MODULE calculus ! Routine to evaluate gradients, interpolation schemes and integrals USE prec_const, ONLY: dp IMPLICIT NONE REAL(dp), dimension(-2:2) :: dz_usu = & (/ 1._dp/12._dp, -2._dp/3._dp, 0._dp, 2._dp/3._dp, -1._dp/12._dp /) ! fd4 centered stencil REAL(dp), dimension(-2:1) :: dz_o2e = & (/ 1._dp/24._dp,-9._dp/8._dp, 9._dp/8._dp,-1._dp/24._dp /) ! fd4 odd to even stencil REAL(dp), dimension(-1:2) :: dz_e2o = & (/ 1._dp/24._dp,-9._dp/8._dp, 9._dp/8._dp,-1._dp/24._dp /) ! fd4 odd to even stencil REAL(dp), dimension(-2:2) :: dz2_usu = & (/-1._dp/12._dp, 4._dp/3._dp, -5._dp/2._dp, 4._dp/3._dp, -1._dp/12._dp /)! 2th derivative, 4th order (for parallel hypdiff) REAL(dp), dimension(-2:2) :: dz4_usu = & (/ 1._dp, -4._dp, 6._dp, -4._dp, 1._dp /) ! 4th derivative, 2nd order (for parallel hypdiff) REAL(dp), dimension(-2:1) :: iz_o2e = & (/ -1._dp/16._dp, 9._dp/16._dp, 9._dp/16._dp, -1._dp/16._dp /) ! grid interpolation, 4th order, odd to even REAL(dp), dimension(-1:2) :: iz_e2o = & (/ -1._dp/16._dp, 9._dp/16._dp, 9._dp/16._dp, -1._dp/16._dp /) ! grid interpolation, 4th order, even to odd PUBLIC :: simpson_rule_z, interp_z, grad_z, grad_z4 CONTAINS SUBROUTINE grad_z(target,local_nz,Ngz,inv_deltaz,f,ddzf) implicit none ! Compute the periodic boundary condition 4 points centered finite differences ! formula among staggered grid or not. ! not staggered : the derivative results must be on the same grid as the field ! staggered : the derivative is computed from a grid to the other INTEGER, INTENT(IN) :: target, local_nz, Ngz REAL(dp), INTENT(IN) :: inv_deltaz COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: f COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: ddzf INTEGER :: iz IF(Ngz .GT. 3) THEN ! Cannot apply four points stencil on less than four points grid SELECT CASE(TARGET) CASE(1) CALL grad_z_o2e(local_nz,Ngz,inv_deltaz,f,ddzf) CASE(2) CALL grad_z_e2o(local_nz,Ngz,inv_deltaz,f,ddzf) CASE DEFAULT ! No staggered grid -> usual centered finite differences DO iz = 1,local_nz ddzf(iz) = dz_usu(-2)*f(iz ) + dz_usu(-1)*f(iz+1) & +dz_usu( 0)*f(iz+2) & +dz_usu( 1)*f(iz+3) + dz_usu( 2)*f(iz+4) ENDDO ddzf(:) = ddzf(:) * inv_deltaz END SELECT ELSE ddzf = 0._dp ENDIF CONTAINS SUBROUTINE grad_z_o2e(local_nz,Ngz,inv_deltaz,fo,ddzfe) ! Paruta 2018 eq (27) ! gives the gradient of a field from the odd grid to the even one implicit none INTEGER, INTENT(IN) :: local_nz, Ngz REAL(dp), INTENT(IN) :: inv_deltaz COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: fo COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: ddzfe ! INTEGER :: iz DO iz = 1,local_nz ddzfe(iz) = dz_o2e(-2)*fo(iz ) + dz_o2e(-1)*fo(iz+1) & +dz_o2e( 0)*fo(iz+2) + dz_o2e( 1)*fo(iz+3) ENDDO ddzfe(:) = ddzfe(:) * inv_deltaz END SUBROUTINE grad_z_o2e SUBROUTINE grad_z_e2o(local_nz,Ngz,inv_deltaz,fe,ddzfo) ! n2v for Paruta 2018 eq (28) ! gives the gradient of a field from the even grid to the odd one implicit none INTEGER, INTENT(IN) :: local_nz, Ngz REAL(dp), INTENT(IN) :: inv_deltaz COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: fe COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: ddzfo INTEGER :: iz DO iz = 1,local_nz ddzfo(iz) = dz_e2o(-1)*fe(iz+1) + dz_e2o(0)*fe(iz+2) & +dz_e2o( 1)*fe(iz+3) + dz_e2o(2)*fe(iz+4) ENDDO ddzfo(:) = ddzfo(:) * inv_deltaz END SUBROUTINE grad_z_e2o END SUBROUTINE grad_z SUBROUTINE grad_z2(local_nz,Ngz,inv_deltaz,f,ddz2f) ! Compute the second order fourth derivative for periodic boundary condition implicit none INTEGER, INTENT(IN) :: local_nz, Ngz REAL(dp), INTENT(IN) :: inv_deltaz COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: f COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: ddz2f INTEGER :: iz IF(Ngz .GT. 3) THEN ! Cannot apply four points stencil on less than four points grid DO iz = 1,local_nz ddz2f(iz) = dz2_usu(-2)*f(iz ) + dz2_usu(-1)*f(iz+1) & +dz2_usu( 0)*f(iz+2)& +dz2_usu( 1)*f(iz+3) + dz2_usu( 2)*f(iz+4) ENDDO ELSE ddz2f = 0._dp ENDIF ddz2f = ddz2f * inv_deltaz**2 END SUBROUTINE grad_z2 SUBROUTINE grad_z4(local_nz,Ngz,inv_deltaz,f,ddz4f) ! Compute the second order fourth derivative for periodic boundary condition implicit none INTEGER, INTENT(IN) :: local_nz, Ngz REAL(dp), INTENT(IN) :: inv_deltaz COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: f COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: ddz4f INTEGER :: iz IF(Ngz .GT. 3) THEN ! Cannot apply four points stencil on less than four points grid DO iz = 1,local_nz ddz4f(iz) = dz4_usu(-2)*f(iz ) + dz4_usu(-1)*f(iz+1) & +dz4_usu( 0)*f(iz+2)& +dz4_usu( 1)*f(iz+3) + dz4_usu( 2)*f(iz+4) ENDDO ELSE ddz4f = 0._dp ENDIF ddz4f = ddz4f * inv_deltaz**4 END SUBROUTINE grad_z4 SUBROUTINE interp_z(target,local_nz,Ngz,f_in,f_out) ! Function meant to interpolate one field defined on a even/odd z into ! the other odd/even z grid. ! If Staggered Grid flag (SG) is false, returns identity implicit none INTEGER, INTENT(IN) :: local_nz, Ngz INTEGER, intent(in) :: target ! target grid : 0 for even grid, 1 for odd COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: f_in COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: f_out SELECT CASE(TARGET) CASE(1) ! output on even grid CALL interp_o2e_z(local_nz,Ngz,f_in,f_out) CASE(2) ! output on odd grid CALL interp_e2o_z(local_nz,Ngz,f_in,f_out) CASE DEFAULT ! No staggered grid -> usual centered finite differences f_out = f_in END SELECT CONTAINS SUBROUTINE interp_o2e_z(local_nz, Ngz,fo,fe) ! gives the value of a field from the odd grid to the even one implicit none INTEGER, INTENT(IN) :: local_nz, Ngz COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: fo COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: fe INTEGER :: iz ! 4th order interp DO iz = 1,local_nz fe(iz) = iz_o2e(-2)*fo(iz ) + iz_o2e(-1)*fo(iz+1) & + iz_o2e( 0)*fo(iz+2) + iz_o2e( 1)*fo(iz+3) ENDDO END SUBROUTINE interp_o2e_z SUBROUTINE interp_e2o_z(local_nz, Ngz,fe,fo) ! gives the value of a field from the even grid to the odd one implicit none INTEGER, INTENT(IN) :: local_nz, Ngz COMPLEX(dp),dimension(local_nz+Ngz), INTENT(IN) :: fe COMPLEX(dp),dimension(local_nz), INTENT(OUT) :: fo INTEGER :: iz ! 4th order interp DO iz = 1,local_nz fo(iz) = iz_e2o(-1)*fe(iz+1) + iz_e2o( 0)*fe(iz+2) & + iz_e2o( 1)*fe(iz+3) + iz_e2o( 2)*fe(iz+4) ENDDO END SUBROUTINE interp_e2o_z END SUBROUTINE interp_z SUBROUTINE simpson_rule_z(local_nz,dz,f,intf) ! integrate f(z) over z using the simpon's rule. Assume periodic boundary conditions (f(ize+1) = f(izs)) !from molix BJ Frei USE prec_const, ONLY: dp, onethird USE parallel, ONLY: num_procs_z, rank_z, comm_z, manual_0D_bcast USE mpi implicit none INTEGER, INTENT(IN) :: local_nz REAL(dp),INTENT(IN) :: dz complex(dp),dimension(local_nz), intent(in) :: f COMPLEX(dp), intent(out) :: intf COMPLEX(dp) :: buffer, local_int INTEGER :: root, i_, iz, ierr ! Buil local sum using the weights of composite Simpson's rule local_int = 0._dp DO iz = 1,local_nz IF(MODULO(iz,2) .EQ. 1) THEN ! odd iz local_int = local_int + 2._dp*onethird*dz*f(iz) ELSE ! even iz local_int = local_int + 4._dp*onethird*dz*f(iz) ENDIF ENDDO buffer = local_int root = 0 !Gather manually among the rank_z=0 processes and perform the sum intf = 0._dp IF (num_procs_z .GT. 1) THEN !! Everyone sends its local_sum to root = 0 IF (rank_z .NE. root) THEN CALL MPI_SEND(buffer, 1 , MPI_DOUBLE_COMPLEX, root, 5678, comm_z, ierr) ELSE ! Recieve from all the other processes DO i_ = 0,num_procs_z-1 IF (i_ .NE. rank_z) & CALL MPI_RECV(buffer, 1 , MPI_DOUBLE_COMPLEX, i_, 5678, comm_z, MPI_STATUS_IGNORE, ierr) intf = intf + buffer ENDDO ENDIF CALL manual_0D_bcast(intf) ELSE intf = local_int ENDIF END SUBROUTINE simpson_rule_z END MODULE calculus