! Magnetic curvature term + xnapp2j(ip) = tau_a/q_a * k_cB * SQRT((p_dp+1._dp)*(p_dp + 2._dp)) + xnapm2j(ip) = tau_a/q_a * k_cB * SQRT( p_dp *(p_dp - 1._dp)) + ENDDO + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! Laguerre degree + j_dp = REAL(j_int,dp) ! REAL of Laguerre degree + ! Magnetic gradient term + xnapjp1(ij) = -tau_a/q_a * k_gB * (j_dp + 1._dp) + xnapjm1(ij) = -tau_a/q_a * k_gB * j_dp + ENDDO + !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + !! ES linear coefficients for moment RHS !!!!!!!!!! + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! REALof Laguerre degree + j_dp = REAL(j_int,dp) ! REALof Laguerre degree + !! Electrostatic potential pj terms + IF (p_int .EQ. 0) THEN ! kronecker p0 + xphij_a(ip,ij) = +k_Na + 2._dp*j_dp*k_Ta + xphijp1_a(ip,ij) = -k_Ta*(j_dp+1._dp) + xphijm1_a(ip,ij) = -k_Ta* j_dp + ELSE IF (p_int .EQ. 2) THEN ! kronecker p2 + xphij_a(ip,ij) = +k_Ta/SQRT2 + xphijp1_a(ip,ij) = 0._dp; xphijm1_a(ip,ij) = 0._dp; + ELSE + xphij_a(ip,ij) = 0._dp; xphijp1_a(ip,ij) = 0._dp + xphijm1_a(ip,ij) = 0._dp; + ENDIF + ENDDO + ENDDO + !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + !! Electromagnatic linear coefficients for moment RHS !!!!!!!!!! + DO ip = ips_a, ipe_a + p_int= parray_a(ip) ! Hermite degree + DO ij = ijs_a, ije_a + j_int= jarray_a(ij) ! REALof Laguerre degree + j_dp = REAL(j_int,dp) ! REALof Laguerre degree + IF (p_int .EQ. 1) THEN ! kronecker p1 + xpsij_a (ip,ij) = +(k_Na + (2._dp*j_dp+1._dp)*k_Ta)* SQRT(tau_a)/sigma_a + xpsijp1_a(ip,ij) = - k_Ta*(j_dp+1._dp) * SQRT(tau_a)/sigma_a + xpsijm1_a(ip,ij) = - k_Ta* j_dp * SQRT(tau_a)/sigma_a + ELSE IF (p_int .EQ. 3) THEN ! kronecker p3 + xpsij_a (ip,ij) = + k_Ta*SQRT3/SQRT2 * SQRT(tau_a)/sigma_a + xpsijp1_a(ip,ij) = 0._dp; xpsijm1_a(ip,ij) = 0._dp; + ELSE + xpsij_a (ip,ij) = 0._dp; xpsijp1_a(ip,ij) = 0._dp + xpsijm1_a(ip,ij) = 0._dp; + ENDIF + ENDDO + ENDDO + END SUBROUTINE lin_coeff +END SUBROUTINE compute_lin_coeff + +END MODULE numerics +>>>>>>> cb16d97b48cbcbd3a11d9caf52bc8d0aef2e0dd8 diff --git a/testcases/zpinch_example/fort.90 b/testcases/zpinch_example/fort_00.90 similarity index 93% rename from testcases/zpinch_example/fort.90 rename to testcases/zpinch_example/fort_00.90 index d11d88e8be37824bae5a8fec3c33870a70ba69e4..cd43ea92c69b2958c5c2163cfc85f351b68edffd 100644 --- a/testcases/zpinch_example/fort.90 +++ b/testcases/zpinch_example/fort_00.90 @@ -21,6 +21,7 @@ q0 = 0 shear = 0 eps = 0 + parallel_bc = 'shearless' / &OUTPUT_PAR nsave_0d = 10 @@ -62,14 +63,11 @@ K_Te = 0.4 K_Ni = 2.0 K_Ti = 0.4 - k_gB = 1 - k_cB = 1 - lambdaD = 0 beta = 0 / &COLLISION_PAR collision_model = 'DG' !DG/SG/PA/LD (dougherty, sugama, pitch angle, landau) - gyrokin_CO = .false. + gyrokin_CO = .true. interspecies = .true. !mat_file = 'gk_sugama_P_20_J_10_N_150_kpm_8.0.h5' / @@ -77,7 +75,7 @@ INIT_OPT = 'phi' ACT_ON_MODES = 'donothing' init_background = 0 - init_noiselvl = 0.00005 + init_noiselvl = 0.005 iseed = 42 / &TIME_INTEGRATION_PAR