clear all; addpath(genpath('../matlab')) % ... add SUBMIT = 1; % To submit the job automatically % EXECNAME = 'helaz_dbg'; EXECNAME = 'helaz_2.73'; for ETAB = [0.6] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Set Up parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% CLUSTER PARAMETERS % CLUSTER.PART = 'prod'; % dbg or prod CLUSTER.PART = 'dbg'; CLUSTER.TIME = '24:00:00'; % allocation time hh:mm:ss if(strcmp(CLUSTER.PART,'dbg')); CLUSTER.TIME = '00:30:00'; end; CLUSTER.MEM = '128GB'; % Memory CLUSTER.JNAME = 'HeLaZ';% Job name NP_P = 2; % MPI processes along p NP_KR = 24; % MPI processes along kr %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% PHYSICAL PARAMETERS NU = 1e-3; % Collision frequency % ETAB = 0.7; % Magnetic gradient NU_HYP = 0.1; % Hyperdiffusivity coefficient % (0 : L.Bernstein, 1 : Dougherty, 2: Sugama, 3 : Pitch angle ; +/- for GK/DK) CO = 2; INIT_ZF = 0; ZF_AMP = 0.0; %% GRID PARAMETERS N = 200; % Frequency gridpoints (Nkr = N/2) L = 60; % Size of the squared frequency domain P = 6; % Electron and Ion highest Hermite polynomial degree J = 3; % Electron and Ion highest Laguerre polynomial degree MU_P = 0.0;% Hermite hyperdiffusivity -mu_p*(d/dvpar)^4 f MU_J = 0.0;% Laguerre hyperdiffusivity -mu_j*(d/dvperp)^4 f %% TIME PARAMETERS TMAX = 10000; % Maximal time unit DT = 1e-2; % Time step SPS0D = 1; % Sampling per time unit for profiler SPS2D = 1/4; % Sampling per time unit for 2D arrays SPS5D = 1/300; % Sampling per time unit for 5D arrays SPSCP = 0; % Sampling per time unit for checkpoints RESTART = 0; % To restart from last checkpoint JOB2LOAD= 0; %% Naming SIMID = 'kobayashi'; % Name of the simulation % SIMID = 'test'; % Name of the simulation % SIMID = ['v2.7_P_',num2str(P),'_J_',num2str(J)]; % Name of the simulation PREFIX =[]; % PREFIX = sprintf('%d_%d_',NP_P, NP_KR); %% Options CLOS = 0; % Closure model (0: =0 truncation, 1: semi coll, 2: Copy closure J+1 = J, P+2 = P) NL_CLOS = -1; % nonlinear closure model (-2: nmax = jmax, -1: nmax = jmax-j, >=0 : nmax = NL_CLOS) KERN = 0; % Kernel model (0 : GK) INIT_PHI= 1; % Start simulation with a noisy phi and moments %% OUTPUTS W_DOUBLE = 1; W_GAMMA = 1; W_PHI = 1; W_NA00 = 1; W_NAPJ = 1; W_SAPJ = 0; W_DENS = 1; W_TEMP = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% fixed parameters (for current study) KR0KH = 0; A0KH = 0; % Background phi mode KREQ0 = 0; % put kr = 0 KPAR = 0.0; % Parellel wave vector component LAMBDAD = 0.0; NON_LIN = 1 *(1-KREQ0); % activate non-linearity (is cancelled if KREQ0 = 1) PMAXE = P; % Highest electron Hermite polynomial degree JMAXE = J; % Highest '' Laguerre '' PMAXI = P; % Highest ion Hermite polynomial degree JMAXI = J; % Highest '' Laguerre '' kmax = N*pi/L;% Highest fourier mode % kmax = 2/3*N*pi/L;% Highest fourier mode with AA HD_CO = 0.5; % Hyper diffusivity cutoff ratio MU = NU_HYP/(HD_CO*kmax)^4; % Hyperdiffusivity coefficient NOISE0 = 1.0e-5; ETAT = 0.0; % Temperature gradient ETAN = 1.0; % Density gradient TAU = 1.0; % e/i temperature ratio % Compute processes distribution Ntot = NP_P * NP_KR; Nnodes = ceil(Ntot/48); Nppn = Ntot/Nnodes; CLUSTER.NODES = num2str(Nnodes); % MPI process along p CLUSTER.NTPN = num2str(Nppn); % MPI process along kr CLUSTER.CPUPT = '1'; % CPU per task %% Run file management scripts setup write_sbash_marconi system('rm fort.90 setup_and_run.sh batch_script.sh'); if(mod(NP_P*NP_KR,48)~= 0) disp('WARNING : unused cores (ntot cores must be a 48 multiple)'); end if(SUBMIT) system('ssh ahoffman@login.marconi.cineca.it sh HeLaZ/wk/setup_and_run.sh'); end disp('done'); end