From c61f771e1a378a2dab818974574dbcaf9d34ad94 Mon Sep 17 00:00:00 2001 From: Antoine <antoine.hoffmann@epfl.ch> Date: Fri, 4 Aug 2023 09:54:48 +0200 Subject: [PATCH] correction of the parameters --- wk/parameters/lin_JET_rho97.m | 110 ++++++++++++++++++++++------------ 1 file changed, 71 insertions(+), 39 deletions(-) diff --git a/wk/parameters/lin_JET_rho97.m b/wk/parameters/lin_JET_rho97.m index b9f1041d..72ae55cd 100644 --- a/wk/parameters/lin_JET_rho97.m +++ b/wk/parameters/lin_JET_rho97.m @@ -1,45 +1,68 @@ -% Parameters found in Parisi et al. 2020 -% Jet shot 92174 +%% Parameters found in Parisi et al. 2020 +% Jet shot 92174 parameters +BT0 = 1.9; %[T] Toroidal field @ 2.96m +Ip = 1.4; %[MA] Plasma current @ 2.96m +PNBI = 17.4; %[MW] NBI power +rhoi = 0.27; %[cm] Ion gyroradius +R0 = 2.86; %[m] Major radius +a = 0.91; %[m] F-T minor radius +Rc = 2.91; %[m] ?? +rc = 0.89; %[m] ?? +m_e = 5.49e-4; %[amu] electron mass +m_i = 2.014; %[amu] deuterium mass +% Dimless flux-tube parameters +nuee = 0.83; %[vti/a] e-e collision frequ. +wTe = 42; %[a/L] e-temp. gradient length +wTi = 11; %[a/L] i-temp. gradient length +wNe = 10; %[a/L] dens. gradient length +tau = 1/0.56; %Ti/Te i-e temperature ratio +gE = 0.56; %[vti/a] ExB shearing rate +roa = 0.9743; % r/a Flux surface position +beta = 0.0031; % [8pi*ptot/B^2] with B = 1.99T +% Normalization +% v0 = vth_i = sqrt(2*Ti/mi) +% rho0 = rho_i = vti/omegai +% Conversion factors from GYAC to paper results +freq_conv = a/R0 * sqrt(tau/2); % from R/c_s to a/vti +wave_conv = sqrt(2/tau); % from rho_i to rho_s +grad_conv = a/R0; % from R/LT to a/LT + %% Set simulation parameters SIMID = 'lin_JET_rho97'; % Name of the simulation %% Set up physical parameters -CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss NU = 0.1; % Not the true value -TAU = 1/0.56; % e/i temperature ratio -K_Ne = 10; % ele Density ''' -K_Te = 42; % ele Temperature ''' -K_Ni = 10; % ion Density gradient drive -K_Ti = 11; % ion Temperature ''' -SIGMA_E = 0.0233380; % mass ratio sqrt(m_a/m_i) (correct = 0.0233380) +TAU = tau; % i/e temperature ratio +K_Ne = wNe/grad_conv; % ele Density ''' +K_Te = wTe/grad_conv; % ele Temperature ''' +K_Ni = wNe/grad_conv; % ion Density gradient drive +K_Ti = wTi/grad_conv; % ion Temperature ''' +SIGMA_E = sqrt(m_e/m_i); % mass ratio sqrt(m_e/m_i) (e-H = 0.0233380) NA = 2; % number of kinetic species -ADIAB_E = (NA==1); % adiabatic electron model -BETA = 0.0031; % electron plasma beta -MHD_PD = 0; +BETA = beta; % electron plasma beta +MHD_PD = 1; +CO = 'DG'; % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau) +GKCO = 1; % Gyrokinetic operator +ABCO = 1; % INTERSPECIES collisions +COLL_KCUT= 100; % Cutoff for collision operator %% GEOMETRY % GEOMETRY= 's-alpha'; GEOMETRY= 'miller'; -EPS = 0.9753*0.91/2.91; % inverse aspect ratio -Q0 = 5.10; % safety factor -SHEAR = 3.36; % magnetic shear -KAPPA = 1.55; % elongation -S_KAPPA = 0.95; -DELTA = 0.26; % triangularity -S_DELTA = 0.74; -ZETA = 0; % squareness -S_ZETA = 0; -PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected') -SHIFT_Y = 0.0; % Shift in the periodic BC in z -NPOL = 1; % Number of poloidal turns -PB_PHASE = 0; +EPS = a/R0; % inverse aspect ratio +Q0 = 5.100; % safety factor +SHEAR = 3.360; % magnetic shear +KAPPA = 1.550; % elongation +S_KAPPA = 0.949; +DELTA = 0.263; % triangularity +S_DELTA = 0.737; %% Set up grid parameters P = 4; J = P/2;%P/2; PMAX = P; % Hermite basis size JMAX = J; % Laguerre basis size -NX = 8; % real space x-gridpoints -NY = 8; % real space y-gridpoints +NX = 16; % real space x-gridpoints +NY = 2; % real space y-gridpoints LX = 2*pi/0.1; % Size of the squared frequency domain in x direction LY = 2*pi/0.2; % Size of the squared frequency domain in y direction NZ = 32; % number of perpendicular planes (parallel grid) @@ -55,11 +78,15 @@ DTSAVE3D = 0.5; % Sampling time for 3D arrays DTSAVE5D = 100; % Sampling time for 5D arrays JOB2LOAD = -1; % Start a new simulation serie + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% UNUSED PARAMETERS +% These parameters are usually not to play with in linear runs + %% OPTIONS +CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss LINEARITY = 'linear'; % activate non-linearity (is cancelled if KXEQ0 = 1) -CO = 'DG'; % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau) -GKCO = 1; % Gyrokinetic operator -ABCO = 1; % INTERSPECIES collisions INIT_ZF = 0; % Initialize zero-field quantities HRCY_CLOS = 'truncation'; % Closure model for higher order moments DMAX = -1; @@ -67,6 +94,8 @@ NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments NMAX = 0; KERN = 0; % Kernel model (0 : GK) INIT_OPT = 'phi'; % Start simulation with a noisy mom00/phi/allmom +NOISE0 = 1.0e-5; % Initial noise amplitude +BCKGD0 = 0.0e-5; % Initial background NUMERICAL_SCHEME = 'RK4'; % Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5) %% OUTPUTS @@ -80,22 +109,25 @@ W_TEMP = 1; % Output flag for temperature W_NAPJ = 1; % Output flag for nalphaparallel (parallel momentum of species alpha) W_SAPJ = 0; % Output flag for saparallel (parallel current of species alpha) -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%% UNUSED PARAMETERS -% These parameters are usually not to play with in linear runs +%% Unused geometry +ZETA = 0; % squareness +S_ZETA = 0; +PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected') +SHIFT_Y = 0.0; % Shift in the periodic BC in z +NPOL = 1; % Number of poloidal turns +PB_PHASE = 0; + +%% Diffusions MU = 0.0; % Hyperdiffusivity coefficient MU_X = MU; % Hyperdiffusivity coefficient in x direction MU_Y = MU; % Hyperdiffusivity coefficient in y direction N_HD = 4; % Degree of spatial-hyperdiffusivity -MU_Z = 2.0; % Hyperdiffusivity coefficient in z direction +MU_Z = 5.0; % Hyperdiffusivity coefficient in z direction HYP_V = 'hypcoll'; % Kinetic-hyperdiffusivity model MU_P = 0.0; % Hyperdiffusivity coefficient for Hermite MU_J = 0.0; % Hyperdiffusivity coefficient for Laguerre LAMBDAD = 0.0; % Lambda Debye -NOISE0 = 1.0e-5; % Initial noise amplitude -BCKGD0 = 0.0e-5; % Initial background k_gB = 1.0; % Magnetic gradient strength k_cB = 1.0; % Magnetic curvature strength -COLL_KCUT = 1; % Cutoff for collision operator -ADIAB_I = 0; % adiabatic ion model \ No newline at end of file +ADIAB_I = 0; % adiabatic ion model +ADIAB_E = (NA==1); % adiabatic electron model \ No newline at end of file -- GitLab