MODULE moments_eq_rhs IMPLICIT NONE PUBLIC :: compute_moments_eq_rhs CONTAINS SUBROUTINE compute_moments_eq_rhs USE model, only: KIN_E IMPLICIT NONE IF(KIN_E) CALL moments_eq_rhs_e CALL moments_eq_rhs_i END SUBROUTINE compute_moments_eq_rhs !_____________________________________________________________________________! !_____________________________________________________________________________! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!! Electrons moments RHS !!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !_____________________________________________________________________________! SUBROUTINE moments_eq_rhs_e USE basic USE time_integration USE array USE fields USE grid USE model USE prec_const USE collision use geometry USE calculus, ONLY : interp_z, grad_z, grad_z2 IMPLICIT NONE INTEGER :: p_int, j_int ! loops indices and polynom. degrees REAL(dp) :: kx, ky, kperp2, dzlnB_o_J COMPLEX(dp) :: Tnepj, Tnepp2j, Tnepm2j, Tnepjp1, Tnepjm1 ! Terms from b x gradB and drives COMPLEX(dp) :: Tnepp1j, Tnepm1j, Tnepp1jm1, Tnepm1jm1 ! Terms from mirror force with non adiab moments COMPLEX(dp) :: Tperp, Tpar, Tmir, Tphi COMPLEX(dp) :: Unepm1j, Unepm1jp1, Unepm1jm1 ! Terms from mirror force with adiab moments COMPLEX(dp) :: i_ky,phikykxz ! Measuring execution time CALL cpu_time(t0_rhs) ! Spatial loops zloope : DO iz = izs,ize kxloope : DO ikx = ikxs,ikxe kx = kxarray(ikx) ! radial wavevector kyloope : DO iky = ikys,ikye ky = kyarray(iky) ! toroidal wavevector i_ky = imagu * ky ! toroidal derivative phikykxz = phi(iky,ikx,iz)! tmp phi value ! Kinetic loops jloope : DO ij = ijs_e, ije_e ! This loop is from 1 to jmaxi+1 j_int = jarray_e(ij) ploope : DO ip = ips_e, ipe_e ! Hermite loop p_int = parray_e(ip) ! Hermite degree eo = MODULO(p_int,2) ! Indicates if we are on odd or even z grid kperp2= kparray(iky,ikx,iz,eo)**2 IF((CLOS .NE. 1) .OR. (p_int+2*j_int .LE. dmaxe)) THEN !! Compute moments mixing terms Tperp = 0._dp; Tpar = 0._dp; Tmir = 0._dp ! Perpendicular dynamic ! term propto n_e^{p,j} Tnepj = xnepj(ip,ij)* nadiab_moments_e(ip,ij,iky,ikx,iz) ! term propto n_e^{p+2,j} Tnepp2j = xnepp2j(ip) * nadiab_moments_e(ip+pp2,ij,iky,ikx,iz) ! term propto n_e^{p-2,j} Tnepm2j = xnepm2j(ip) * nadiab_moments_e(ip-pp2,ij,iky,ikx,iz) ! term propto n_e^{p,j+1} Tnepjp1 = xnepjp1(ij) * nadiab_moments_e(ip,ij+1,iky,ikx,iz) ! term propto n_e^{p,j-1} Tnepjm1 = xnepjm1(ij) * nadiab_moments_e(ip,ij-1,iky,ikx,iz) ! Parallel dynamic ! ddz derivative for Landau damping term Tpar = xnepp1j(ip) * ddz_nepj(ip+1,ij,iky,ikx,iz) & + xnepm1j(ip) * ddz_nepj(ip-1,ij,iky,ikx,iz) ! Mirror terms Tnepp1j = ynepp1j (ip,ij) * interp_nepj(ip+1,ij ,iky,ikx,iz) Tnepp1jm1 = ynepp1jm1(ip,ij) * interp_nepj(ip+1,ij-1,iky,ikx,iz) Tnepm1j = ynepm1j (ip,ij) * interp_nepj(ip-1,ij ,iky,ikx,iz) Tnepm1jm1 = ynepm1jm1(ip,ij) * interp_nepj(ip-1,ij-1,iky,ikx,iz) ! Trapping terms Unepm1j = znepm1j (ip,ij) * interp_nepj(ip-1,ij ,iky,ikx,iz) Unepm1jp1 = znepm1jp1(ip,ij) * interp_nepj(ip-1,ij+1,iky,ikx,iz) Unepm1jm1 = znepm1jm1(ip,ij) * interp_nepj(ip-1,ij-1,iky,ikx,iz) Tmir = Tnepp1j + Tnepp1jm1 + Tnepm1j + Tnepm1jm1 + Unepm1j + Unepm1jp1 + Unepm1jm1 !! Electrical potential term IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 Tphi = (xphij_i (ip,ij)*kernel_e(ij ,iky,ikx,iz,eo) & + xphijp1_i(ip,ij)*kernel_e(ij+1,iky,ikx,iz,eo) & + xphijm1_i(ip,ij)*kernel_e(ij-1,iky,ikx,iz,eo))*phikykxz ELSE Tphi = 0._dp ENDIF !! Sum of all RHS terms moments_rhs_e(ip,ij,iky,ikx,iz,updatetlevel) = & ! Perpendicular magnetic gradient/curvature effects - imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo)* (Tnepj + Tnepp2j + Tnepm2j + Tnepjp1 + Tnepjm1)& ! Parallel coupling (Landau Damping) - Tpar*gradz_coeff(iz,eo) & ! Mirror term (parallel magnetic gradient) - gradzB(iz,eo)* Tmir *gradz_coeff(iz,eo) & ! Drives (density + temperature gradients) - i_ky * Tphi & ! Numerical perpendicular hyperdiffusion (totally artificial, for stability purpose) - (mu_x*kx**4 + mu_y*ky**4)*moments_e(ip,ij,iky,ikx,iz,updatetlevel) & ! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)" + mu_z * diff_dz_coeff * ddz4_Nepj(ip,ij,iky,ikx,iz) & ! Collision term + TColl_e(ip,ij,iky,ikx,iz) & ! Nonlinear term - Sepj(ip,ij,iky,ikx,iz) ELSE moments_rhs_e(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp ENDIF END DO ploope END DO jloope END DO kyloope END DO kxloope END DO zloope ! Execution time end CALL cpu_time(t1_rhs) tc_rhs = tc_rhs + (t1_rhs-t0_rhs) END SUBROUTINE moments_eq_rhs_e !_____________________________________________________________________________! !_____________________________________________________________________________! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!! Ions moments RHS !!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !_____________________________________________________________________________! SUBROUTINE moments_eq_rhs_i USE basic USE time_integration, ONLY: updatetlevel USE array USE fields USE grid USE model USE prec_const USE collision USE geometry USE calculus, ONLY : interp_z, grad_z, grad_z2 IMPLICIT NONE INTEGER :: p_int, j_int ! loops indices and polynom. degrees REAL(dp) :: kx, ky, kperp2 COMPLEX(dp) :: Tnipj, Tnipp2j, Tnipm2j, Tnipjp1, Tnipjm1 COMPLEX(dp) :: Tnipp1j, Tnipm1j, Tnipp1jm1, Tnipm1jm1 ! Terms from mirror force with non adiab moments COMPLEX(dp) :: Unipm1j, Unipm1jp1, Unipm1jm1 ! Terms from mirror force with adiab moments COMPLEX(dp) :: Tperp, Tpar, Tmir, Tphi COMPLEX(dp) :: i_ky, phikykxz ! Measuring execution time CALL cpu_time(t0_rhs) ! Spatial loops zloopi : DO iz = izs,ize kxloopi : DO ikx = ikxs,ikxe kx = kxarray(ikx) ! radial wavevector kyloopi : DO iky = ikys,ikye ky = kyarray(iky) ! toroidal wavevector i_ky = imagu * ky ! toroidal derivative phikykxz = phi(iky,ikx,iz)! tmp phi value ! Kinetic loops jloopi : DO ij = ijs_i, ije_i ! This loop is from 1 to jmaxi+1 j_int = jarray_i(ij) ploopi : DO ip = ips_i, ipe_i ! Hermite loop p_int = parray_i(ip) ! Hermite degree eo = MODULO(p_int,2) ! Indicates if we are on odd or even z grid kperp2= kparray(iky,ikx,iz,eo)**2 IF((CLOS .NE. 1) .OR. (p_int+2*j_int .LE. dmaxi)) THEN !! Compute moments mixing terms Tperp = 0._dp; Tpar = 0._dp; Tmir = 0._dp ! Perpendicular dynamic ! term propto n_i^{p,j} Tnipj = xnipj(ip,ij) * nadiab_moments_i(ip ,ij ,iky,ikx,iz) ! term propto n_i^{p+2,j} Tnipp2j = xnipp2j(ip) * nadiab_moments_i(ip+pp2,ij ,iky,ikx,iz) ! term propto n_i^{p-2,j} Tnipm2j = xnipm2j(ip) * nadiab_moments_i(ip-pp2,ij ,iky,ikx,iz) ! term propto n_i^{p,j+1} Tnipjp1 = xnipjp1(ij) * nadiab_moments_i(ip ,ij+1,iky,ikx,iz) ! term propto n_i^{p,j-1} Tnipjm1 = xnipjm1(ij) * nadiab_moments_i(ip ,ij-1,iky,ikx,iz) ! Tperp Tperp = Tnipj + Tnipp2j + Tnipm2j + Tnipjp1 + Tnipjm1 ! Parallel dynamic ! ddz derivative for Landau damping term Tpar = xnipp1j(ip) * ddz_nipj(ip+1,ij,iky,ikx,iz) & + xnipm1j(ip) * ddz_nipj(ip-1,ij,iky,ikx,iz) ! Mirror terms Tnipp1j = ynipp1j (ip,ij) * interp_nipj(ip+1,ij ,iky,ikx,iz) Tnipp1jm1 = ynipp1jm1(ip,ij) * interp_nipj(ip+1,ij-1,iky,ikx,iz) Tnipm1j = ynipm1j (ip,ij) * interp_nipj(ip-1,ij ,iky,ikx,iz) Tnipm1jm1 = ynipm1jm1(ip,ij) * interp_nipj(ip-1,ij-1,iky,ikx,iz) ! Trapping terms Unipm1j = znipm1j (ip,ij) * interp_nipj(ip-1,ij ,iky,ikx,iz) Unipm1jp1 = znipm1jp1(ip,ij) * interp_nipj(ip-1,ij+1,iky,ikx,iz) Unipm1jm1 = znipm1jm1(ip,ij) * interp_nipj(ip-1,ij-1,iky,ikx,iz) Tmir = Tnipp1j + Tnipp1jm1 + Tnipm1j + Tnipm1jm1 + Unipm1j + Unipm1jp1 + Unipm1jm1 !! Electrical potential term IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 Tphi = (xphij_i (ip,ij)*kernel_i(ij ,iky,ikx,iz,eo) & + xphijp1_i(ip,ij)*kernel_i(ij+1,iky,ikx,iz,eo) & + xphijm1_i(ip,ij)*kernel_i(ij-1,iky,ikx,iz,eo))*phikykxz ELSE Tphi = 0._dp ENDIF !! Sum of all RHS terms moments_rhs_i(ip,ij,iky,ikx,iz,updatetlevel) = & ! Perpendicular magnetic gradient/curvature effects - imagu*Ckxky(iky,ikx,iz,eo)*hatR(iz,eo) * Tperp & ! Parallel coupling (Landau damping) - gradz_coeff(iz,eo) * Tpar & ! Mirror term (parallel magnetic gradient) - gradzB(iz,eo) * gradz_coeff(iz,eo) * Tmir & ! Drives (density + temperature gradients) - i_ky * Tphi & ! Numerical hyperdiffusion (totally artificial, for stability purpose) - (mu_x*kx**4 + mu_y*ky**4)*moments_i(ip,ij,iky,ikx,iz,updatetlevel) & ! Numerical parallel hyperdiffusion "+ (mu_z*kz**4)" + mu_z * diff_dz_coeff * ddz4_Nipj(ip,ij,iky,ikx,iz) & ! Collision term + TColl_i(ip,ij,iky,ikx,iz)& ! Nonlinear term - Sipj(ip,ij,iky,ikx,iz) ELSE moments_rhs_i(ip,ij,iky,ikx,iz,updatetlevel) = 0._dp ENDIF END DO ploopi END DO jloopi END DO kyloopi END DO kxloopi END DO zloopi ! Execution time end CALL cpu_time(t1_rhs) tc_rhs = tc_rhs + (t1_rhs-t0_rhs) END SUBROUTINE moments_eq_rhs_i END MODULE moments_eq_rhs