module geometry ! computes geometrical quantities ! Adapted from B.J.Frei MOLIX code (2021) use prec_const use model use grid use array use fields use basic use calculus, ONLY: simpson_rule_z use miller, ONLY: set_miller_parameters, get_miller implicit none PRIVATE ! Geometry input parameters CHARACTER(len=16), & PUBLIC, PROTECTED :: geom REAL(dp), PUBLIC, PROTECTED :: q0 = 1.4_dp ! safety factor REAL(dp), PUBLIC, PROTECTED :: shear = 0._dp ! magnetic field shear REAL(dp), PUBLIC, PROTECTED :: eps = 0.18_dp ! inverse aspect ratio REAL(dp), PUBLIC, PROTECTED :: alpha_MHD = 0 ! shafranov shift effect alpha = -q2 R dbeta/dr ! parameters for Miller geometry REAL(dp), PUBLIC, PROTECTED :: kappa = 1._dp ! elongation (1 for circular) REAL(dp), PUBLIC, PROTECTED :: s_kappa = 0._dp ! r normalized derivative skappa = r/kappa dkappa/dr REAL(dp), PUBLIC, PROTECTED :: delta = 0._dp ! triangularity REAL(dp), PUBLIC, PROTECTED :: s_delta = 0._dp ! '' sdelta = r/sqrt(1-delta2) ddelta/dr REAL(dp), PUBLIC, PROTECTED :: zeta = 0._dp ! squareness REAL(dp), PUBLIC, PROTECTED :: s_zeta = 0._dp ! '' szeta = r dzeta/dr ! to apply shift in the parallel z-BC if shearless REAL(dp), PUBLIC, PROTECTED :: shift_y = 0._dp ! for Arno ! Chooses the type of parallel BC we use for the unconnected kx modes (active for non-zero shear only) ! 'periodic' : Connect a disconnected kx to a mode on the other cadran ! 'dirichlet' : Connect a disconnected kx to 0 ! 'disconnected' : Connect all kx to 0 ! 'shearless' : Connect all kx to itself CHARACTER(len=256), & PUBLIC, PROTECTED :: parallel_bc ! GENE unused additional parameters for miller_mod REAL(dp), PUBLIC, PROTECTED :: edge_opt = 0._dp ! meant to redistribute the points in z REAL(dp), PUBLIC, PROTECTED :: major_R = 1._dp ! major radius REAL(dp), PUBLIC, PROTECTED :: major_Z = 0._dp ! vertical elevation REAL(dp), PUBLIC, PROTECTED :: dpdx_pm_geom = 0._dp ! amplitude mag. eq. pressure grad. REAL(dp), PUBLIC, PROTECTED :: C_y = 0._dp ! defines y coordinate : Cy (q theta - phi) REAL(dp), PUBLIC, PROTECTED :: C_xy = 1._dp ! defines x coordinate : B = Cxy Vx x Vy ! Geometrical auxiliary variables LOGICAL, PUBLIC, PROTECTED :: SHEARED = .false. ! flag for shear magn. geom or not ! Curvature REAL(dp), PUBLIC, DIMENSION(:,:,:,:), ALLOCATABLE :: Ckxky ! dimensions: kx, ky, z, odd/even p ! Jacobian REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: Jacobian ! dimensions: z, odd/even p COMPLEX(dp), PUBLIC, PROTECTED :: iInt_Jacobian ! Inverse integrated Jacobian ! Metric REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: gxx, gxy, gxz, gyy, gyz, gzz ! dimensions: z, odd/even p REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: dxdr, dxdZ, Rc, phic, Zc ! derivatives of magnetic field strength REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: dBdx, dBdy, dBdz ! Relative magnetic field strength REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: hatB, hatB_NL ! Relative strength of major radius REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: hatR, hatZ ! Some geometrical coefficients REAL(dp), PUBLIC, DIMENSION(:,:) , ALLOCATABLE :: gradz_coeff ! 1 / [ J_{xyz} \hat{B} ] ! Array to map the index of mode (kx,ky,-pi) to (kx+2pi*s*ky,ky,pi) for sheared periodic boundary condition INTEGER, PUBLIC, DIMENSION(:,:), ALLOCATABLE :: ikx_zBC_L, ikx_zBC_R ! pb_phase, for parallel boundary phase, contains the factor that occurs when taking into account ! that q0 is defined in the middle of the fluxtube whereas the radial position spans in [0,Lx) ! This shift introduces a (-1)^(Nexc*iky) phase change that is included in GENE COMPLEX(dp), PUBLIC, DIMENSION(:), ALLOCATABLE :: pb_phase_L, pb_phase_R ! Functions PUBLIC :: geometry_readinputs, geometry_outputinputs,& eval_magnetic_geometry, set_ikx_zBC_map CONTAINS SUBROUTINE geometry_readinputs ! Read the input parameters IMPLICIT NONE NAMELIST /GEOMETRY/ geom, q0, shear, eps,& kappa, s_kappa,delta, s_delta, zeta, s_zeta,& ! For miller parallel_bc, shift_y READ(lu_in,geometry) IF(shear .NE. 0._dp) SHEARED = .true. SELECT CASE(parallel_bc) CASE ('dirichlet') CASE ('periodic') CASE ('shearless') CASE ('disconnected') CASE DEFAULT ERROR STOP '>> ERROR << Parallel BC not recognized' END SELECT IF(my_id .EQ. 0) print*, 'Parallel BC : ', parallel_bc END SUBROUTINE geometry_readinputs subroutine eval_magnetic_geometry ! evalute metrix, elementwo_third_kpmaxts, jacobian and gradient implicit none REAL(dp) :: kx,ky COMPLEX(dp), DIMENSION(izs:ize) :: integrant real(dp) :: G1,G2,G3,Cx,Cy ! Allocate arrays CALL geometry_allocate_mem ! IF( (Ny .EQ. 1) .AND. (Nz .EQ. 1)) THEN !1D perp linear run IF( my_id .eq. 0 ) WRITE(*,*) '1D perpendicular geometry' call eval_1D_geometry ELSE SELECT CASE(geom) CASE('s-alpha') IF( my_id .eq. 0 ) WRITE(*,*) 's-alpha geometry' call eval_salpha_geometry CASE('Z-pinch') IF( my_id .eq. 0 ) WRITE(*,*) 'Z-pinch geometry' call eval_zpinch_geometry SHEARED = .FALSE. shear = 0._dp CASE('miller') IF( my_id .eq. 0 ) WRITE(*,*) 'Miller geometry' call set_miller_parameters(kappa,s_kappa,delta,s_delta,zeta,s_zeta) call get_miller(eps,major_R,major_Z,q0,shear,alpha_MHD,edge_opt,& C_y,C_xy,dpdx_pm_geom,gxx,gyy,gzz,gxy,gxz,gyz,& dBdx,dBdy,hatB,jacobian,dBdz,hatR,hatZ,dxdR,dxdZ,& Ckxky,gradz_coeff) CASE DEFAULT ERROR STOP '>> ERROR << geometry not recognized!!' END SELECT ENDIF ! ! Evaluate perpendicular wavenumber ! k_\perp^2 = g^{xx} k_x^2 + 2 g^{xy}k_x k_y + k_y^2 g^{yy} ! normalized to rhos_ DO eo = 0,1 DO iz = izgs,izge DO iky = ikys, ikye ky = kyarray(iky) DO ikx = ikxs, ikxe kx = kxarray(ikx) ! there is a factor 1/B from the normalization; important to match GENE ! this factor comes from $b_a$ argument in the Bessel. Kperp is not used otherwise. kparray(iky, ikx, iz, eo) = & SQRT( gxx(iz,eo)*kx**2 + 2._dp*gxy(iz,eo)*kx*ky + gyy(iz,eo)*ky**2)/ hatB(iz,eo) ENDDO ENDDO ENDDO ! Curvature operator (Frei et al. 2022 eq 2.15) DO iz = izgs,izge G1 = gxy(iz,eo)*gxy(iz,eo)-gxx(iz,eo)*gyy(iz,eo) G2 = gxy(iz,eo)*gxz(iz,eo)-gxx(iz,eo)*gyz(iz,eo) G3 = gyy(iz,eo)*gxz(iz,eo)-gxy(iz,eo)*gyz(iz,eo) ! Here we divide by hatB because our equation is formulated with grad(lnB) terms (not gradB like in GENE) Cx =-(dBdy(iz,eo) + G2/G1*dBdz(iz,eo))/hatB(iz,eo) Cy = (dBdx(iz,eo) - G3/G1*dBdz(iz,eo))/hatB(iz,eo) DO iky = ikys, ikye ky = kyarray(iky) DO ikx= ikxs, ikxe kx = kxarray(ikx) Ckxky(iky, ikx, iz,eo) = (Cx*kx + Cy*ky)/C_xy ENDDO ENDDO ! coefficient in the front of parallel derivative gradz_coeff(iz,eo) = 1._dp /(jacobian(iz,eo)*hatB(iz,eo)) ! Nonlinear term prefactor ! (according to my derivations, there should be a metric dependent factor in front of the Poisson bracket) hatB_NL(iz,eo) = (gxx(iz,eo)*gyy(iz,eo) - gxy(iz,eo)**2) ENDDO ENDDO ! set the mapping for parallel boundary conditions CALL set_ikx_zBC_map two_third_kpmax = 2._dp/3._dp * MAXVAL(kparray) ! ! Compute the inverse z integrated Jacobian (useful for flux averaging) integrant = Jacobian(izs:ize,0) ! Convert into complex array CALL simpson_rule_z(integrant,iInt_Jacobian) iInt_Jacobian = 1._dp/iInt_Jacobian ! reverse it END SUBROUTINE eval_magnetic_geometry ! !-------------------------------------------------------------------------------- ! SUBROUTINE eval_salpha_geometry ! evaluate s-alpha geometry model implicit none REAL(dp) :: z alpha_MHD = 0._dp parity: DO eo = 0,1 zloop: DO iz = izgs,izge z = zarray(iz,eo) ! metric gxx(iz,eo) = 1._dp gxy(iz,eo) = shear*z - alpha_MHD*SIN(z) gxz(iz,eo) = 0._dp gyy(iz,eo) = 1._dp + (shear*z - alpha_MHD*SIN(z))**2 gyz(iz,eo) = 1._dp/eps gzz(iz,eo) = 1._dp/eps**2 dxdR(iz,eo)= COS(z) dxdZ(iz,eo)= SIN(z) ! Poloidal plane coordinates hatR(iz,eo) = 1._dp + eps*COS(z) hatZ(iz,eo) = 1._dp + eps*SIN(z) ! toroidal coordinates Rc (iz,eo) = hatR(iz,eo) phic(iz,eo) = z Zc (iz,eo) = hatZ(iz,eo) ! Relative strengh of modulus of B hatB(iz,eo) = 1._dp/(1._dp + eps*COS(z)) ! Jacobian Jacobian(iz,eo) = q0/hatB(iz,eo) ! Derivative of the magnetic field strenght dBdx(iz,eo) = -COS(z)*hatB(iz,eo) ! LB = 1 dBdy(iz,eo) = 0._dp dBdz(iz,eo) = eps*SIN(z)*hatB(iz,eo)**2 ! Curvature factor C_xy = 1._dp ENDDO zloop ENDDO parity END SUBROUTINE eval_salpha_geometry ! !-------------------------------------------------------------------------------- ! SUBROUTINE eval_zpinch_geometry implicit none REAL(dp) :: z alpha_MHD = 0._dp parity: DO eo = 0,1 zloop: DO iz = izgs,izge z = zarray(iz,eo) ! metric gxx(iz,eo) = 1._dp gxy(iz,eo) = 0._dp gxz(iz,eo) = 0._dp gyy(iz,eo) = 1._dp ! 1/R but R is the normalization length gyz(iz,eo) = 0._dp gzz(iz,eo) = 1._dp dxdR(iz,eo)= COS(z) dxdZ(iz,eo)= SIN(z) ! Relative strengh of radius hatR(iz,eo) = 1._dp ! R but R is the normalization length hatZ(iz,eo) = 1._dp ! toroidal coordinates Rc (iz,eo) = hatR(iz,eo) phic(iz,eo) = z Zc (iz,eo) = hatZ(iz,eo) ! Jacobian Jacobian(iz,eo) = 1._dp ! R but R is the normalization length ! Relative strengh of modulus of B hatB (iz,eo) = 1._dp hatB_NL(iz,eo) = 1._dp ! Derivative of the magnetic field strenght dBdx(iz,eo) = -hatB(iz,eo) ! LB = 1 dBdy(iz,eo) = 0._dp dBdz(iz,eo) = 0._dp ! Gene put a factor hatB or 1/hatR in this ENDDO zloop ENDDO parity ! Curvature factor C_xy = 1._dp END SUBROUTINE eval_zpinch_geometry ! !-------------------------------------------------------------------------------- ! subroutine eval_1D_geometry ! evaluate 1D perp geometry model implicit none REAL(dp) :: z, kx, ky parity: DO eo = 0,1 zloop: DO iz = izs,ize z = zarray(iz,eo) ! metric gxx(iz,eo) = 1._dp gxy(iz,eo) = 0._dp gyy(iz,eo) = 1._dp ! Relative strengh of radius hatR(iz,eo) = 1._dp ! Jacobian Jacobian(iz,eo) = 1._dp ! Relative strengh of modulus of B hatB(iz,eo) = 1._dp ! Curvature operator DO iky = ikys, ikye ky = kyarray(iky) DO ikx= ikxs, ikxe kx = kxarray(ikx) Ckxky(ikx, iky, iz,eo) = -kx ! .. multiply by hatB to cancel the 1/ hatB factor in moments_eqs_rhs.f90 routine ENDDO ENDDO ! coefficient in the front of parallel derivative gradz_coeff(iz,eo) = 1._dp ENDDO zloop ENDDO parity END SUBROUTINE eval_1D_geometry ! !-------------------------------------------------------------------------------- ! SUBROUTINE set_ikx_zBC_map IMPLICIT NONE REAL :: shift ALLOCATE(ikx_zBC_L(ikys:ikye,ikxs:ikxe)) ALLOCATE(ikx_zBC_R(ikys:ikye,ikxs:ikxe)) ALLOCATE(pb_phase_L(ikys:ikye)) ALLOCATE(pb_phase_R(ikys:ikye)) !! No shear case (simple id mapping) or not at the end of the z domain !3 | 1 2 3 4 5 6 | ky = 3 dky !2 ky | 1 2 3 4 5 6 | ky = 2 dky !1 A | 1 2 3 4 5 6 | ky = 1 dky !0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky !(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=free) DO iky = ikys,ikye DO ikx = ikxs,ikxe ikx_zBC_L(iky,ikx) = ikx ! connect to itself per default ikx_zBC_R(iky,ikx) = ikx ENDDO pb_phase_L(iky) = 1._dp ! no phase change per default pb_phase_R(iky) = 1._dp ENDDO ! Parallel boundary are not trivial for sheared case and if ! the user does not ask explicitly for shearless bc IF(SHEARED .AND. (parallel_bc .NE. 'shearless')) THEN !!!!!!!!!! LEFT PARALLEL BOUNDARY ! Modify connection map only at border of z (matters for MPI z-parallelization) IF(contains_zmin) THEN ! Check if the process is at the start of the fluxtube DO iky = ikys,ikye ! Formula for the shift due to shear after Npol turns shift = 2._dp*PI*shear*kyarray(iky)*Npol DO ikx = ikxs,ikxe ! Usual formula for shifting indices using that dkx = 2pi*shear*dky/Nexc ikx_zBC_L(iky,ikx) = ikx-(iky-1)*Nexc ! Check if it points out of the kx domain ! IF( (kxarray(ikx) - shift) .LT. kx_min ) THEN IF( (ikx-(iky-1)*Nexc) .LT. 1 ) THEN ! outside of the frequ domain SELECT CASE(parallel_bc) CASE ('dirichlet')! connected to 0 ikx_zBC_L(iky,ikx) = -99 CASE ('periodic') !reroute it by cycling through modes ikx_zBC_L(iky,ikx) = MODULO(ikx_zBC_L(iky,ikx)-1,Nkx)+1 END SELECT ENDIF ENDDO ! phase present in GENE from a shift of the x origin by Lx/2 (useless?) ! We also put the user defined shift in the y direction (see Volcokas et al. 2022) pb_phase_L(iky) = (-1._dp)**(Nexc*(iky-1))*EXP(imagu*REAL(iky-1,dp)*2._dp*pi*shift_y) ENDDO ENDIF ! Option for disconnecting every modes, viz. connecting all boundary to 0 IF(parallel_bc .EQ. 'disconnected') ikx_zBC_L = -99 !!!!!!!!!! RIGHT PARALLEL BOUNDARY IF(contains_zmax) THEN ! Check if the process is at the end of the flux-tube DO iky = ikys,ikye ! Formula for the shift due to shear after Npol shift = 2._dp*PI*shear*kyarray(iky)*Npol DO ikx = ikxs,ikxe ! Usual formula for shifting indices ikx_zBC_R(iky,ikx) = ikx+(iky-1)*Nexc ! Check if it points out of the kx domain ! IF( (kxarray(ikx) + shift) .GT. kx_max ) THEN ! outside of the frequ domain IF( (ikx+(iky-1)*Nexc) .GT. Nkx ) THEN ! outside of the frequ domain SELECT CASE(parallel_bc) CASE ('dirichlet') ! connected to 0 ikx_zBC_R(iky,ikx) = -99 CASE ('periodic') !reroute it by cycling through modes write(*,*) 'check',ikx,iky, kxarray(ikx) + shift, '>', kx_max ikx_zBC_R(iky,ikx) = MODULO(ikx_zBC_R(iky,ikx)-1,Nkx)+1 END SELECT ENDIF ENDDO ! phase present in GENE from a shift ofthe x origin by Lx/2 (useless?) ! We also put the user defined shift in the y direction (see Volcokas et al. 2022) pb_phase_R(iky) = (-1._dp)**(Nexc*(iky-1))*EXP(-imagu*REAL(iky-1,dp)*2._dp*pi*shift_y) ENDDO ENDIF ! Option for disconnecting every modes, viz. connecting all boundary to 0 IF(parallel_bc .EQ. 'disconnected') ikx_zBC_R = -99 ENDIF ! write(*,*) kxarray ! write(*,*) kyarray ! write(*,*) 'ikx_zBC_L :-----------' ! DO iky = ikys,ikye ! print*, ikx_zBC_L(iky,:) ! enddo ! print*, pb_phase_L ! write(*,*) 'ikx_zBC_R :-----------' ! DO iky = ikys,ikye ! print*, ikx_zBC_R(iky,:) ! enddo ! print*, pb_phase_R ! print*, shift_y ! stop !!!!!!! Example of maps ('x' means connected to 0 value, in the table it is -99) ! dirichlet connection map BC of the RIGHT boundary (z=pi*Npol-dz) !3 | 4 x x x 2 3 | ky = 3 dky !2 ky | 3 4 x x 1 2 | ky = 2 dky !1 A | 2 3 4 x 6 1 | ky = 1 dky !0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky !kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky) ! periodic connection map BC of the LEFT boundary (z=-pi*Npol) !3 | 4 5 6 1 2 3 | ky = 3 dky !2 ky | 5 6 1 2 3 4 | ky = 2 dky !1 A | 6 1 2 3 4 5 | ky = 1 dky !0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky !(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky) ! shearless connection map BC of the LEFT/RIGHT boundary (z=+/-pi*Npol) !3 | 1 2 3 4 5 6 | ky = 3 dky !2 ky | 1 2 3 4 5 6 | ky = 2 dky !1 A | 1 2 3 4 5 6 | ky = 1 dky !0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky !(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky) ! disconnected connection map BC of the LEFT/RIGHT boundary (z=+/-pi*Npol) !3 | x x x x x x | ky = 3 dky !2 ky | x x x x x x | ky = 2 dky !1 A | x x x x x x | ky = 1 dky !0 | -> kx | x____x____x____x____x____x | ky = 0 dky !(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky) END SUBROUTINE set_ikx_zBC_map ! !-------------------------------------------------------------------------------- ! SUBROUTINE geometry_allocate_mem ! Curvature and geometry CALL allocate_array( Ckxky, ikys,ikye, ikxs,ikxe,izgs,izge,0,1) CALL allocate_array( Jacobian,izgs,izge, 0,1) CALL allocate_array( gxx,izgs,izge, 0,1) CALL allocate_array( gxy,izgs,izge, 0,1) CALL allocate_array( gxz,izgs,izge, 0,1) CALL allocate_array( gyy,izgs,izge, 0,1) CALL allocate_array( gyz,izgs,izge, 0,1) CALL allocate_array( gzz,izgs,izge, 0,1) CALL allocate_array( dBdx,izgs,izge, 0,1) CALL allocate_array( dBdy,izgs,izge, 0,1) CALL allocate_array( dBdz,izgs,izge, 0,1) CALL allocate_array( hatB,izgs,izge, 0,1) CALL allocate_array( hatB_NL,izgs,izge, 0,1) CALL allocate_array( hatR,izgs,izge, 0,1) CALL allocate_array( hatZ,izgs,izge, 0,1) CALL allocate_array( Rc,izgs,izge, 0,1) CALL allocate_array( phic,izgs,izge, 0,1) CALL allocate_array( Zc,izgs,izge, 0,1) CALL allocate_array( dxdR,izgs,izge, 0,1) CALL allocate_array( dxdZ,izgs,izge, 0,1) call allocate_array(gradz_coeff,izgs,izge, 0,1) CALL allocate_array( kparray, ikys,ikye, ikxs,ikxe,izgs,izge,0,1) END SUBROUTINE geometry_allocate_mem SUBROUTINE geometry_outputinputs(fidres, str) ! Write the input parameters to the results_xx.h5 file USE futils, ONLY: attach USE prec_const IMPLICIT NONE INTEGER, INTENT(in) :: fidres CHARACTER(len=256), INTENT(in) :: str CALL attach(fidres, TRIM(str),"geometry", geom) CALL attach(fidres, TRIM(str), "q0", q0) CALL attach(fidres, TRIM(str), "shear", shear) CALL attach(fidres, TRIM(str), "eps", eps) END SUBROUTINE geometry_outputinputs end module geometry