Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
819e878b
Commit
819e878b
authored
1 year ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
rho98 parameters of DTT
parent
50ebc7d1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wk/parameters/lin_DTT_AB_rho98_PT.m
+109
-0
109 additions, 0 deletions
wk/parameters/lin_DTT_AB_rho98_PT.m
with
109 additions
and
0 deletions
wk/parameters/lin_DTT_AB_rho98_PT.m
0 → 100644
+
109
−
0
View file @
819e878b
%% Reference values
Bref
=
5.8048
;
% in Tesla
Lref
=
2.2121
;
% in meter
Tref
=
2.2085
;
% in keV
nref
=
14.598
;
% in 1e19 x m^{-3}
mref
=
2.0
;
% in proton mass
lnLAMBDA
=
13
;
% Coulomb logarithm
nuref
=
0.45
*
2.3031e-5
*
lnLAMBDA
*
nref
*
Lref
/
Tref
/
Tref
;
%(0.00235 in GENE)
nu_ei
=
0.569013
;
nu_gn
=
0.00235
;
b_gn
=
0.0039
;
dpdx_gn
=
0.086
;
%% Set simulation parameters
SIMID
=
'lin_DTT_AB_rho85_PT'
;
% Name of the simulation
%% Set up physical parameters
CLUSTER
.
TIME
=
'99:00:00'
;
% Allocation time hh:mm:ss
nu
=
nu_ei
;
%(0.00235 in GENE)
TAU
=
0.9360
;
% e/i temperature ratio
K_Ne
=
65
;
% ele Density '''
K_Te
=
350
;
% ele Temperature '''
K_Ni
=
K_Ne
;
% ion Density gradient drive
K_Ti
=
350
;
% ion Temperature '''
SIGMA_E
=
0.0233380
/
sqrt
(
mref
);
% mass ratio sqrt(m_a/m_i) (correct = 0.0233380)
NA
=
2
;
% number of kinetic species
ADIAB_E
=
(
NA
==
1
);
% adiabatic electron model
BETA
=
b_gn
;
% electron plasma beta
MHD_PD
=
0
;
%% Set up grid parameters
P
=
4
;
J
=
P
/
2
;
%P/2;
PMAX
=
P
;
% Hermite basis size
JMAX
=
J
;
% Laguerre basis size
NX
=
16
;
% real space x-gridpoints
NY
=
16
;
% real space y-gridpoints
LX
=
2
*
pi
/
0.1
;
% Size of the squared frequency domain in x direction
LY
=
2
*
pi
/
0.2
;
% Size of the squared frequency domain in y direction
NZ
=
24
;
% number of perpendicular planes (parallel grid)
SG
=
0
;
% Staggered z grids option
NEXC
=
1
;
% To extend Lx if needed (Lx = Nexc/(kymin*shear))
%% GEOMETRY
% GEOMETRY= 's-alpha';
GEOMETRY
=
'miller'
;
EPS
=
0.28
;
% inverse aspect ratio
Q0
=-
2.15
;
% safety factor
SHEAR
=
3.62
;
% magnetic shear
KAPPA
=
1.53
;
% elongation
S_KAPPA
=
0.77
;
DELTA
=
0.23
;
% triangularity
S_DELTA
=
1.05
;
ZETA
=-
0.01
;
% squareness
S_ZETA
=-
0.17
;
PARALLEL_BC
=
'dirichlet'
;
% Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected')
SHIFT_Y
=
0.0
;
% Shift in the periodic BC in z
NPOL
=
1
;
% Number of poloidal turns
PB_PHASE
=
0
;
%% TIME PARAMETERS
TMAX
=
15
;
% Maximal time unit
DT
=
1e-3
;
% Time step
DTSAVE0D
=
0.5
;
% Sampling time for 0D arrays
DTSAVE2D
=
-
1
;
% Sampling time for 2D arrays
DTSAVE3D
=
0.5
;
% Sampling time for 3D arrays
DTSAVE5D
=
100
;
% Sampling time for 5D arrays
JOB2LOAD
=
-
1
;
% Start a new simulation serie
%% OPTIONS
LINEARITY
=
'linear'
;
% activate non-linearity (is cancelled if KXEQ0 = 1)
CO
=
'DG'
;
% Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau)
GKCO
=
1
;
% Gyrokinetic operator
ABCO
=
1
;
% INTERSPECIES collisions
INIT_ZF
=
0
;
% Initialize zero-field quantities
HRCY_CLOS
=
'truncation'
;
% Closure model for higher order moments
DMAX
=
-
1
;
NLIN_CLOS
=
'truncation'
;
% Nonlinear closure model for higher order moments
NMAX
=
0
;
KERN
=
0
;
% Kernel model (0 : GK)
INIT_OPT
=
'phi'
;
% Start simulation with a noisy mom00/phi/allmom
NUMERICAL_SCHEME
=
'RK4'
;
% Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5)
%% OUTPUTS
W_DOUBLE
=
1
;
% Output flag for double moments
W_GAMMA
=
1
;
% Output flag for gamma (Gyrokinetic Energy)
W_HF
=
1
;
% Output flag for high-frequency potential energy
W_PHI
=
1
;
% Output flag for potential
W_NA00
=
1
;
% Output flag for nalpha00 (density of species alpha)
W_DENS
=
1
;
% Output flag for total density
W_TEMP
=
1
;
% Output flag for temperature
W_NAPJ
=
1
;
% Output flag for nalphaparallel (parallel momentum of species alpha)
W_SAPJ
=
0
;
% Output flag for saparallel (parallel current of species alpha)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% UNUSED PARAMETERS
% These parameters are usually not to play with in linear runs
MU
=
0.0
;
% Hyperdiffusivity coefficient
MU_X
=
MU
;
% Hyperdiffusivity coefficient in x direction
MU_Y
=
MU
;
% Hyperdiffusivity coefficient in y direction
N_HD
=
4
;
% Degree of spatial-hyperdiffusivity
MU_Z
=
2.0
;
% Hyperdiffusivity coefficient in z direction
HYP_V
=
'hypcoll'
;
% Kinetic-hyperdiffusivity model
MU_P
=
0.0
;
% Hyperdiffusivity coefficient for Hermite
MU_J
=
0.0
;
% Hyperdiffusivity coefficient for Laguerre
LAMBDAD
=
0.0
;
% Lambda Debye
NOISE0
=
1.0e-5
;
% Initial noise amplitude
BCKGD0
=
0.0e-5
;
% Initial background
k_gB
=
1.0
;
% Magnetic gradient strength
k_cB
=
1.0
;
% Magnetic curvature strength
COLL_KCUT
=
1
;
% Cutoff for collision operator
ADIAB_I
=
0
;
% adiabatic ion model
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment