!_____________________________________________________________________________! !_____________________________________________________________________________! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!! Electrons moments RHS !!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !_____________________________________________________________________________! SUBROUTINE moments_eq_rhs_e USE basic USE time_integration USE array USE fields USE grid USE model USE prec_const USE collision IMPLICIT NONE INTEGER :: p_int, j_int ! loops indices and polynom. degrees REAL(dp) :: kx, ky, kperp2 COMPLEX(dp) :: Tnepj, Tnepp2j, Tnepm2j, Tnepjp1, Tnepjm1, Tpare, Tphi COMPLEX(dp) :: TColl ! terms of the rhs COMPLEX(dp) :: i_ky REAL(dp) :: delta_p0, delta_p1, delta_p2 INTEGER :: izprev,iznext ! indices of previous and next z slice ! Measuring execution time CALL cpu_time(t0_rhs) ploope : DO ip = ips_e, ipe_e ! loop over Hermite degree indices p_int= parray_e(ip) ! Hermite polynom. degree delta_p0 = 0._dp; delta_p1 = 0._dp; delta_p2 = 0._dp IF(p_int .EQ. 0) delta_p0 = 1._dp IF(p_int .EQ. 1) delta_p1 = 1._dp IF(p_int .EQ. 2) delta_p2 = 1._dp jloope : DO ij = ijs_e, ije_e ! loop over Laguerre degree indices ! Loop on kspace zloope : DO iz = izs,ize ! Periodic BC for first order derivative iznext = iz+1; izprev = iz-1; IF(iz .EQ. 1) izprev = Nz IF(iz .EQ. Nz) iznext = 1 kxloope : DO ikx = ikxs,ikxe kx = kxarray(ikx) ! radial wavevector kyloope : DO iky = ikys,ikye ky = kyarray(iky) ! toroidal wavevector i_ky = imagu * ky ! toroidal derivative IF (Nky .EQ. 1) i_ky = imagu * kxarray(ikx) ! If 1D simulation we put kx as ky kperp2 = kx**2 + ky**2 ! perpendicular wavevector !! Compute moments mixing terms ! Perpendicular dynamic ! term propto n_e^{p,j} Tnepj = xnepj(ip,ij) * (moments_e(ip,ij,ikx,iky,iz,updatetlevel) & +kernel_e(ij,ikx,iky)*qe_taue*phi(ikx,iky,iz)*delta_p0) ! term propto n_e^{p+2,j} Tnepp2j = xnepp2j(ip) * moments_e(ip+2,ij,ikx,iky,iz,updatetlevel) ! term propto n_e^{p-2,j} Tnepm2j = xnepm2j(ip) * (moments_e(ip-2,ij,ikx,iky,iz,updatetlevel) & +kernel_e(ij,ikx,iky)*qe_taue*phi(ikx,iky,iz)*delta_p2) ! term propto n_e^{p,j+1} Tnepjp1 = xnepjp1(ij) * (moments_e(ip,ij+1,ikx,iky,iz,updatetlevel) & +kernel_e(ij+1,ikx,iky)*qe_taue*phi(ikx,iky,iz)*delta_p0) ! term propto n_e^{p,j-1} Tnepjm1 = xnepjm1(ij) * (moments_e(ip,ij-1,ikx,iky,iz,updatetlevel) & +kernel_e(ij-1,ikx,iky)*qe_taue*phi(ikx,iky,iz)*delta_p0) ! Parallel dynamic ! term propto n_i^{p+1,j}, centered FDF Tpare = xnepp1j(ip) * & (moments_e(ip+1,ij,ikx,iky,iznext,updatetlevel)& -moments_e(ip+1,ij,ikx,iky,izprev,updatetlevel)) & +xnepm1j(ip) * & (moments_e(ip-1,ij,ikx,iky,iznext,updatetlevel)+kernel_e(ij,ikx,iky)*qe_taue*phi(ikx,iky,iznext)*delta_p1& -moments_e(ip-1,ij,ikx,iky,izprev,updatetlevel)-kernel_e(ij,ikx,iky)*qe_taue*phi(ikx,iky,izprev)*delta_p1) !! Electrical potential term IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 Tphi = phi(ikx,iky,iz) * (xphij(ip,ij)*kernel_e(ij, ikx, iky) & + xphijp1(ip,ij)*kernel_e(ij+1, ikx, iky) & + xphijm1(ip,ij)*kernel_e(ij-1, ikx, iky) ) ELSE Tphi = 0._dp ENDIF !! Collision IF (CO .EQ. 0) THEN ! Lenhard Bernstein TColl = -nu_ee*(ip+2*ij-3)*moments_e(ip,ij,ikx,iky,iz,updatetlevel) ELSEIF (CO .EQ. 1) THEN ! GK Dougherty CALL DoughertyGK_e(ip,ij,ikx,iky,iz,TColl) ELSE ! COSOLver matrix TColl = TColl_e(ip,ij,ikx,iky,iz) ENDIF !! Sum of all linear terms (the sign is inverted to match RHS) moments_rhs_e(ip,ij,ikx,iky,iz,updatetlevel) = & - Ckxky(ikx,iky,iz) * (Tnepj + Tnepp2j + Tnepm2j + Tnepjp1 + Tnepjm1)& - Tpare/2._dp/deltaz/q0 & + i_ky * Tphi & - mu*kperp2**2 * moments_e(ip,ij,ikx,iky,iz,updatetlevel) & + TColl !! Adding non linearity IF ( NON_LIN ) THEN moments_rhs_e(ip,ij,ikx,iky,iz,updatetlevel) = & moments_rhs_e(ip,ij,ikx,iky,iz,updatetlevel) + Sepj(ip,ij,ikx,iky,iz) ENDIF END DO kyloope END DO kxloope END DO zloope END DO jloope END DO ploope ! Execution time end CALL cpu_time(t1_rhs) tc_rhs = tc_rhs + (t1_rhs-t0_rhs) END SUBROUTINE moments_eq_rhs_e !_____________________________________________________________________________! !_____________________________________________________________________________! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!! Ions moments RHS !!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !_____________________________________________________________________________! SUBROUTINE moments_eq_rhs_i USE basic USE time_integration, ONLY: updatetlevel USE array USE fields USE grid USE model USE prec_const USE collision IMPLICIT NONE INTEGER :: p_int, j_int ! loops indices and polynom. degrees REAL(dp) :: kx, ky, kperp2 COMPLEX(dp) :: Tnipj, Tnipp2j, Tnipm2j, Tnipjp1, Tnipjm1, Tpari, Tphi COMPLEX(dp) :: TColl ! terms of the rhs COMPLEX(dp) :: i_ky REAL(dp) :: delta_p0, delta_p1, delta_p2 INTEGER :: izprev,iznext ! indices of previous and next z slice ! Measuring execution time CALL cpu_time(t0_rhs) ploopi : DO ip = ips_i, ipe_i ! Hermite loop p_int= parray_i(ip) ! Hermite degree delta_p0 = 0._dp; delta_p1 = 0._dp; delta_p2 = 0._dp IF(p_int .EQ. 0) delta_p0 = 1._dp IF(p_int .EQ. 1) delta_p1 = 1._dp IF(p_int .EQ. 2) delta_p2 = 1._dp jloopi : DO ij = ijs_i, ije_i ! This loop is from 1 to jmaxi+1 ! Loop on kspace zloopi : DO iz = izs,ize ! Periodic BC for first order derivative iznext = iz+1; izprev = iz-1; IF(iz .EQ. 1) izprev = Nz IF(iz .EQ. Nz) iznext = 1 kxloopi : DO ikx = ikxs,ikxe kx = kxarray(ikx) ! radial wavevector kyloopi : DO iky = ikys,ikye ky = kyarray(iky) ! toroidal wavevector i_ky = imagu * ky ! toroidal derivative IF (Nky .EQ. 1) i_ky = imagu * kxarray(ikx) ! If 1D simulation we put kx as ky kperp2 = kx**2 + ky**2 ! perpendicular wavevector !! Compute moments mixing terms ! Perpendicular dynamic ! term propto n_i^{p,j} Tnipj = xnipj(ip,ij) * (moments_i(ip,ij,ikx,iky,iz,updatetlevel) & +kernel_i(ij,ikx,iky)*qi_taui*phi(ikx,iky,iz)*delta_p0) ! term propto n_i^{p+2,j} Tnipp2j = xnipp2j(ip) * moments_i(ip+2,ij,ikx,iky,iz,updatetlevel) ! term propto n_i^{p-2,j} Tnipm2j = xnipm2j(ip) * (moments_i(ip-2,ij,ikx,iky,iz,updatetlevel) & +kernel_i(ij,ikx,iky)*qi_taui*phi(ikx,iky,iz)*delta_p2) ! term propto n_e^{p,j+1} Tnipjp1 = xnipjp1(ij) * (moments_i(ip,ij+1,ikx,iky,iz,updatetlevel) & +kernel_i(ij+1,ikx,iky)*qi_taui*phi(ikx,iky,iz)*delta_p0) ! term propto n_e^{p,j-1} Tnipjm1 = xnipjm1(ij) * (moments_i(ip,ij-1,ikx,iky,iz,updatetlevel) & +kernel_i(ij-1,ikx,iky)*qi_taui*phi(ikx,iky,iz)*delta_p0) ! Parallel dynamic ! term propto N_i^{p,j+1}, centered FDF Tpari = xnipp1j(ip) * & (moments_i(ip+1,ij,ikx,iky,iznext,updatetlevel)& -moments_i(ip+1,ij,ikx,iky,izprev,updatetlevel)) & +xnipm1j(ip) * & (moments_i(ip-1,ij,ikx,iky,iznext,updatetlevel)+qi_taui*kernel_i(ij,ikx,iky)*phi(ikx,iky,iznext)*delta_p1& -moments_i(ip-1,ij,ikx,iky,izprev,updatetlevel)-qi_taui*kernel_i(ij,ikx,iky)*phi(ikx,iky,izprev)*delta_p1) !! Electrical potential term IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 Tphi = phi(ikx,iky,iz) * (xphij(ip,ij)*kernel_i(ij, ikx, iky) & + xphijp1(ip,ij)*kernel_i(ij+1, ikx, iky) & + xphijm1(ip,ij)*kernel_i(ij-1, ikx, iky) ) ELSE Tphi = 0._dp ENDIF !! Collision IF (CO .EQ. 0) THEN ! Lenhard Bernstein TColl = -nu_i*(ip+2._dp*ij-3)*moments_i(ip,ij,ikx,iky,iz,updatetlevel) ELSEIF (CO .EQ. 1) THEN ! GK Dougherty CALL DoughertyGK_i(ip,ij,ikx,iky,iz,TColl) ELSE! COSOLver matrix (Sugama, Coulomb) TColl = TColl_i(ip,ij,ikx,iky,iz) ENDIF !! Sum of linear terms moments_rhs_i(ip,ij,ikx,iky,iz,updatetlevel) = & - Ckxky(ikx,iky,iz) * (Tnipj + Tnipp2j + Tnipm2j + Tnipjp1 + Tnipjm1)& - Tpari/2._dp/deltaz/q0 & + i_ky * Tphi & - mu*kperp2**2 * moments_i(ip,ij,ikx,iky,iz,updatetlevel) & + TColl !! Adding non linearity IF ( NON_LIN ) THEN moments_rhs_i(ip,ij,ikx,iky,iz,updatetlevel) = & moments_rhs_i(ip,ij,ikx,iky,iz,updatetlevel) + Sipj(ip,ij,ikx,iky,iz) ENDIF END DO kyloopi END DO kxloopi END DO zloopi END DO jloopi END DO ploopi ! Execution time end CALL cpu_time(t1_rhs) tc_rhs = tc_rhs + (t1_rhs-t0_rhs) END SUBROUTINE moments_eq_rhs_i