From bf08f8796f2b5af0ab1436b91b6e52d14c74c2f7 Mon Sep 17 00:00:00 2001 From: Antoine Hoffmann <antoine.hoffmann@epfl.ch> Date: Fri, 17 Feb 2023 10:23:08 +0100 Subject: [PATCH] add underscore to function only variables --- src/moments_eq_rhs_mod.F90 | 154 +++++++++++++++++++------------------ 1 file changed, 79 insertions(+), 75 deletions(-) diff --git a/src/moments_eq_rhs_mod.F90 b/src/moments_eq_rhs_mod.F90 index 6dbb5cce..617d52e7 100644 --- a/src/moments_eq_rhs_mod.F90 +++ b/src/moments_eq_rhs_mod.F90 @@ -24,7 +24,7 @@ SUBROUTINE compute_moments_eq_rhs xphij_i, xphijp1_i, xphijm1_i, xpsij_i, xpsijp1_i, xpsijm1_i,& kernel_i, nadiab_moments_i, ddz_nipj, interp_nipj, Sipj,& moments_i(ipgs_i:ipge_i,ijgs_i:ijge_i,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel),& - TColl_i, ddzND_nipj, & + TColl_i, ddzND_nipj, diff_pi_coeff, diff_ji_coeff,& moments_rhs_i(ips_i:ipe_i,ijs_i:ije_i,ikys:ikye,ikxs:ikxe,izs:ize,updatetlevel)) !compute ion moments_eq_rhs @@ -36,7 +36,7 @@ SUBROUTINE compute_moments_eq_rhs xphij_e, xphijp1_e, xphijm1_e, xpsij_e, xpsijp1_e, xpsijm1_e,& kernel_e, nadiab_moments_e, ddz_nepj, interp_nepj, Sepj,& moments_e(ipgs_e:ipge_e,ijgs_e:ijge_e,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel),& - TColl_e, ddzND_nepj,& + TColl_e, ddzND_nepj, diff_pe_coeff, diff_je_coeff,& moments_rhs_e(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,ikxs:ikxe,izs:ize,updatetlevel)) CONTAINS @@ -47,45 +47,46 @@ SUBROUTINE compute_moments_eq_rhs !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! This routine assemble the RHS of the moment hierarchy equations. It uses ! linear coefficients that are stored in arrays (xn*, yn* and zn*) computed in - ! numerics_mod.F90. Otherwise it simply adds the collision term TColl that is - ! computed in collision_mod.F90 and the nonlinear term Sapj computed in + ! numerics_mod.F90. Otherwise it simply adds the collision term TColl_ that is + ! computed in collision_mod.F90 and the nonlinear term Sapj_ computed in ! nonlinear_mod.F90. ! All arguments of the subroutines are inputs only except the last one, ! moments_rhs_ that will contain the sum of every terms in the RHS. !_____________________________________________________________________________! - SUBROUTINE moments_eq_rhs(ips,ipe,ipgs,ipge,ijs,ije,ijgs,ijge,jarray,parray,& - xnapj, xnapp2j, xnapm2j, xnapjp1, xnapjm1, xnapp1j, xnapm1j,& - ynapp1j, ynapp1jm1, ynapm1j, ynapm1jm1, & - znapm1j, znapm1jp1, znapm1jm1, & - xphij, xphijp1, xphijm1, xpsij, xpsijp1, xpsijm1,& - kernel, nadiab_moments, ddz_napj, interp_napj, Sapj,& - moments, TColl, ddzND_napj, moments_rhs) + SUBROUTINE moments_eq_rhs(ips_,ipe_,ipgs_,ipge_,ijs_,ije_,ijgs_,ijge_,jarray_,parray_,& + xnapj_, xnapp2j_, xnapm2j_, xnapjp1_, xnapjm1_, xnapp1j_, xnapm1j_,& + ynapp1j_, ynapp1jm1_, ynapm1j_, ynapm1jm1_, & + znapm1j_, znapm1jp1_, znapm1jm1_, & + xphij_, xphijp1_, xphijm1_, xpsij_, xpsijp1_, xpsijm1_,& + kernel_, nadiab_moments_, ddz_napj_, interp_napj_, Sapj_,& + moments_, TColl_, ddzND_napj_, diff_p_coeff_, diff_j_coeff_, moments_rhs_) IMPLICIT NONE !! INPUTS - INTEGER, INTENT(IN) :: ips, ipe, ipgs, ipge, ijs, ije, ijgs, ijge - INTEGER, DIMENSION(ips:ipe), INTENT(IN) :: parray - INTEGER, DIMENSION(ijs:ije), INTENT(IN) :: jarray - REAL(dp), DIMENSION(ips:ipe,ijs:ije), INTENT(IN) :: xnapj - REAL(dp), DIMENSION(ips:ipe), INTENT(IN) :: xnapp2j, xnapm2j - REAL(dp), DIMENSION(ijs:ije), INTENT(IN) :: xnapjp1, xnapjm1 - REAL(dp), DIMENSION(ips:ipe), INTENT(IN) :: xnapp1j, xnapm1j - REAL(dp), DIMENSION(ips:ipe,ijs:ije), INTENT(IN) :: ynapp1j, ynapp1jm1, ynapm1j, ynapm1jm1 - REAL(dp), DIMENSION(ips:ipe,ijs:ije), INTENT(IN) :: znapm1j, znapm1jp1, znapm1jm1 - REAL(dp), DIMENSION(ips:ipe,ijs:ije), INTENT(IN) :: xphij, xphijp1, xphijm1 - REAL(dp), DIMENSION(ips:ipe,ijs:ije), INTENT(IN) :: xpsij, xpsijp1, xpsijm1 + INTEGER, INTENT(IN) :: ips_, ipe_, ipgs_, ipge_, ijs_, ije_, ijgs_, ijge_ + INTEGER, DIMENSION(ips_:ipe_), INTENT(IN) :: parray_ + INTEGER, DIMENSION(ijs_:ije_), INTENT(IN) :: jarray_ + REAL(dp), DIMENSION(ips_:ipe_,ijs_:ije_), INTENT(IN) :: xnapj_ + REAL(dp), DIMENSION(ips_:ipe_), INTENT(IN) :: xnapp2j_, xnapm2j_ + REAL(dp), DIMENSION(ijs_:ije_), INTENT(IN) :: xnapjp1_, xnapjm1_ + REAL(dp), DIMENSION(ips_:ipe_), INTENT(IN) :: xnapp1j_, xnapm1j_ + REAL(dp), DIMENSION(ips_:ipe_,ijs_:ije_), INTENT(IN) :: ynapp1j_, ynapp1jm1_, ynapm1j_, ynapm1jm1_ + REAL(dp), DIMENSION(ips_:ipe_,ijs_:ije_), INTENT(IN) :: znapm1j_, znapm1jp1_, znapm1jm1_ + REAL(dp), DIMENSION(ips_:ipe_,ijs_:ije_), INTENT(IN) :: xphij_, xphijp1_, xphijm1_ + REAL(dp), DIMENSION(ips_:ipe_,ijs_:ije_), INTENT(IN) :: xpsij_, xpsijp1_, xpsijm1_ - REAL(dp), DIMENSION(ijgs:ijge,ikys:ikye,ikxs:ikxe,izgs:izge,0:1),INTENT(IN) :: kernel + REAL(dp), DIMENSION(ijgs_:ijge_,ikys:ikye,ikxs:ikxe,izgs:izge,0:1),INTENT(IN) :: kernel_ - COMPLEX(dp), DIMENSION(ipgs:ipge,ijgs:ijge,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: nadiab_moments - COMPLEX(dp), DIMENSION(ipgs:ipge,ijgs:ijge,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: ddz_napj - COMPLEX(dp), DIMENSION(ipgs:ipge,ijgs:ijge,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: interp_napj - COMPLEX(dp), DIMENSION( ips:ipe, ijs:ije, ikys:ikye,ikxs:ikxe, izs:ize), INTENT(IN) :: Sapj - COMPLEX(dp), DIMENSION(ipgs:ipge,ijgs:ijge,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: moments - COMPLEX(dp), DIMENSION( ips:ipe, ijs:ije, ikys:ikye,ikxs:ikxe, izs:ize), INTENT(IN) :: TColl - COMPLEX(dp), DIMENSION(ipgs:ipge,ijgs:ijge,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: ddzND_napj + COMPLEX(dp), DIMENSION(ipgs_:ipge_,ijgs_:ijge_,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: nadiab_moments_ + COMPLEX(dp), DIMENSION(ipgs_:ipge_,ijgs_:ijge_,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: ddz_napj_ + COMPLEX(dp), DIMENSION(ipgs_:ipge_,ijgs_:ijge_,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: interp_napj_ + COMPLEX(dp), DIMENSION( ips_:ipe_, ijs_:ije_, ikys:ikye,ikxs:ikxe, izs:ize), INTENT(IN) :: Sapj_ + COMPLEX(dp), DIMENSION(ipgs_:ipge_,ijgs_:ijge_,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: moments_ + COMPLEX(dp), DIMENSION( ips_:ipe_, ijs_:ije_, ikys:ikye,ikxs:ikxe, izs:ize), INTENT(IN) :: TColl_ + COMPLEX(dp), DIMENSION(ipgs_:ipge_,ijgs_:ijge_,ikys:ikye,ikxs:ikxe,izgs:izge),INTENT(IN) :: ddzND_napj_ + REAL(dp), INTENT(IN) :: diff_p_coeff_, diff_j_coeff_ !! OUTPUT - COMPLEX(dp), DIMENSION( ips:ipe, ijs:ije, ikys:ikye,ikxs:ikxe, izs:ize),INTENT(OUT) :: moments_rhs + COMPLEX(dp), DIMENSION( ips_:ipe_, ijs_:ije_, ikys:ikye,ikxs:ikxe, izs:ize),INTENT(OUT) :: moments_rhs_ INTEGER :: p_int, j_int ! loops indices and polynom. degrees REAL(dp) :: kx, ky, kperp2 @@ -111,11 +112,11 @@ SUBROUTINE compute_moments_eq_rhs psikykxz = psi(iky,ikx,iz)! tmp psi value ! Kinetic loops - jloop : DO ij = ijs, ije ! This loop is from 1 to jmaxi+1 - j_int = jarray(ij) + jloop : DO ij = ijs_, ije_ ! This loop is from 1 to jmaxi+1 + j_int = jarray_(ij) - ploop : DO ip = ips, ipe ! Hermite loop - p_int = parray(ip) ! Hermite degree + ploop : DO ip = ips_, ipe_ ! Hermite loop + p_int = parray_(ip) ! Hermite degree eo = MODULO(p_int,2) ! Indicates if we are on odd or even z grid kperp2= kparray(iky,ikx,iz,eo)**2 @@ -123,31 +124,31 @@ SUBROUTINE compute_moments_eq_rhs !! Compute moments_ mixing terms ! Perpendicular dynamic ! term propto n^{p,j} - Tnapj = xnapj(ip,ij)* nadiab_moments(ip,ij,iky,ikx,iz) + Tnapj = xnapj_(ip,ij)* nadiab_moments_(ip,ij,iky,ikx,iz) ! term propto n^{p+2,j} - Tnapp2j = xnapp2j(ip) * nadiab_moments(ip+pp2,ij,iky,ikx,iz) + Tnapp2j = xnapp2j_(ip) * nadiab_moments_(ip+pp2,ij,iky,ikx,iz) ! term propto n^{p-2,j} - Tnapm2j = xnapm2j(ip) * nadiab_moments(ip-pp2,ij,iky,ikx,iz) + Tnapm2j = xnapm2j_(ip) * nadiab_moments_(ip-pp2,ij,iky,ikx,iz) ! term propto n^{p,j+1} - Tnapjp1 = xnapjp1(ij) * nadiab_moments(ip,ij+1,iky,ikx,iz) + Tnapjp1 = xnapjp1_(ij) * nadiab_moments_(ip,ij+1,iky,ikx,iz) ! term propto n^{p,j-1} - Tnapjm1 = xnapjm1(ij) * nadiab_moments(ip,ij-1,iky,ikx,iz) + Tnapjm1 = xnapjm1_(ij) * nadiab_moments_(ip,ij-1,iky,ikx,iz) ! Perpendicular magnetic term (curvature and gradient drifts) Mperp = imagu*Ckxky(iky,ikx,iz,eo)*(Tnapj + Tnapp2j + Tnapm2j + Tnapjp1 + Tnapjm1) ! Parallel dynamic ! ddz derivative for Landau damping term - Tpar = xnapp1j(ip) * ddz_napj(ip+1,ij,iky,ikx,iz) & - + xnapm1j(ip) * ddz_napj(ip-1,ij,iky,ikx,iz) + Tpar = xnapp1j_(ip) * ddz_napj_(ip+1,ij,iky,ikx,iz) & + + xnapm1j_(ip) * ddz_napj_(ip-1,ij,iky,ikx,iz) ! Mirror terms - Tnapp1j = ynapp1j (ip,ij) * interp_napj(ip+1,ij ,iky,ikx,iz) - Tnapp1jm1 = ynapp1jm1(ip,ij) * interp_napj(ip+1,ij-1,iky,ikx,iz) - Tnapm1j = ynapm1j (ip,ij) * interp_napj(ip-1,ij ,iky,ikx,iz) - Tnapm1jm1 = ynapm1jm1(ip,ij) * interp_napj(ip-1,ij-1,iky,ikx,iz) + Tnapp1j = ynapp1j_ (ip,ij) * interp_napj_(ip+1,ij ,iky,ikx,iz) + Tnapp1jm1 = ynapp1jm1_(ip,ij) * interp_napj_(ip+1,ij-1,iky,ikx,iz) + Tnapm1j = ynapm1j_ (ip,ij) * interp_napj_(ip-1,ij ,iky,ikx,iz) + Tnapm1jm1 = ynapm1jm1_(ip,ij) * interp_napj_(ip-1,ij-1,iky,ikx,iz) ! Trapping terms - Unapm1j = znapm1j (ip,ij) * interp_napj(ip-1,ij ,iky,ikx,iz) - Unapm1jp1 = znapm1jp1(ip,ij) * interp_napj(ip-1,ij+1,iky,ikx,iz) - Unapm1jm1 = znapm1jm1(ip,ij) * interp_napj(ip-1,ij-1,iky,ikx,iz) + Unapm1j = znapm1j_ (ip,ij) * interp_napj_(ip-1,ij ,iky,ikx,iz) + Unapm1jp1 = znapm1jp1_(ip,ij) * interp_napj_(ip-1,ij+1,iky,ikx,iz) + Unapm1jm1 = znapm1jm1_(ip,ij) * interp_napj_(ip-1,ij-1,iky,ikx,iz) Tmir = dlnBdz(iz,eo)*(Tnapp1j + Tnapp1jm1 + Tnapm1j + Tnapm1jm1 +& Unapm1j + Unapm1jp1 + Unapm1jm1) @@ -155,26 +156,26 @@ SUBROUTINE compute_moments_eq_rhs Mpara = gradz_coeff(iz,eo)*(Tpar + Tmir) !! Electrical potential term IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 - Dphi =i_ky*( xphij (ip,ij)*kernel(ij ,iky,ikx,iz,eo) & - +xphijp1(ip,ij)*kernel(ij+1,iky,ikx,iz,eo) & - +xphijm1(ip,ij)*kernel(ij-1,iky,ikx,iz,eo) )*phi(iky,ikx,iz) + Dphi =i_ky*( xphij_ (ip,ij)*kernel_(ij ,iky,ikx,iz,eo) & + +xphijp1_(ip,ij)*kernel_(ij+1,iky,ikx,iz,eo) & + +xphijm1_(ip,ij)*kernel_(ij-1,iky,ikx,iz,eo) )*phi(iky,ikx,iz) ELSE Tphi = 0._dp ENDIF !! Vector potential term IF ( (p_int .LE. 3) .AND. (p_int .GE. 1) ) THEN ! Kronecker p1 or p3 - Dpsi =-i_ky*( xpsij (ip,ij)*kernel(ij ,iky,ikx,iz,eo) & - +xpsijp1(ip,ij)*kernel(ij+1,iky,ikx,iz,eo) & - +xpsijm1(ip,ij)*kernel(ij-1,iky,ikx,iz,eo))*psi(iky,ikx,iz) + Dpsi =-i_ky*( xpsij_ (ip,ij)*kernel_(ij ,iky,ikx,iz,eo) & + +xpsijp1_(ip,ij)*kernel_(ij+1,iky,ikx,iz,eo) & + +xpsijm1_(ip,ij)*kernel_(ij-1,iky,ikx,iz,eo))*psi(iky,ikx,iz) ELSE Dpsi = 0._dp ENDIF !! Sum of all RHS terms - moments_rhs(ip,ij,iky,ikx,iz) = & - ! Nonlinear term Sapj = {phi,f} - - Sapj(ip,ij,iky,ikx,iz) & + moments_rhs_(ip,ij,iky,ikx,iz) = & + ! Nonlinear term Sapj_ = {phi,f} + - Sapj_(ip,ij,iky,ikx,iz) & ! Perpendicular magnetic term - Mperp & ! Parallel magnetic term @@ -182,30 +183,33 @@ SUBROUTINE compute_moments_eq_rhs ! Drives (density + temperature gradients) - (Dphi + Dpsi) & ! Collision term - + TColl(ip,ij,iky,ikx,iz) & + + TColl_(ip,ij,iky,ikx,iz) & ! Perpendicular pressure effects (electromagnetic term) (TO CHECK) - i_ky*beta*dpdx * (Tnapj + Tnapp2j + Tnapm2j + Tnapjp1 + Tnapjm1)& ! Parallel drive term (should be negligible, to test) ! -Gamma_phipar(iz,eo)*Tphi*ddz_phi(iky,ikx,iz) & - ! Numerical Hermite hyperdiffusion (GX version) - -mu_p*diff_pe_coeff*p_int**4*moments(ip,ij,iky,ikx,iz)& - ! Numerical Laguerre hyperdiffusion (GX version) - -mu_j*diff_je_coeff*j_int**4*moments(ip,ij,iky,ikx,iz)& ! Numerical perpendicular hyperdiffusion - -mu_x*diff_kx_coeff*kx**N_HD*moments(ip,ij,iky,ikx,iz) & - -mu_y*diff_ky_coeff*ky**N_HD*moments(ip,ij,iky,ikx,iz) & + -mu_x*diff_kx_coeff*kx**N_HD*moments_(ip,ij,iky,ikx,iz) & + -mu_y*diff_ky_coeff*ky**N_HD*moments_(ip,ij,iky,ikx,iz) & ! Numerical parallel hyperdiffusion "mu_z*ddz**4" see Pueschel 2010 (eq 25) - -mu_z*diff_dz_coeff*ddzND_napj(ip,ij,iky,ikx,iz) - - ! IF( (ip-4 .GT. 0) .AND. (num_procs_p .EQ. 1) ) & - ! ! Numerical parallel velocity hyperdiffusion "+ dvpar4 g_a" see Pueschel 2010 (eq 33) - ! ! (not used often so not parallelized) - ! moments_rhs_(ip,ij,iky,ikx,iz) = & - ! moments_rhs_(ip,ij,iky,ikx,iz) & - ! + mu_p * moments_(ip-4,ij,iky,ikx,iz) + -mu_z*diff_dz_coeff*ddzND_napj_(ip,ij,iky,ikx,iz) + ! GX like Hermite hypercollisions see Mandell et al. 2023 (eq 3.23), unadvised to use it + IF (p_int .GT. 2) & + moments_rhs_(ip,ij,iky,ikx,iz) = & + moments_rhs_(ip,ij,iky,ikx,iz) - mu_p*diff_pe_coeff*p_int**6*moments_(ip,ij,iky,ikx,iz) + IF (j_int .GT. 1) & + moments_rhs_(ip,ij,iky,ikx,iz) = & + moments_rhs_(ip,ij,iky,ikx,iz) - mu_j*diff_je_coeff*j_int**6*moments_(ip,ij,iky,ikx,iz) + ! fourth order numerical diffusion in vpar + ! IF( (ip-4 .GT. 0) .AND. (num_procs_p .EQ. 1) ) & + ! ! Numerical parallel velocity hyperdiffusion "+ dvpar4 g_a" see Pueschel 2010 (eq 33) + ! ! (not used often so not parallelized) + ! moments_rhs_(ip,ij,iky,ikx,iz) = & + ! moments_rhs_(ip,ij,iky,ikx,iz) & + ! + mu_p * moments_(ip-4,ij,iky,ikx,iz) ELSE - moments_rhs(ip,ij,iky,ikx,iz) = 0._dp + moments_rhs_(ip,ij,iky,ikx,iz) = 0._dp ENDIF END DO ploop END DO jloop @@ -227,7 +231,7 @@ SUBROUTINE add_Maxwellian_background_terms ! This routine is meant to add the terms rising from the magnetic operator, ! i.e. (B x k_gB) Grad, applied on the background Maxwellian distribution ! (x_a + spar^2)(b x k_gB) GradFaM - ! It gives birth to kx=ky=0 sources terms (averages) that hit moments 00, 20, + ! It gives birth to kx=ky=0 sources terms (averages) that hit moments_ 00, 20, ! 40, 01,02, 21 with background gradient dependences. USE prec_const USE time_integration, ONLY : updatetlevel -- GitLab