From 5832f8e55c972e251cf91b7afaafece38607341e Mon Sep 17 00:00:00 2001 From: Antoine <antoine.hoffmann@epfl.ch> Date: Thu, 3 Aug 2023 13:09:19 +0200 Subject: [PATCH] Testcase parameters --- ...{lin_DTT_AB_rho85.m => lin_DTT_HM_rho85.m} | 0 ...{lin_DTT_AB_rho98.m => lin_DTT_HM_rho98.m} | 0 wk/parameters/lin_DTT_LM_rho90.m | 99 +++++++++++++++++++ wk/parameters/lin_DTT_LM_rho95.m | 99 +++++++++++++++++++ wk/parameters/lin_JET_rho97.m | 2 +- 5 files changed, 199 insertions(+), 1 deletion(-) rename wk/parameters/{lin_DTT_AB_rho85.m => lin_DTT_HM_rho85.m} (100%) rename wk/parameters/{lin_DTT_AB_rho98.m => lin_DTT_HM_rho98.m} (100%) create mode 100644 wk/parameters/lin_DTT_LM_rho90.m create mode 100644 wk/parameters/lin_DTT_LM_rho95.m diff --git a/wk/parameters/lin_DTT_AB_rho85.m b/wk/parameters/lin_DTT_HM_rho85.m similarity index 100% rename from wk/parameters/lin_DTT_AB_rho85.m rename to wk/parameters/lin_DTT_HM_rho85.m diff --git a/wk/parameters/lin_DTT_AB_rho98.m b/wk/parameters/lin_DTT_HM_rho98.m similarity index 100% rename from wk/parameters/lin_DTT_AB_rho98.m rename to wk/parameters/lin_DTT_HM_rho98.m diff --git a/wk/parameters/lin_DTT_LM_rho90.m b/wk/parameters/lin_DTT_LM_rho90.m new file mode 100644 index 00000000..29246934 --- /dev/null +++ b/wk/parameters/lin_DTT_LM_rho90.m @@ -0,0 +1,99 @@ +%% Reference values +% See Neiser et al. 2019 Gyrokinetic GENE simulations of DIII-D near-edge L-mode plasmas +%% Set simulation parameters +SIMID = 'lin_DTT_HM_rho90'; % Name of the simulation +%% Set up physical parameters +CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss +NU = 1.0; %(0.00235 in GENE) +TAU = 0.281/0.0831; % i/e temperature ratio +K_Ne = 2.91; % ele Density ''' +K_Te = 7.32; % ele Temperature ''' +K_Ni = K_Ne; % ion Density gradient drive +K_Ti = 2.68; % ion Temperature ''' +SIGMA_E = 0.0233380/sqrt(2); % mass ratio sqrt(m_a/m_i) (correct = 0.0233380) +NA = 2; % number of kinetic species +ADIAB_E = (NA==1); % adiabatic electron model +BETA = 2.52e-2; % electron plasma beta +MHD_PD = 1; +%% Set up grid parameters +P = 2; +J = P/2;%P/2; +PMAX = P; % Hermite basis size +JMAX = J; % Laguerre basis size +NX = 8; % real space x-gridpoints +NY = 2; % real space y-gridpoints +LX = 2*pi/0.1; % Size of the squared frequency domain in x direction +LY = 2*pi/0.3; % Size of the squared frequency domain in y direction +NZ = 32; % number of perpendicular planes (parallel grid) +SG = 0; % Staggered z grids option +NEXC = 1; % To extend Lx if needed (Lx = Nexc/(kymin*shear)) + +%% GEOMETRY +% GEOMETRY= 's-alpha'; +GEOMETRY= 'miller'; +Q0 = 3.69; % safety factor +SHEAR = 2.98; % magnetic shear +EPS = 0.28; % inverse aspect ratio +KAPPA = 1.53; % elongation +S_KAPPA = 0.77; +DELTA = 0.23; % triangularity +S_DELTA = 1.05; +ZETA =-0.01; % squareness +S_ZETA =-0.17; +PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected') +SHIFT_Y = 0.0; % Shift in the periodic BC in z +NPOL = 1; % Number of poloidal turns +PB_PHASE = 0; +%% TIME PARAMETERS +TMAX = 15; % Maximal time unit +DT = 1e-3; % Time step +DTSAVE0D = 0.5; % Sampling time for 0D arrays +DTSAVE2D = -1; % Sampling time for 2D arrays +DTSAVE3D = 0.5; % Sampling time for 3D arrays +DTSAVE5D = 100; % Sampling time for 5D arrays +JOB2LOAD = -1; % Start a new simulation serie + +%% OPTIONS +LINEARITY = 'linear'; % activate non-linearity (is cancelled if KXEQ0 = 1) +CO = 'DG'; % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau) +GKCO = 1; % Gyrokinetic operator +ABCO = 1; % INTERSPECIES collisions +INIT_ZF = 0; % Initialize zero-field quantities +HRCY_CLOS = 'truncation'; % Closure model for higher order moments +DMAX = -1; +NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments +NMAX = 0; +KERN = 0; % Kernel model (0 : GK) +INIT_OPT = 'phi'; % Start simulation with a noisy mom00/phi/allmom +NUMERICAL_SCHEME = 'RK4'; % Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5) + +%% OUTPUTS +W_DOUBLE = 1; % Output flag for double moments +W_GAMMA = 1; % Output flag for gamma (Gyrokinetic Energy) +W_HF = 1; % Output flag for high-frequency potential energy +W_PHI = 1; % Output flag for potential +W_NA00 = 1; % Output flag for nalpha00 (density of species alpha) +W_DENS = 1; % Output flag for total density +W_TEMP = 1; % Output flag for temperature +W_NAPJ = 1; % Output flag for nalphaparallel (parallel momentum of species alpha) +W_SAPJ = 0; % Output flag for saparallel (parallel current of species alpha) + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% UNUSED PARAMETERS +% These parameters are usually not to play with in linear runs +MU = 0.0; % Hyperdiffusivity coefficient +MU_X = MU; % Hyperdiffusivity coefficient in x direction +MU_Y = MU; % Hyperdiffusivity coefficient in y direction +N_HD = 4; % Degree of spatial-hyperdiffusivity +MU_Z = 5.0; % Hyperdiffusivity coefficient in z direction +HYP_V = 'hypcoll'; % Kinetic-hyperdiffusivity model +MU_P = 0.0; % Hyperdiffusivity coefficient for Hermite +MU_J = 0.0; % Hyperdiffusivity coefficient for Laguerre +LAMBDAD = 0.0; % Lambda Debye +NOISE0 = 1.0e-5; % Initial noise amplitude +BCKGD0 = 0.0e-5; % Initial background +k_gB = 1.0; % Magnetic gradient strength +k_cB = 1.0; % Magnetic curvature strength +COLL_KCUT = 1; % Cutoff for collision operator +ADIAB_I = 0; % adiabatic ion model \ No newline at end of file diff --git a/wk/parameters/lin_DTT_LM_rho95.m b/wk/parameters/lin_DTT_LM_rho95.m new file mode 100644 index 00000000..efee964b --- /dev/null +++ b/wk/parameters/lin_DTT_LM_rho95.m @@ -0,0 +1,99 @@ +%% Reference values +% See Neiser et al. 2019 Gyrokinetic GENE simulations of DIII-D near-edge L-mode plasmas +%% Set simulation parameters +SIMID = 'lin_DTT_HM_rho90'; % Name of the simulation +%% Set up physical parameters +CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss +NU = 1.0; %(0.00235 in GENE) +TAU = 0.281/0.0831; % i/e temperature ratio +K_Ne = 7.05; % ele Density ''' +K_Te = 13.5; % ele Temperature ''' +K_Ni = K_Ne; % ion Density gradient drive +K_Ti = 2.32; % ion Temperature ''' +SIGMA_E = 0.0233380/sqrt(2); % mass ratio sqrt(m_a/m_i) (correct = 0.0233380) +NA = 2; % number of kinetic species +ADIAB_E = (NA==1); % adiabatic electron model +BETA = 1.32e-2; % electron plasma beta +MHD_PD = 1; +%% Set up grid parameters +P = 2; +J = P/2;%P/2; +PMAX = P; % Hermite basis size +JMAX = J; % Laguerre basis size +NX = 16; % real space x-gridpoints +NY = 2; % real space y-gridpoints +LX = 2*pi/0.1; % Size of the squared frequency domain in x direction +LY = 2*pi/0.3; % Size of the squared frequency domain in y direction +NZ = 32; % number of perpendicular planes (parallel grid) +SG = 0; % Staggered z grids option +NEXC = 1; % To extend Lx if needed (Lx = Nexc/(kymin*shear)) + +%% GEOMETRY +% GEOMETRY= 's-alpha'; +GEOMETRY= 'miller'; +Q0 = 5.18; % safety factor +SHEAR = 4.47; % magnetic shear +EPS = 0.28; % inverse aspect ratio +KAPPA = 1.53; % elongation +S_KAPPA = 0.77; +DELTA = 0.23; % triangularity +S_DELTA = 1.05; +ZETA =-0.01; % squareness +S_ZETA =-0.17; +PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected') +SHIFT_Y = 0.0; % Shift in the periodic BC in z +NPOL = 1; % Number of poloidal turns +PB_PHASE = 0; +%% TIME PARAMETERS +TMAX = 15; % Maximal time unit +DT = 1e-3; % Time step +DTSAVE0D = 0.5; % Sampling time for 0D arrays +DTSAVE2D = -1; % Sampling time for 2D arrays +DTSAVE3D = 0.5; % Sampling time for 3D arrays +DTSAVE5D = 100; % Sampling time for 5D arrays +JOB2LOAD = -1; % Start a new simulation serie + +%% OPTIONS +LINEARITY = 'linear'; % activate non-linearity (is cancelled if KXEQ0 = 1) +CO = 'DG'; % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau) +GKCO = 1; % Gyrokinetic operator +ABCO = 1; % INTERSPECIES collisions +INIT_ZF = 0; % Initialize zero-field quantities +HRCY_CLOS = 'truncation'; % Closure model for higher order moments +DMAX = -1; +NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments +NMAX = 0; +KERN = 0; % Kernel model (0 : GK) +INIT_OPT = 'phi'; % Start simulation with a noisy mom00/phi/allmom +NUMERICAL_SCHEME = 'RK4'; % Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5) + +%% OUTPUTS +W_DOUBLE = 1; % Output flag for double moments +W_GAMMA = 1; % Output flag for gamma (Gyrokinetic Energy) +W_HF = 1; % Output flag for high-frequency potential energy +W_PHI = 1; % Output flag for potential +W_NA00 = 1; % Output flag for nalpha00 (density of species alpha) +W_DENS = 1; % Output flag for total density +W_TEMP = 1; % Output flag for temperature +W_NAPJ = 1; % Output flag for nalphaparallel (parallel momentum of species alpha) +W_SAPJ = 0; % Output flag for saparallel (parallel current of species alpha) + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% UNUSED PARAMETERS +% These parameters are usually not to play with in linear runs +MU = 0.0; % Hyperdiffusivity coefficient +MU_X = MU; % Hyperdiffusivity coefficient in x direction +MU_Y = MU; % Hyperdiffusivity coefficient in y direction +N_HD = 4; % Degree of spatial-hyperdiffusivity +MU_Z = 5.0; % Hyperdiffusivity coefficient in z direction +HYP_V = 'hypcoll'; % Kinetic-hyperdiffusivity model +MU_P = 0.0; % Hyperdiffusivity coefficient for Hermite +MU_J = 0.0; % Hyperdiffusivity coefficient for Laguerre +LAMBDAD = 0.0; % Lambda Debye +NOISE0 = 1.0e-5; % Initial noise amplitude +BCKGD0 = 0.0e-5; % Initial background +k_gB = 1.0; % Magnetic gradient strength +k_cB = 1.0; % Magnetic curvature strength +COLL_KCUT = 1; % Cutoff for collision operator +ADIAB_I = 0; % adiabatic ion model \ No newline at end of file diff --git a/wk/parameters/lin_JET_rho97.m b/wk/parameters/lin_JET_rho97.m index a487c853..195a26ba 100644 --- a/wk/parameters/lin_JET_rho97.m +++ b/wk/parameters/lin_JET_rho97.m @@ -4,7 +4,7 @@ SIMID = 'lin_JET_rho97'; % Name of the simulation %% Set up physical parameters CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss -NU = 0.83; +NU = 0.1; % Not the true value TAU = 0.56; % e/i temperature ratio K_Ne = 10; % ele Density ''' K_Te = 42; % ele Temperature ''' -- GitLab