MODULE ExB_shear_flow ! This module contains the necessary tools to implement ExB shearing flow effects. ! The algorithm is taken from the presentation of Hammett et al. 2006 (APS) and ! it the one used in GS2. USE prec_const, ONLY: xp, imagu, pi IMPLICIT NONE ! Variables REAL(xp), PUBLIC, PROTECTED :: gamma_E = 0._xp ! ExB background shearing rate \gamma_E REAL(xp), PUBLIC, PROTECTED :: t0, inv_t0 = 0._xp ! charact. shear time REAL(xp), DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: sky_ExB ! shift of the kx modes, kx* = kx + s(ky) REAL(xp), DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: sky_ExB_full ! full ky version REAL(xp), DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: dkx_ExB ! correction to obtain the exact kx mode INTEGER, DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: jump_ExB ! jump to do to shift the kx grids LOGICAL, DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: shiftnow_ExB ! Indicates if there is a line to shift COMPLEX(xp),DIMENSION(:,:), ALLOCATABLE, PUBLIC, PROTECTED :: ExB_NL_factor! factor for nonlinear term COMPLEX(xp),DIMENSION(:,:), ALLOCATABLE, PUBLIC, PROTECTED :: inv_ExB_NL_factor LOGICAL, PUBLIC, PROTECTED :: ExB = .false. ! presence of ExB background shearing rate ! Routines PUBLIC :: Setup_ExB_shear_flow, Array_shift_ExB_shear_flow, Update_ExB_shear_flow CONTAINS ! Setup the variables for the ExB shear SUBROUTINE Setup_ExB_shear_flow(ExBrate) USE grid, ONLY: Nx, local_nky, total_nky, local_nx, Ny, deltakx, deltaky,& kyarray, kyarray_full USE geometry, ONLY: Cyq0_x0 USE basic, ONLY: dt IMPLICIT NONE INTEGER :: iky REAL(xp), INTENT(IN) :: ExBrate ! Setup the ExB shearing rate and aux var gamma_E = -ExBrate*Cyq0_x0 IF(abs(gamma_E) .GT. EPSILON(gamma_E)) THEN ExB = .TRUE. t0 = deltakx/deltaky/gamma_E inv_t0 = 1._xp/t0 ELSE ! avoid 1/0 division (t0 is killed anyway in this case) ExB = .FALSE. t0 = 0._xp inv_t0 = 0._xp ENDIF ! Setup the ExB shift array ALLOCATE(sky_ExB(local_nky)) ! consider no initial shift (maybe changed if restart) sky_ExB = 0._xp ! Midpoint init DO iky = 1,local_nky sky_ExB(iky) = sky_ExB(iky) !+ 0.5_xp*kyarray(iky)*gamma_E*dt ENDDO ALLOCATE(sky_ExB_full(total_nky+1)) ! consider no initial shift (maybe changed if restart) sky_ExB_full = 0._xp ! Midpoint init DO iky = 1,total_nky+1 sky_ExB_full(iky) = sky_ExB_full(iky) !+ 0.5_xp*REAL(iky-1,xp)*deltaky*gamma_E*dt ENDDO ! Setup the kx correction array ALLOCATE(dkx_ExB(local_nky)) dkx_ExB = 0._xp ! Setup the jump array ALLOCATE(jump_ExB(local_nky)) jump_ExB = 0 ! Setup the shifting flag array ALLOCATE(shiftnow_ExB(local_nky)) shiftnow_ExB = .FALSE. ! Setup nonlinear factor ALLOCATE( ExB_NL_factor(Nx,local_nky)) ALLOCATE(inv_ExB_NL_factor(Ny/2+2,local_nx)) ExB_NL_factor = 1._xp inv_ExB_NL_factor = 1._xp END SUBROUTINE Setup_ExB_shear_flow ! update the ExB shear value for the next time step SUBROUTINE Update_ExB_shear_flow(step_number) USE basic, ONLY: dt,time USE grid, ONLY: local_nky, total_nky, kyarray, inv_dkx, kyarray_full, update_grids, deltaky USE geometry, ONLY: gxx,gxy,gyy,inv_hatB2, evaluate_magn_curv USE numerics, ONLY: evaluate_EM_op, evaluate_kernels USE model, ONLY: LINEARITY USE time_integration, ONLY: c_E IMPLICIT NONE INTEGER, INTENT(IN) :: step_number ! local var INTEGER :: iky ! do nothing if no ExB IF(ExB) THEN ! Update new shear value DO iky = 1,local_nky !! This must be done incrementely to be able to pull it back ! when a grid shift occurs sky_ExB(iky) = sky_ExB(iky) - kyarray(iky)*gamma_E*dt jump_ExB(iky) = NINT(sky_ExB(iky)*inv_dkx) ! If the jump is 1 or more for a given ky, we flag the index ! in shiftnow_ExB and will use it in Shift_fields to avoid ! zero-shiftings that may be majoritary. shiftnow_ExB(iky) = (abs(jump_ExB(iky)) .GT. 0) ENDDO ! Update the full skyExB array too DO iky = 1,total_nky+1 sky_ExB_full(iky) = sky_ExB_full(iky) - REAL(iky-1,xp)*deltaky*gamma_E*dt ENDDO ! Shift the arrays if the shear value sky is too high CALL Array_shift_ExB_shear_flow ! We update the operators and grids ! update the grids CALL update_grids(sky_ExB,gxx,gxy,gyy,inv_hatB2) ! update the EM op., the kernels and the curvature op. CALL evaluate_kernels CALL evaluate_EM_op CALL evaluate_magn_curv ! update the ExB nonlinear factor... IF(LINEARITY .EQ. 'nonlinear') & CALL update_nonlinear_ExB_factors(step_number) ENDIF END SUBROUTINE Update_ExB_shear_flow ! According to the current ExB shear value we update ! the fields by imposing a shift on kx SUBROUTINE Array_shift_ExB_shear_flow USE grid, ONLY: local_nky, total_nky, update_grids, & total_nkx, deltakx, kx_min, kx_max, kxarray0, inv_dkx USE prec_const, ONLY: PI USE fields, ONLY: moments, phi, psi USE numerics, ONLY: evaluate_EM_op, evaluate_kernels IMPLICIT NONE ! local var INTEGER :: iky, ikx, ikx_s, i_, loopstart, loopend, increment, jump_ IF(ExB) THEN ! shift all local fields and correct the local shift value DO iky = 1,local_Nky IF(shiftnow_ExB(iky)) THEN ! We shift the array from left to right or right to left according to the jump ! This avoids to make copy IF(jump_ExB(iky) .GT. 0) THEN loopstart = 1 loopend = total_nkx increment = 1 ELSE loopstart = total_nkx loopend = 1 increment = -1 ENDIF !loop to go through the array in a monotonic kx order ! Recall: the kx array is organized as ! 6 7 8 1 2 3 4 5 (indices ikx) ! -3 -2 -1 0 1 2 3 4 (values in dkx) ! so to go along the array in a monotonic way one must travel as ! 67812345 or 54321678 DO i_ = loopstart, loopend, increment IF (i_ .LT. total_nkx/2) THEN ! go to the negative kx region ikx = i_ + total_nkx/2 + 1 ELSE ! positive ikx = i_ - total_nkx/2 + 1 ENDIF ikx_s = ikx + jump_ExB(iky) ! adjust the shift accordingly IF (ikx_s .LE. 0) & ikx_s = ikx_s + total_nkx IF (ikx_s .GT. total_nkx) & ikx_s = ikx_s - total_nkx ! Then we test if the shifted modes are still in contained in our resolution IF ( (kxarray0(ikx)+jump_ExB(iky)*deltakx .LE. kx_max) .AND. & (kxarray0(ikx)+jump_ExB(iky)*deltakx .GE. kx_min)) THEN moments(:,:,:,iky,ikx,:,:) = moments(:,:,:,iky,ikx_s,:,:) phi(iky,ikx,:) = phi(iky,ikx_s,:) psi(iky,ikx,:) = psi(iky,ikx_s,:) ELSE ! if it is not, it is lost (~dissipation for high modes) moments(:,:,:,iky,ikx,:,:) = 0._xp phi(iky,ikx,:) = 0._xp psi(iky,ikx,:) = 0._xp ENDIF ENDDO ! correct the shift value s(ky) for this row sky_ExB(iky) = sky_ExB(iky) - jump_ExB(iky)*deltakx ! reset the flag shiftnow_ExB(iky) = .FALSE. ENDIF ENDDO ENDIF ! Check the global shift values DO iky = 1,total_nky+1 jump_ = NINT(sky_ExB_full(iky)*inv_dkx) IF (ABS(jump_) .GT. 0) & sky_ExB_full(iky) = sky_ExB_full(iky) - jump_*deltakx ENDDO END SUBROUTINE Array_shift_ExB_shear_flow SUBROUTINE Update_nonlinear_ExB_factors(step_number) USE grid, ONLY: local_nky, local_nky_offset, xarray, Nx, Ny, local_nx, deltakx,& local_nx_offset, ikyarray, inv_ikyarray, deltaky, update_grids USE basic, ONLY: time, dt USE time_integration, ONLY: c_E IMPLICIT NONE INTEGER, INTENT(IN) :: step_number INTEGER :: iky, ix REAL(xp):: dt_ExB, J_xp, inv_J, xval, tnow tnow = time + c_E(step_number)*dt DO iky = 1,local_nky ! WARNING: Local indices ky loop ! for readability ! J_xp = ikyarray(iky+local_nky_offset) ! inv_J = inv_ikyarray(iky+local_nky_offset) J_xp = REAL(iky-1,xp) IF(J_xp .GT. 0._xp) THEN inv_J = 1._xp/J_xp ELSE inv_J = 0._xp ENDIF ! compute dt factor dt_ExB = (tnow - t0*inv_J*ANINT(J_xp*tnow*inv_t0,xp)) DO ix = 1,Nx xval = 2._xp*pi/deltakx*REAL(ix-1,xp)/REAL(Nx,xp)!xarray(ix) ! assemble the ExB nonlin factor ExB_NL_factor(ix,iky) = EXP(-imagu*xval*gamma_E*J_xp*deltaky*dt_ExB) ! ExB_NL_factor(ix,iky) = EXP(-imagu*sky_ExB(iky)*xval) ! ExB_NL_factor(ix,iky) = EXP(-imagu*sky_ExB_full(iky+local_nky_offset)*xval) ENDDO ENDDO ! ... and the inverse DO iky = 1,Ny/2+2 ! WARNING: Global indices ky loop ! for readability J_xp = REAL(iky-1,xp) IF(J_xp .GT. 0._xp) THEN inv_J = 1._xp/J_xp ELSE inv_J = 0._xp ENDIF ! compute dt factor dt_ExB = (tnow - t0*inv_J*ANINT(J_xp*tnow*inv_t0,xp)) DO ix = 1,local_nx xval = 2._xp*pi/deltakx*REAL(ix-1,xp)/REAL(Nx,xp)!xarray(ix+local_nx_offset) ! assemble the inverse ExB nonlin factor inv_ExB_NL_factor(iky,ix) = EXP(imagu*gamma_E*J_xp*deltaky*dt_ExB*xval) ! inv_ExB_NL_factor(iky,ix) = EXP(imagu*sky_ExB_full(iky)*xval) ENDDO ENDDO ! Cancel the additional point inv_ExB_NL_factor(Ny/2+1,:) = 0._xp inv_ExB_NL_factor(Ny/2+2,:) = 0._xp END SUBROUTINE Update_nonlinear_ExB_factors END MODULE ExB_shear_flow