%% Kernels kmax=7; nmax=6; kr_ = linspace(0,kmax,100); figure for n_ = 0:nmax plot(kr_,kernel(n_,kr_),'DisplayName',['$\mathcal{K}_{',num2str(n_),'}$']);hold on; end ylim_ = ylim; plot(kr_(end)*[2/3 2/3],ylim_,'--k','DisplayName','AA'); plot(kr_,J0,'-r','DisplayName','$J_0$'); legend('show') %% Bessels and approx vperp = linspace(0,1.5,4); nmax1=5; nmax2=10; kmax=7; figure for i = 1:4 subplot(2,2,i) v_ = vperp(i); kr_ = linspace(0,kmax,100); J0 = besselj(0,kr_*v_); A1 = 1 - kr_.^2*v_^2/4; K1 = zeros(size(kr_)); K2 = zeros(size(kr_)); for n_ = 0:nmax1 K1 = K1 + kernel(n_,kr_).*polyval(LaguerrePoly(n_),v_^2); end for n_ = 0:nmax2 K2 = K2 + kernel(n_,kr_).*polyval(LaguerrePoly(n_),v_^2); end plot(kr_,J0,'-k','DisplayName','$J_0(kv)$'); hold on; plot(kr_,A1,'-r','DisplayName','$1 - k^2 v^2/4$'); plot(kr_,K1,'--b','DisplayName',['$\sum_{n=0}^{',num2str(nmax1),'}\mathcal K_n(k) L^n(v)$']); plot(kr_,K2,'-b','DisplayName',['$\sum_{n=0}^{',num2str(nmax2),'}\mathcal K_n(k) L^n(v)$']); ylim_ = [-0.5, 1.0]; plot(kr_(end)*[2/3 2/3],ylim_,'--k','DisplayName','AA'); ylim(ylim_); xlabel('$k$') legend('show'); grid on; title(['$v = ',num2str(v_),'$']) end %%