diff --git a/src/geometry_mod.F90 b/src/geometry_mod.F90 index 7b41ffbf020b36e18da66886c1e70f295dbd4b7a..3ee87a0de6aabd9868d9ea052b5eae72378db0a2 100644 --- a/src/geometry_mod.F90 +++ b/src/geometry_mod.F90 @@ -152,9 +152,9 @@ CONTAINS ENDDO ! Curvature operator (Frei et al. 2022 eq 2.15) DO iz = izgs,izge - G1 = gxy(iz,eo)*gxy(iz,eo)-gxx(iz,eo)*gyy(iz,eo) - G2 = gxy(iz,eo)*gxz(iz,eo)-gxx(iz,eo)*gyz(iz,eo) - G3 = gyy(iz,eo)*gxz(iz,eo)-gxy(iz,eo)*gyz(iz,eo) + G1 = gxx(iz,eo)*gyy(iz,eo)-gxy(iz,eo)*gxy(iz,eo) + G2 = gxx(iz,eo)*gyz(iz,eo)-gxy(iz,eo)*gxz(iz,eo) + G3 = gxy(iz,eo)*gyz(iz,eo)-gyy(iz,eo)*gxz(iz,eo) ! Here we divide by hatB because our equation is formulated with grad(lnB) terms (not gradB like in GENE) Cx =-(dBdy(iz,eo) + G2/G1*dBdz(iz,eo))/hatB(iz,eo) Cy = (dBdx(iz,eo) - G3/G1*dBdz(iz,eo))/hatB(iz,eo) @@ -170,9 +170,9 @@ CONTAINS gradz_coeff(iz,eo) = 1._dp /(jacobian(iz,eo)*hatB(iz,eo)) ! Nonlinear term prefactor - Gamma_NL(iz,eo) = 1._dp ! = G1 + Gamma_NL(iz,eo) = G1 !=1._dp ! Geometric factor in front to the maxwellian dzphi term (not implemented) - ! Gamma_phipar(iz,eo) = -G2/G1 + ! Gamma_phipar(iz,eo) = G2/G1 ENDDO ENDDO @@ -227,7 +227,7 @@ CONTAINS Jacobian(iz,eo) = q0/hatB(iz,eo) ! Derivative of the magnetic field strenght - dBdx(iz,eo) = -COS(z)*hatB(iz,eo) ! LB = 1 + dBdx(iz,eo) = -COS(z)*hatB(iz,eo)**2 ! LB = 1 dBdy(iz,eo) = 0._dp dBdz(iz,eo) = eps*SIN(z)*hatB(iz,eo)**2