Skip to content
Snippets Groups Projects
Commit 819e878b authored by Antoine Cyril David Hoffmann's avatar Antoine Cyril David Hoffmann :seedling:
Browse files

rho98 parameters of DTT

parent 50ebc7d1
No related branches found
No related tags found
No related merge requests found
%% Reference values
Bref = 5.8048; % in Tesla
Lref = 2.2121; % in meter
Tref = 2.2085; % in keV
nref = 14.598; % in 1e19 x m^{-3}
mref = 2.0; % in proton mass
lnLAMBDA = 13; % Coulomb logarithm
nuref = 0.45*2.3031e-5*lnLAMBDA*nref*Lref/Tref/Tref; %(0.00235 in GENE)
nu_ei = 0.569013;
nu_gn = 0.00235;
b_gn = 0.0039;
dpdx_gn =0.086;
%% Set simulation parameters
SIMID = 'lin_DTT_AB_rho85_PT'; % Name of the simulation
%% Set up physical parameters
CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss
nu = nu_ei; %(0.00235 in GENE)
TAU = 0.9360; % e/i temperature ratio
K_Ne = 65; % ele Density '''
K_Te = 350; % ele Temperature '''
K_Ni = K_Ne; % ion Density gradient drive
K_Ti = 350; % ion Temperature '''
SIGMA_E = 0.0233380/sqrt(mref); % mass ratio sqrt(m_a/m_i) (correct = 0.0233380)
NA = 2; % number of kinetic species
ADIAB_E = (NA==1); % adiabatic electron model
BETA = b_gn; % electron plasma beta
MHD_PD = 0;
%% Set up grid parameters
P = 4;
J = P/2;%P/2;
PMAX = P; % Hermite basis size
JMAX = J; % Laguerre basis size
NX = 16; % real space x-gridpoints
NY = 16; % real space y-gridpoints
LX = 2*pi/0.1; % Size of the squared frequency domain in x direction
LY = 2*pi/0.2; % Size of the squared frequency domain in y direction
NZ = 24; % number of perpendicular planes (parallel grid)
SG = 0; % Staggered z grids option
NEXC = 1; % To extend Lx if needed (Lx = Nexc/(kymin*shear))
%% GEOMETRY
% GEOMETRY= 's-alpha';
GEOMETRY= 'miller';
EPS = 0.28; % inverse aspect ratio
Q0 =-2.15; % safety factor
SHEAR = 3.62; % magnetic shear
KAPPA = 1.53; % elongation
S_KAPPA = 0.77;
DELTA = 0.23; % triangularity
S_DELTA = 1.05;
ZETA =-0.01; % squareness
S_ZETA =-0.17;
PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected')
SHIFT_Y = 0.0; % Shift in the periodic BC in z
NPOL = 1; % Number of poloidal turns
PB_PHASE = 0;
%% TIME PARAMETERS
TMAX = 15; % Maximal time unit
DT = 1e-3; % Time step
DTSAVE0D = 0.5; % Sampling time for 0D arrays
DTSAVE2D = -1; % Sampling time for 2D arrays
DTSAVE3D = 0.5; % Sampling time for 3D arrays
DTSAVE5D = 100; % Sampling time for 5D arrays
JOB2LOAD = -1; % Start a new simulation serie
%% OPTIONS
LINEARITY = 'linear'; % activate non-linearity (is cancelled if KXEQ0 = 1)
CO = 'DG'; % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau)
GKCO = 1; % Gyrokinetic operator
ABCO = 1; % INTERSPECIES collisions
INIT_ZF = 0; % Initialize zero-field quantities
HRCY_CLOS = 'truncation'; % Closure model for higher order moments
DMAX = -1;
NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments
NMAX = 0;
KERN = 0; % Kernel model (0 : GK)
INIT_OPT = 'phi'; % Start simulation with a noisy mom00/phi/allmom
NUMERICAL_SCHEME = 'RK4'; % Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5)
%% OUTPUTS
W_DOUBLE = 1; % Output flag for double moments
W_GAMMA = 1; % Output flag for gamma (Gyrokinetic Energy)
W_HF = 1; % Output flag for high-frequency potential energy
W_PHI = 1; % Output flag for potential
W_NA00 = 1; % Output flag for nalpha00 (density of species alpha)
W_DENS = 1; % Output flag for total density
W_TEMP = 1; % Output flag for temperature
W_NAPJ = 1; % Output flag for nalphaparallel (parallel momentum of species alpha)
W_SAPJ = 0; % Output flag for saparallel (parallel current of species alpha)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% UNUSED PARAMETERS
% These parameters are usually not to play with in linear runs
MU = 0.0; % Hyperdiffusivity coefficient
MU_X = MU; % Hyperdiffusivity coefficient in x direction
MU_Y = MU; % Hyperdiffusivity coefficient in y direction
N_HD = 4; % Degree of spatial-hyperdiffusivity
MU_Z = 2.0; % Hyperdiffusivity coefficient in z direction
HYP_V = 'hypcoll'; % Kinetic-hyperdiffusivity model
MU_P = 0.0; % Hyperdiffusivity coefficient for Hermite
MU_J = 0.0; % Hyperdiffusivity coefficient for Laguerre
LAMBDAD = 0.0; % Lambda Debye
NOISE0 = 1.0e-5; % Initial noise amplitude
BCKGD0 = 0.0e-5; % Initial background
k_gB = 1.0; % Magnetic gradient strength
k_cB = 1.0; % Magnetic curvature strength
COLL_KCUT = 1; % Cutoff for collision operator
ADIAB_I = 0; % adiabatic ion model
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment