Skip to content
Snippets Groups Projects
Commit 9df7bc48 authored by Antoine Cyril David Hoffmann's avatar Antoine Cyril David Hoffmann
Browse files

added the degree closure on moments

parent 4ae8a4aa
No related branches found
No related tags found
No related merge requests found
...@@ -78,4 +78,16 @@ subroutine auxval ...@@ -78,4 +78,16 @@ subroutine auxval
ENDDO ENDDO
CALL mpi_barrier(MPI_COMM_WORLD, ierr) CALL mpi_barrier(MPI_COMM_WORLD, ierr)
IF((my_id.EQ.0) .AND. (CLOS .EQ. 1)) THEN
IF(KIN_E) &
write(*,*) 'Closure = 1 -> Maximal Nepj degree is min(Pmaxe,2*Jmaxe+1): De = ', dmaxi
write(*,*) 'Closure = 1 -> Maximal Nipj degree is min(Pmaxi,2*Jmaxi+1): Di = ', dmaxi
ENDIF
DO ip = ips_i,ipe_i
DO ij = ijs_i,ije_i
IF((parray_i(ip)+2*jarray_i(ij) .LE. dmaxi) .AND. (rank_ky + rank_z .EQ. 0))&
print*, '(',parray_i(ip),',',jarray_i(ij),')'
ENDDO
ENDDO
END SUBROUTINE auxval END SUBROUTINE auxval
...@@ -23,29 +23,25 @@ SUBROUTINE apply_closure_model ...@@ -23,29 +23,25 @@ SUBROUTINE apply_closure_model
ELSEIF (CLOS .EQ. 1) THEN ELSEIF (CLOS .EQ. 1) THEN
! Truncation at highest fully represented kinetic moment ! zero truncation, An+1=0 for n+1>nmax only
CALL ghosts_upper_truncation
! Additional truncation at highest fully represented kinetic moment
! e.g. Dmax = 3 means ! e.g. Dmax = 3 means
! all Napj s.t. p+2j <= 3 ! only Napj s.t. p+2j <= 3 are evolved
! -> (p,j) allowed are (0,0),(1,0),(0,1),(2,0),(1,1),(3,0) ! -> (p,j) allowed are (0,0),(1,0),(0,1),(2,0),(1,1),(3,0)
! =>> Dmax is Pmax, condition is p+2j<=Pmax ! =>> Dmax = min(Pmax,Jmax+1)
DO iz = izs,ize IF(KIN_E) THEN
DO ikx = ikxs,ikxe DO ip = ipgs_e,ipge_e
DO iky = ikys,ikye DO ij = ijgs_e,ijge_e
IF(KIN_E) THEN IF ( parray_e(ip)+2*jarray_e(ip) .GT. dmaxe) &
DO ip = ipgs_e,ipge_e moments_e(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel) = 0._dp
DO ij = ijgs_e,ijge_e ENDDO
IF ( parray_e(ip)+2*jarray_e(ip) .GT. dmaxe) & ENDDO
moments_e(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp ENDIF
ENDDO DO ip = ipgs_i,ipge_i
ENDDO DO ij = ijgs_i,ijge_i
ENDIF IF ( parray_i(ip)+2*jarray_i(ip) .GT. dmaxi) &
DO ip = ipgs_i,ipge_i moments_i(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel) = 0._dp
DO ij = ijgs_i,ijge_i
IF ( parray_i(ip)+2*jarray_i(ip) .GT. dmaxi) &
moments_i(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp
ENDDO
ENDDO
ENDDO
ENDDO ENDDO
ENDDO ENDDO
! + ghosts truncation ! + ghosts truncation
......
...@@ -60,61 +60,61 @@ SUBROUTINE moments_eq_rhs_e ...@@ -60,61 +60,61 @@ SUBROUTINE moments_eq_rhs_e
kperp2= kparray(iky,ikx,iz,eo)**2 kperp2= kparray(iky,ikx,iz,eo)**2
IF((CLOS .EQ. 1) .AND. (p_int+2*j_int .LE. dmaxe)) THEN IF((CLOS .EQ. 1) .AND. (p_int+2*j_int .LE. dmaxe)) THEN
!! Compute moments mixing terms !! Compute moments mixing terms
Tperp = 0._dp; Tpar = 0._dp; Tmir = 0._dp Tperp = 0._dp; Tpar = 0._dp; Tmir = 0._dp
! Perpendicular dynamic ! Perpendicular dynamic
! term propto n_e^{p,j} ! term propto n_e^{p,j}
Tnepj = xnepj(ip,ij)* nadiab_moments_e(ip,ij,iky,ikx,iz) Tnepj = xnepj(ip,ij)* nadiab_moments_e(ip,ij,iky,ikx,iz)
! term propto n_e^{p+2,j} ! term propto n_e^{p+2,j}
Tnepp2j = xnepp2j(ip) * nadiab_moments_e(ip+pp2,ij,iky,ikx,iz) Tnepp2j = xnepp2j(ip) * nadiab_moments_e(ip+pp2,ij,iky,ikx,iz)
! term propto n_e^{p-2,j} ! term propto n_e^{p-2,j}
Tnepm2j = xnepm2j(ip) * nadiab_moments_e(ip-pp2,ij,iky,ikx,iz) Tnepm2j = xnepm2j(ip) * nadiab_moments_e(ip-pp2,ij,iky,ikx,iz)
! term propto n_e^{p,j+1} ! term propto n_e^{p,j+1}
Tnepjp1 = xnepjp1(ij) * nadiab_moments_e(ip,ij+1,iky,ikx,iz) Tnepjp1 = xnepjp1(ij) * nadiab_moments_e(ip,ij+1,iky,ikx,iz)
! term propto n_e^{p,j-1} ! term propto n_e^{p,j-1}
Tnepjm1 = xnepjm1(ij) * nadiab_moments_e(ip,ij-1,iky,ikx,iz) Tnepjm1 = xnepjm1(ij) * nadiab_moments_e(ip,ij-1,iky,ikx,iz)
! Parallel dynamic ! Parallel dynamic
! ddz derivative for Landau damping term ! ddz derivative for Landau damping term
Tpar = xnepp1j(ip) * ddz_nepj(ip+1,ij,iky,ikx,iz) & Tpar = xnepp1j(ip) * ddz_nepj(ip+1,ij,iky,ikx,iz) &
+ xnepm1j(ip) * ddz_nepj(ip-1,ij,iky,ikx,iz) + xnepm1j(ip) * ddz_nepj(ip-1,ij,iky,ikx,iz)
! Mirror terms ! Mirror terms
Tnepp1j = ynepp1j (ip,ij) * interp_nepj(ip+1,ij ,iky,ikx,iz) Tnepp1j = ynepp1j (ip,ij) * interp_nepj(ip+1,ij ,iky,ikx,iz)
Tnepp1jm1 = ynepp1jm1(ip,ij) * interp_nepj(ip+1,ij-1,iky,ikx,iz) Tnepp1jm1 = ynepp1jm1(ip,ij) * interp_nepj(ip+1,ij-1,iky,ikx,iz)
Tnepm1j = ynepm1j (ip,ij) * interp_nepj(ip-1,ij ,iky,ikx,iz) Tnepm1j = ynepm1j (ip,ij) * interp_nepj(ip-1,ij ,iky,ikx,iz)
Tnepm1jm1 = ynepm1jm1(ip,ij) * interp_nepj(ip-1,ij-1,iky,ikx,iz) Tnepm1jm1 = ynepm1jm1(ip,ij) * interp_nepj(ip-1,ij-1,iky,ikx,iz)
! Trapping terms ! Trapping terms
Unepm1j = znepm1j (ip,ij) * interp_nepj(ip-1,ij ,iky,ikx,iz) Unepm1j = znepm1j (ip,ij) * interp_nepj(ip-1,ij ,iky,ikx,iz)
Unepm1jp1 = znepm1jp1(ip,ij) * interp_nepj(ip-1,ij+1,iky,ikx,iz) Unepm1jp1 = znepm1jp1(ip,ij) * interp_nepj(ip-1,ij+1,iky,ikx,iz)
Unepm1jm1 = znepm1jm1(ip,ij) * interp_nepj(ip-1,ij-1,iky,ikx,iz) Unepm1jm1 = znepm1jm1(ip,ij) * interp_nepj(ip-1,ij-1,iky,ikx,iz)
Tmir = Tnepp1j + Tnepp1jm1 + Tnepm1j + Tnepm1jm1 + Unepm1j + Unepm1jp1 + Unepm1jm1 Tmir = Tnepp1j + Tnepp1jm1 + Tnepm1j + Tnepm1jm1 + Unepm1j + Unepm1jp1 + Unepm1jm1
!! Electrical potential term !! Electrical potential term
IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2
Tphi = (xphij_i (ip,ij)*kernel_e(ij ,iky,ikx,iz,eo) & Tphi = (xphij_i (ip,ij)*kernel_e(ij ,iky,ikx,iz,eo) &
+ xphijp1_i(ip,ij)*kernel_e(ij+1,iky,ikx,iz,eo) & + xphijp1_i(ip,ij)*kernel_e(ij+1,iky,ikx,iz,eo) &
+ xphijm1_i(ip,ij)*kernel_e(ij-1,iky,ikx,iz,eo))*phikykxz + xphijm1_i(ip,ij)*kernel_e(ij-1,iky,ikx,iz,eo))*phikykxz
ELSE ELSE
Tphi = 0._dp Tphi = 0._dp
ENDIF ENDIF
!! Sum of all RHS terms !! Sum of all RHS terms
moments_rhs_e(ip,ij,iky,ikx,iz,updatetlevel) = & moments_rhs_e(ip,ij,iky,ikx,iz,updatetlevel) = &
! Perpendicular magnetic gradient/curvature effects ! Perpendicular magnetic gradient/curvature effects
- imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo)* (Tnepj + Tnepp2j + Tnepm2j + Tnepjp1 + Tnepjm1)& - imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo)* (Tnepj + Tnepp2j + Tnepm2j + Tnepjp1 + Tnepjm1)&
! Parallel coupling (Landau Damping) ! Parallel coupling (Landau Damping)
- Tpar*gradz_coeff(iz,eo) & - Tpar*gradz_coeff(iz,eo) &
! Mirror term (parallel magnetic gradient) ! Mirror term (parallel magnetic gradient)
- gradzB(iz,eo)* Tmir *gradz_coeff(iz,eo) & - gradzB(iz,eo)* Tmir *gradz_coeff(iz,eo) &
! Drives (density + temperature gradients) ! Drives (density + temperature gradients)
- i_ky * Tphi & - i_ky * Tphi &
! Numerical perpendicular hyperdiffusion (totally artificial, for stability purpose) ! Numerical perpendicular hyperdiffusion (totally artificial, for stability purpose)
- (mu_x*kx**4 + mu_y*ky**4)*moments_e(ip,ij,iky,ikx,iz,updatetlevel) & - (mu_x*kx**4 + mu_y*ky**4)*moments_e(ip,ij,iky,ikx,iz,updatetlevel) &
! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)" ! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)"
+ mu_z * diff_dz_coeff * ddz2_Nepj(ip,ij,iky,ikx,iz) & + mu_z * diff_dz_coeff * ddz2_Nepj(ip,ij,iky,ikx,iz) &
! Collision term ! Collision term
+ TColl_e(ip,ij,iky,ikx,iz) & + TColl_e(ip,ij,iky,ikx,iz) &
! Nonlinear term ! Nonlinear term
- Sepj(ip,ij,iky,ikx,iz) - Sepj(ip,ij,iky,ikx,iz)
ELSE ELSE
moments_rhs_e(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp moments_rhs_e(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp
ENDIF ENDIF
...@@ -180,64 +180,64 @@ SUBROUTINE moments_eq_rhs_i ...@@ -180,64 +180,64 @@ SUBROUTINE moments_eq_rhs_i
eo = MODULO(p_int,2) ! Indicates if we are on odd or even z grid eo = MODULO(p_int,2) ! Indicates if we are on odd or even z grid
kperp2= kparray(iky,ikx,iz,eo)**2 kperp2= kparray(iky,ikx,iz,eo)**2
IF((CLOS .EQ. 1) .AND. (p_int+2*j_int .LE. dmaxi)) THEN IF((CLOS .EQ. 1) .AND. (p_int+2*j_int .LE. dmaxi)) THEN
!! Compute moments mixing terms !! Compute moments mixing terms
Tperp = 0._dp; Tpar = 0._dp; Tmir = 0._dp Tperp = 0._dp; Tpar = 0._dp; Tmir = 0._dp
! Perpendicular dynamic ! Perpendicular dynamic
! term propto n_i^{p,j} ! term propto n_i^{p,j}
Tnipj = xnipj(ip,ij) * nadiab_moments_i(ip ,ij ,iky,ikx,iz) Tnipj = xnipj(ip,ij) * nadiab_moments_i(ip ,ij ,iky,ikx,iz)
! term propto n_i^{p+2,j} ! term propto n_i^{p+2,j}
Tnipp2j = xnipp2j(ip) * nadiab_moments_i(ip+pp2,ij ,iky,ikx,iz) Tnipp2j = xnipp2j(ip) * nadiab_moments_i(ip+pp2,ij ,iky,ikx,iz)
! term propto n_i^{p-2,j} ! term propto n_i^{p-2,j}
Tnipm2j = xnipm2j(ip) * nadiab_moments_i(ip-pp2,ij ,iky,ikx,iz) Tnipm2j = xnipm2j(ip) * nadiab_moments_i(ip-pp2,ij ,iky,ikx,iz)
! term propto n_i^{p,j+1} ! term propto n_i^{p,j+1}
Tnipjp1 = xnipjp1(ij) * nadiab_moments_i(ip ,ij+1,iky,ikx,iz) Tnipjp1 = xnipjp1(ij) * nadiab_moments_i(ip ,ij+1,iky,ikx,iz)
! term propto n_i^{p,j-1} ! term propto n_i^{p,j-1}
Tnipjm1 = xnipjm1(ij) * nadiab_moments_i(ip ,ij-1,iky,ikx,iz) Tnipjm1 = xnipjm1(ij) * nadiab_moments_i(ip ,ij-1,iky,ikx,iz)
! Tperp ! Tperp
Tperp = Tnipj + Tnipp2j + Tnipm2j + Tnipjp1 + Tnipjm1 Tperp = Tnipj + Tnipp2j + Tnipm2j + Tnipjp1 + Tnipjm1
! Parallel dynamic ! Parallel dynamic
! ddz derivative for Landau damping term ! ddz derivative for Landau damping term
Tpar = xnipp1j(ip) * ddz_nipj(ip+1,ij,iky,ikx,iz) & Tpar = xnipp1j(ip) * ddz_nipj(ip+1,ij,iky,ikx,iz) &
+ xnipm1j(ip) * ddz_nipj(ip-1,ij,iky,ikx,iz) + xnipm1j(ip) * ddz_nipj(ip-1,ij,iky,ikx,iz)
! Mirror terms ! Mirror terms
Tnipp1j = ynipp1j (ip,ij) * interp_nipj(ip+1,ij ,iky,ikx,iz) Tnipp1j = ynipp1j (ip,ij) * interp_nipj(ip+1,ij ,iky,ikx,iz)
Tnipp1jm1 = ynipp1jm1(ip,ij) * interp_nipj(ip+1,ij-1,iky,ikx,iz) Tnipp1jm1 = ynipp1jm1(ip,ij) * interp_nipj(ip+1,ij-1,iky,ikx,iz)
Tnipm1j = ynipm1j (ip,ij) * interp_nipj(ip-1,ij ,iky,ikx,iz) Tnipm1j = ynipm1j (ip,ij) * interp_nipj(ip-1,ij ,iky,ikx,iz)
Tnipm1jm1 = ynipm1jm1(ip,ij) * interp_nipj(ip-1,ij-1,iky,ikx,iz) Tnipm1jm1 = ynipm1jm1(ip,ij) * interp_nipj(ip-1,ij-1,iky,ikx,iz)
! Trapping terms ! Trapping terms
Unipm1j = znipm1j (ip,ij) * interp_nipj(ip-1,ij ,iky,ikx,iz) Unipm1j = znipm1j (ip,ij) * interp_nipj(ip-1,ij ,iky,ikx,iz)
Unipm1jp1 = znipm1jp1(ip,ij) * interp_nipj(ip-1,ij+1,iky,ikx,iz) Unipm1jp1 = znipm1jp1(ip,ij) * interp_nipj(ip-1,ij+1,iky,ikx,iz)
Unipm1jm1 = znipm1jm1(ip,ij) * interp_nipj(ip-1,ij-1,iky,ikx,iz) Unipm1jm1 = znipm1jm1(ip,ij) * interp_nipj(ip-1,ij-1,iky,ikx,iz)
Tmir = Tnipp1j + Tnipp1jm1 + Tnipm1j + Tnipm1jm1 + Unipm1j + Unipm1jp1 + Unipm1jm1 Tmir = Tnipp1j + Tnipp1jm1 + Tnipm1j + Tnipm1jm1 + Unipm1j + Unipm1jp1 + Unipm1jm1
!! Electrical potential term !! Electrical potential term
IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2
Tphi = (xphij_i (ip,ij)*kernel_i(ij ,iky,ikx,iz,eo) & Tphi = (xphij_i (ip,ij)*kernel_i(ij ,iky,ikx,iz,eo) &
+ xphijp1_i(ip,ij)*kernel_i(ij+1,iky,ikx,iz,eo) & + xphijp1_i(ip,ij)*kernel_i(ij+1,iky,ikx,iz,eo) &
+ xphijm1_i(ip,ij)*kernel_i(ij-1,iky,ikx,iz,eo))*phikykxz + xphijm1_i(ip,ij)*kernel_i(ij-1,iky,ikx,iz,eo))*phikykxz
ELSE ELSE
Tphi = 0._dp Tphi = 0._dp
ENDIF ENDIF
!! Sum of all RHS terms !! Sum of all RHS terms
moments_rhs_i(ip,ij,iky,ikx,iz,updatetlevel) = & moments_rhs_i(ip,ij,iky,ikx,iz,updatetlevel) = &
! Perpendicular magnetic gradient/curvature effects ! Perpendicular magnetic gradient/curvature effects
- imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo) * Tperp & - imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo) * Tperp &
! Parallel coupling (Landau damping) ! Parallel coupling (Landau damping)
- gradz_coeff(iz,eo) * Tpar & - gradz_coeff(iz,eo) * Tpar &
! Mirror term (parallel magnetic gradient) ! Mirror term (parallel magnetic gradient)
- gradzB(iz,eo) * gradz_coeff(iz,eo) * Tmir & - gradzB(iz,eo) * gradz_coeff(iz,eo) * Tmir &
! Drives (density + temperature gradients) ! Drives (density + temperature gradients)
- i_ky * Tphi & - i_ky * Tphi &
! Numerical hyperdiffusion (totally artificial, for stability purpose) ! Numerical hyperdiffusion (totally artificial, for stability purpose)
- (mu_x*kx**4 + mu_y*ky**4)*moments_i(ip,ij,iky,ikx,iz,updatetlevel) & - (mu_x*kx**4 + mu_y*ky**4)*moments_i(ip,ij,iky,ikx,iz,updatetlevel) &
! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)" ! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)"
+ mu_z * diff_dz_coeff * ddz2_Nipj(ip,ij,iky,ikx,iz) & + mu_z * diff_dz_coeff * ddz2_Nipj(ip,ij,iky,ikx,iz) &
! Collision term ! Collision term
+ TColl_i(ip,ij,iky,ikx,iz)& + TColl_i(ip,ij,iky,ikx,iz)&
! Nonlinear term ! Nonlinear term
- Sipj(ip,ij,iky,ikx,iz) - Sipj(ip,ij,iky,ikx,iz)
ELSE ELSE
moments_rhs_i(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp moments_rhs_i(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp
ENDIF ENDIF
......
...@@ -170,10 +170,10 @@ SUBROUTINE compute_nadiab_moments_z_gradients_and_interp ...@@ -170,10 +170,10 @@ SUBROUTINE compute_nadiab_moments_z_gradients_and_interp
ddz_nepj, ddz2_Nepj, interp_nepj,& ddz_nepj, ddz2_Nepj, interp_nepj,&
ddz_nipj, ddz2_Nipj, interp_nipj ddz_nipj, ddz2_Nipj, interp_nipj
USE time_integration, ONLY : updatetlevel USE time_integration, ONLY : updatetlevel
USE model, ONLY : qe_taue, qi_taui, KIN_E USE model, ONLY : qe_taue, qi_taui, KIN_E, CLOS
USE calculus, ONLY : grad_z, grad_z2, interp_z USE calculus, ONLY : grad_z, grad_z2, interp_z
IMPLICIT NONE IMPLICIT NONE
INTEGER :: eo, p_int INTEGER :: eo, p_int, j_int
CALL cpu_time(t0_process) CALL cpu_time(t0_process)
! Electron non adiab moments ! Electron non adiab moments
......
...@@ -24,7 +24,8 @@ if 1 ...@@ -24,7 +24,8 @@ if 1
options.TAVG_0 = 0.8*data.Ts3D(end); options.TAVG_0 = 0.8*data.Ts3D(end);
options.TAVG_1 = data.Ts3D(end); % Averaging times duration options.TAVG_1 = data.Ts3D(end); % Averaging times duration
options.NMVA = 1; % Moving average for time traces options.NMVA = 1; % Moving average for time traces
options.ST_FIELD = '\Gamma_x'; % chose your field to plot in spacetime diag (e.g \phi,v_x,G_x) % options.ST_FIELD = '\Gamma_x'; % chose your field to plot in spacetime diag (e.g \phi,v_x,G_x)
options.ST_FIELD = '\phi'; % chose your field to plot in spacetime diag (e.g \phi,v_x,G_x)
options.INTERP = 1; options.INTERP = 1;
fig = plot_radial_transport_and_spacetime(data,options); fig = plot_radial_transport_and_spacetime(data,options);
save_figure(data,fig) save_figure(data,fig)
...@@ -41,18 +42,18 @@ if 0 ...@@ -41,18 +42,18 @@ if 0
% Options % Options
options.INTERP = 1; options.INTERP = 1;
options.POLARPLOT = 0; options.POLARPLOT = 0;
% options.NAME = '\phi'; options.NAME = '\phi';
% options.NAME = 'N_i^{00}'; % options.NAME = 'N_i^{00}';
% options.NAME = 'v_y'; % options.NAME = 'v_y';
% options.NAME = 'n_i^{NZ}'; % options.NAME = 'n_i^{NZ}';
options.NAME = '\Gamma_x'; % options.NAME = '\Gamma_x';
% options.NAME = 'n_i'; % options.NAME = 'n_i';
options.PLAN = 'kxky'; options.PLAN = 'xy';
% options.NAME = 'f_e'; % options.NAME = 'f_e';
% options.PLAN = 'sx'; % options.PLAN = 'sx';
options.COMP = 'avg'; options.COMP = 'avg';
% options.TIME = dat.Ts5D; % options.TIME = dat.Ts5D;
options.TIME = 00:1:200; options.TIME = 00:1:250;
data.EPS = 0.1; data.EPS = 0.1;
data.a = data.EPS * 2000; data.a = data.EPS * 2000;
create_film(data,options,'.gif') create_film(data,options,'.gif')
...@@ -99,7 +100,7 @@ options.XPERP = linspace( 0,6,64); ...@@ -99,7 +100,7 @@ options.XPERP = linspace( 0,6,64);
% options.SPAR = vp'; % options.SPAR = vp';
% options.XPERP = mu'; % options.XPERP = mu';
options.Z = 1; options.Z = 1;
options.T = 5500; options.T = 200;
options.CTR = 1; options.CTR = 1;
options.ONED = 0; options.ONED = 0;
fig = plot_fa(data,options); fig = plot_fa(data,options);
...@@ -109,7 +110,7 @@ end ...@@ -109,7 +110,7 @@ end
if 0 if 0
%% Hermite-Laguerre spectrum %% Hermite-Laguerre spectrum
% options.TIME = 'avg'; % options.TIME = 'avg';
options.P2J = 0; options.P2J = 1;
options.ST = 0; options.ST = 0;
options.NORMALIZED = 0; options.NORMALIZED = 0;
fig = show_moments_spectrum(data,options); fig = show_moments_spectrum(data,options);
......
...@@ -3,10 +3,13 @@ helazdir = '/home/ahoffman/HeLaZ/'; ...@@ -3,10 +3,13 @@ helazdir = '/home/ahoffman/HeLaZ/';
% Directory of the simulation (from results) % Directory of the simulation (from results)
% if 1% Local results % if 1% Local results
outfile =''; outfile ='';
outfile ='';
outfile ='';
outfile ='shearless_cyclone/128x128x16xdmax_L_120_CBC_1.0';
% outfile ='quick_run/CLOS_1_64x64_5x3_L_120_kN_2.0_kT_0.5_nu_1e-01_SGGK'; % outfile ='quick_run/CLOS_1_64x64_5x3_L_120_kN_2.0_kT_0.5_nu_1e-01_SGGK';
% outfile ='pedestal/64x64x16x2x1_L_300_LnT_20_nu_0.1'; % outfile ='pedestal/64x64x16x2x1_L_300_LnT_20_nu_0.1';
% outfile ='quick_run/32x32x16_5x3_L_300_q0_2.5_e_0.18_kN_20_kT_20_nu_1e-01_DGGK'; % outfile ='quick_run/32x32x16_5x3_L_300_q0_2.5_e_0.18_kN_20_kT_20_nu_1e-01_DGGK';
outfile ='shearless_cyclone/128x128x16x8x4_L_120_CTC_1.0/'; % outfile ='shearless_cyclone/128x128x16x8x4_L_120_CTC_1.0/';
% outfile ='shearless_cyclone/180x180x20x4x2_L_120_CBC_0.8_to_1.0/'; % outfile ='shearless_cyclone/180x180x20x4x2_L_120_CBC_0.8_to_1.0/';
% outfile ='pedestal/128x128x16x4x2_L_120_LnT_40_nuDG_0.1'; % outfile ='pedestal/128x128x16x4x2_L_120_LnT_40_nuDG_0.1';
run analysis_3D run analysis_3D
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment