diff --git a/src/moments_eq_rhs_mod.F90 b/src/moments_eq_rhs_mod.F90 index 092b390dfb8cad2170c7880bf3f2cab6f25b2bbd..8123fe782f59671450d45a94b0d9e7e5fd21711c 100644 --- a/src/moments_eq_rhs_mod.F90 +++ b/src/moments_eq_rhs_mod.F90 @@ -6,6 +6,7 @@ CONTAINS SUBROUTINE compute_moments_eq_rhs USE model, only: KIN_E IMPLICIT NONE + IF(KIN_E) CALL moments_eq_rhs_e CALL moments_eq_rhs_i !! BETA TESTING !! @@ -21,13 +22,18 @@ SUBROUTINE moments_eq_rhs_e USE basic USE time_integration - USE array - USE fields + USE array, ONLY: xnepj, xnepp2j, xnepm2j, xnepjp1, xnepjm1, xnepp1j, xnepm1j,& + ynepp1j, ynepp1jm1, ynepm1j, ynepm1jm1, & + znepm1j, znepm1jp1, znepm1jm1, & + xphij_e, xphijp1_e, xphijm1_e, xpsij_e, xpsijp1_e, xpsijm1_e,& + nadiab_moments_e, ddz_nepj, interp_nepj, moments_rhs_e, Sepj,& + TColl_e, ddzND_nepj, kernel_e + USE fields, ONLY: phi, psi, moments_e USE grid USE model USE prec_const USE collision - use geometry + USE geometry, ONLY: gradz_coeff, gradzB, Ckxky, hatB_NL, hatR USE calculus, ONLY : interp_z, grad_z, grad_z2 IMPLICIT NONE @@ -77,6 +83,8 @@ SUBROUTINE moments_eq_rhs_e Tnepjp1 = xnepjp1(ij) * nadiab_moments_e(ip,ij+1,iky,ikx,iz) ! term propto n_e^{p,j-1} Tnepjm1 = xnepjm1(ij) * nadiab_moments_e(ip,ij-1,iky,ikx,iz) + ! Tperp + Tperp = Tnepj + Tnepp2j + Tnepm2j + Tnepjp1 + Tnepjm1 ! Parallel dynamic ! ddz derivative for Landau damping term Tpar = xnepp1j(ip) * ddz_nepj(ip+1,ij,iky,ikx,iz) & @@ -102,7 +110,7 @@ SUBROUTINE moments_eq_rhs_e ENDIF !! Vector potential term - IF ( (p_int .LE. 3) .AND. (p_int .GT. 1) ) THEN ! Kronecker p1 or p3 + IF ( (p_int .LE. 3) .AND. (p_int .GE. 1) ) THEN ! Kronecker p1 or p3 Tpsi = (xpsij_e (ip,ij)*kernel_e(ij ,iky,ikx,iz,eo) & + xpsijp1_e(ip,ij)*kernel_e(ij+1,iky,ikx,iz,eo) & + xpsijm1_e(ip,ij)*kernel_e(ij-1,iky,ikx,iz,eo))*psikykxz @@ -113,22 +121,22 @@ SUBROUTINE moments_eq_rhs_e !! Sum of all RHS terms moments_rhs_e(ip,ij,iky,ikx,iz,updatetlevel) = & ! Perpendicular magnetic gradient/curvature effects - - imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo)* (Tnepj + Tnepp2j + Tnepm2j + Tnepjp1 + Tnepjm1)& + -imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo) * Tperp& ! Parallel coupling (Landau Damping) - - Tpar*gradz_coeff(iz,eo) & + -gradz_coeff(iz,eo) * Tpar & ! Mirror term (parallel magnetic gradient) - - gradzB(iz,eo)* Tmir *gradz_coeff(iz,eo) & + -gradzB(iz,eo)*gradz_coeff(iz,eo) * Tmir& ! Drives (density + temperature gradients) - - i_ky * (Tphi - Tpsi) & + -i_ky * (Tphi - Tpsi) & ! Numerical perpendicular hyperdiffusion (totally artificial, for stability purpose) - - mu_x*diff_kx_coeff*kx**N_HD*moments_e(ip,ij,iky,ikx,iz,updatetlevel) & - - mu_y*diff_ky_coeff*ky**N_HD*moments_e(ip,ij,iky,ikx,iz,updatetlevel) & - ! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)" see Pueschel 2010 (eq 25) - - mu_z * diff_dz_coeff * ddz4_Nepj(ip,ij,iky,ikx,iz) & + -mu_x*diff_kx_coeff*kx**N_HD*moments_e(ip,ij,iky,ikx,iz,updatetlevel) & + -mu_y*diff_ky_coeff*ky**N_HD*moments_e(ip,ij,iky,ikx,iz,updatetlevel) & + ! Numerical parallel hyperdiffusion "mu_z*ddz**4" see Pueschel 2010 (eq 25) + -mu_z*diff_dz_coeff*ddzND_nepj(ip,ij,iky,ikx,iz) & ! Collision term - + TColl_e(ip,ij,iky,ikx,iz) & + +TColl_e(ip,ij,iky,ikx,iz) & ! Nonlinear term - - hatB_NL(iz,eo) * Sepj(ip,ij,iky,ikx,iz) + -hatB_NL(iz,eo) * Sepj(ip,ij,iky,ikx,iz) IF(ip-4 .GT. 0) & ! Numerical parallel velocity hyperdiffusion "+ dvpar4 g_a" see Pueschel 2010 (eq 33) @@ -160,13 +168,18 @@ SUBROUTINE moments_eq_rhs_i USE basic USE time_integration, ONLY: updatetlevel - USE array - USE fields + USE array, ONLY: xnipj, xnipp2j, xnipm2j, xnipjp1, xnipjm1, xnipp1j, xnipm1j,& + ynipp1j, ynipp1jm1, ynipm1j, ynipm1jm1, & + znipm1j, znipm1jp1, znipm1jm1, & + xphij_i, xphijp1_i, xphijm1_i, xpsij_i, xpsijp1_i, xpsijm1_i,& + nadiab_moments_i, ddz_nipj, interp_nipj, moments_rhs_i, Sipj,& + TColl_i, ddzND_nipj, kernel_i + USE fields, ONLY: phi, psi, moments_i USE grid USE model USE prec_const USE collision - USE geometry + USE geometry, ONLY: gradz_coeff, gradzB, Ckxky, hatB_NL, hatR USE calculus, ONLY : interp_z, grad_z, grad_z2 IMPLICIT NONE @@ -201,6 +214,7 @@ SUBROUTINE moments_eq_rhs_i p_int = parray_i(ip) ! Hermite degree eo = MODULO(p_int,2) ! Indicates if we are on odd or even z grid kperp2= kparray(iky,ikx,iz,eo)**2 + IF((CLOS .NE. 1) .OR. (p_int+2*j_int .LE. dmaxi)) THEN !! Compute moments mixing terms Tperp = 0._dp; Tpar = 0._dp; Tmir = 0._dp @@ -243,7 +257,7 @@ SUBROUTINE moments_eq_rhs_i ENDIF !! Vector potential term - IF ( (p_int .LE. 3) .AND. (p_int .GT. 1) ) THEN ! Kronecker p1 or p3 + IF ( (p_int .LE. 3) .AND. (p_int .GE. 1) ) THEN ! Kronecker p1 or p3 Tpsi = (xpsij_i (ip,ij)*kernel_i(ij ,iky,ikx,iz,eo) & + xpsijp1_i(ip,ij)*kernel_i(ij+1,iky,ikx,iz,eo) & + xpsijm1_i(ip,ij)*kernel_i(ij-1,iky,ikx,iz,eo))*psikykxz @@ -255,22 +269,22 @@ SUBROUTINE moments_eq_rhs_i !! Sum of all RHS terms moments_rhs_i(ip,ij,iky,ikx,iz,updatetlevel) = & ! Perpendicular magnetic gradient/curvature effects - - imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo) * Tperp & + -imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo) * Tperp & ! Parallel coupling (Landau damping) - - gradz_coeff(iz,eo) * Tpar & + -gradz_coeff(iz,eo) * Tpar & ! Mirror term (parallel magnetic gradient) - - gradzB(iz,eo) * gradz_coeff(iz,eo) * Tmir & + -gradzB(iz,eo)*gradz_coeff(iz,eo) * Tmir & ! Drives (density + temperature gradients) - - i_ky * (Tphi - Tpsi) & + -i_ky * (Tphi - Tpsi) & ! Numerical hyperdiffusion (totally artificial, for stability purpose) - - mu_x*diff_kx_coeff*kx**N_HD*moments_i(ip,ij,iky,ikx,iz,updatetlevel) & - - mu_y*diff_ky_coeff*ky**N_HD*moments_i(ip,ij,iky,ikx,iz,updatetlevel) & - ! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)" - + mu_z * diff_dz_coeff * ddz4_Nipj(ip,ij,iky,ikx,iz) & + -mu_x*diff_kx_coeff*kx**N_HD*moments_i(ip,ij,iky,ikx,iz,updatetlevel) & + -mu_y*diff_ky_coeff*ky**N_HD*moments_i(ip,ij,iky,ikx,iz,updatetlevel) & + ! Numerical parallel hyperdiffusion "mu_z*ddz**4" + -mu_z*diff_dz_coeff*ddzND_nipj(ip,ij,iky,ikx,iz) & ! Collision term - + TColl_i(ip,ij,iky,ikx,iz)& + +TColl_i(ip,ij,iky,ikx,iz)& ! Nonlinear term with a (gxx*gxy - gxy**2)^1/2 factor - - hatB_NL(iz,eo) * Sipj(ip,ij,iky,ikx,iz) + -hatB_NL(iz,eo) * Sipj(ip,ij,iky,ikx,iz) IF(ip-4 .GT. 0) & ! Numerical parallel velocity hyperdiffusion "+ dvpar4 g_a" see Pueschel 2010 (eq 33) @@ -300,7 +314,7 @@ SUBROUTINE add_Maxwellian_background_terms ! 40, 01,02, 21 with background gradient dependences. USE prec_const USE time_integration, ONLY : updatetlevel - USE model, ONLY: taue_qe, taui_qi, k_N, eta_N, k_T, eta_T, KIN_E + USE model, ONLY: taue_qe, taui_qi, k_Ni, k_Ne, k_Ti, k_Te, KIN_E USE array, ONLY: moments_rhs_e, moments_rhs_i USE grid, ONLY: contains_kx0, contains_ky0, ikx_0, iky_0,& ips_e,ipe_e,ijs_e,ije_e,ips_i,ipe_i,ijs_i,ije_i,& @@ -320,28 +334,28 @@ SUBROUTINE add_Maxwellian_background_terms SELECT CASE (ip-1) CASE(0) ! Na00 term moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taue_qe * sinz(izs:ize) * (1.5_dp*eta_N*k_N - 1.125_dp*eta_N*k_T) + +taue_qe * sinz(izs:ize) * (1.5_dp*k_Ne - 1.125_dp*k_Te) CASE(2) ! Na20 term moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taue_qe * sinz(izs:ize) * (SQRT2*0.5_dp*eta_N*k_N - 2.75_dp*eta_T*k_T) + +taue_qe * sinz(izs:ize) * (SQRT2*0.5_dp*k_Ne - 2.75_dp*k_Te) CASE(4) ! Na40 term moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taue_qe * sinz(izs:ize) * SQRT6*0.75_dp*eta_T*k_T + +taue_qe * sinz(izs:ize) * SQRT6*0.75_dp*k_Te END SELECT CASE(1) ! j = 1 SELECT CASE (ip-1) CASE(0) ! Na01 term moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - -taue_qe * sinz(izs:ize) * (eta_N*k_N + 3.5_dp*eta_T*k_T) + -taue_qe * sinz(izs:ize) * (k_Ne + 3.5_dp*k_Te) CASE(2) ! Na21 term moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - -taue_qe * sinz(izs:ize) * SQRT2*eta_T*k_T + -taue_qe * sinz(izs:ize) * SQRT2*k_Te END SELECT CASE(2) ! j = 2 SELECT CASE (ip-1) CASE(0) ! Na02 term moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_e(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taue_qe * sinz(izs:ize) * 2._dp*eta_T*k_T + +taue_qe * sinz(izs:ize) * 2._dp*k_Te END SELECT END SELECT ENDDO @@ -355,28 +369,28 @@ SUBROUTINE add_Maxwellian_background_terms SELECT CASE (ip-1) CASE(0) ! Na00 term moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taui_qi * sinz(izs:ize) * (1.5_dp*k_N - 1.125_dp*k_T) + +taui_qi * sinz(izs:ize) * (1.5_dp*k_Ni - 1.125_dp*k_Ti) CASE(2) ! Na20 term moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taui_qi * sinz(izs:ize) * (SQRT2*0.5_dp*k_N - 2.75_dp*k_T) + +taui_qi * sinz(izs:ize) * (SQRT2*0.5_dp*k_Ni - 2.75_dp*k_Ti) CASE(4) ! Na40 term moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taui_qi * sinz(izs:ize) * SQRT6*0.75_dp*k_T + +taui_qi * sinz(izs:ize) * SQRT6*0.75_dp*k_Ti END SELECT CASE(1) ! j = 1 SELECT CASE (ip-1) CASE(0) ! Na01 term moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - -taui_qi * sinz(izs:ize) * (k_N + 3.5_dp*k_T) + -taui_qi * sinz(izs:ize) * (k_Ni + 3.5_dp*k_Ti) CASE(2) ! Na21 term moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - -taui_qi * sinz(izs:ize) * SQRT2*k_T + -taui_qi * sinz(izs:ize) * SQRT2*k_Ti END SELECT CASE(2) ! j = 2 SELECT CASE (ip-1) CASE(0) ! Na02 term moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel) = moments_rhs_i(ip,ij,iky_0,ikx_0,izs:ize,updatetlevel)& - +taui_qi * sinz(izs:ize) * 2._dp*k_T + +taui_qi * sinz(izs:ize) * 2._dp*k_Ti END SELECT END SELECT ENDDO