diff --git a/wk/parameters/lin_DTT_AB_rho85_PT.m b/wk/parameters/lin_DTT_AB_rho85_PT.m index 262c352546fca43c1995c27eadd08318c2505c42..f950920ec2285b2acbbd676c255369a752a94028 100644 --- a/wk/parameters/lin_DTT_AB_rho85_PT.m +++ b/wk/parameters/lin_DTT_AB_rho85_PT.m @@ -1,17 +1,29 @@ +%% Reference values +Bref = 5.8048; % in Tesla +Lref = 2.2121; % in meter +Tref = 2.2085; % in keV +nref = 14.598; % in 1e19 x m^{-3} +mref = 2.0; % in proton mass +lnLAMBDA = 13; % Coulomb logarithm +nuref = 0.45*2.3031e-5*lnLAMBDA*nref*Lref/Tref/Tref; %(0.00235 in GENE) +nu_ei = 0.569013; +nu_gn = 0.00235; +b_gn = 0.0039; +dpdx_gn =0.086; %% Set simulation parameters SIMID = 'lin_DTT_AB_rho85_PT'; % Name of the simulation %% Set up physical parameters CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss -NU = 0.05; % Collision frequency -TAU = 1.0; % e/i temperature ratio +nu = nu_ei; %(0.00235 in GENE) +TAU = 0.9360; % e/i temperature ratio K_Ne = 1.33; % ele Density ''' K_Te = 12.0; % ele Temperature ''' -K_Ni = 2.25; % ion Density gradient drive +K_Ni = 1.33; % ion Density gradient drive K_Ti = 8.25; % ion Temperature ''' -SIGMA_E = 0.0233380; % mass ratio sqrt(m_a/m_i) (correct = 0.0233380) -NA = 2; % number of kinetic species +SIGMA_E = 0.0233380/sqrt(mref); % mass ratio sqrt(m_a/m_i) (correct = 0.0233380) +NA = 2; % number of kinetic species ADIAB_E = (NA==1); % adiabatic electron model -BETA = 0.0034; % electron plasma beta +BETA = b_gn; % electron plasma beta MHD_PD = 0; %% Set up grid parameters P = 4; @@ -30,7 +42,7 @@ NEXC = 1; % To extend Lx if needed (Lx = Nexc/(kymin*shear)) % GEOMETRY= 's-alpha'; GEOMETRY= 'miller'; EPS = 0.28; % inverse aspect ratio -Q0 = 2.15; % safety factor +Q0 =-2.15; % safety factor SHEAR = 3.62; % magnetic shear KAPPA = 1.53; % elongation S_KAPPA = 0.77;