%% Set simulation parameters SIMID = 'lin_KBM'; % Name of the simulation %% Set up physical parameters CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss NU = 0.00; % Collision frequency TAU = 1.0; % e/i temperature ratio K_Ne = 3; % ele Density ''' K_Te = 4.5; % ele Temperature ''' K_Ni = 3; % ion Density gradient drive K_Ti = 8; % ion Temperature ''' SIGMA_E = 0.0233380; % mass ratio sqrt(m_a/m_i) (correct = 0.0233380) NA = 2; % number of kinetic species ADIAB_E = (NA==1); % adiabatic electron model BETA = 0.03; % electron plasma beta %% Set up grid parameters P = 2; J = P/2;%P/2; PMAX = P; % Hermite basis size JMAX = J; % Laguerre basis size NX = 12; % real space x-gridpoints NY = 2; % real space y-gridpoints LX = 2*pi/0.1; % Size of the squared frequency domain in x direction LY = 2*pi/0.25; % Size of the squared frequency domain in y direction NZ = 24; % number of perpendicular planes (parallel grid) SG = 0; % Staggered z grids option NEXC = 1; % To extend Lx if needed (Lx = Nexc/(kymin*shear)) %% GEOMETRY % GEOMETRY= 's-alpha'; GEOMETRY= 'miller'; EPS = 0.18; % inverse aspect ratio Q0 = 1.4; % safety factor SHEAR = 0.8; % magnetic shear KAPPA = 1.0; % elongation DELTA = 0.0; % triangularity ZETA = 0.0; % squareness PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected') SHIFT_Y = 0.0; % Shift in the periodic BC in z NPOL = 1; % Number of poloidal turns %% TIME PARAMETERS TMAX = 15; % Maximal time unit DT = 5e-3; % Time step DTSAVE0D = 1.0; % Sampling time for 0D arrays DTSAVE2D = -1; % Sampling time for 2D arrays DTSAVE3D = 0.5; % Sampling time for 3D arrays DTSAVE5D = 100; % Sampling time for 5D arrays JOB2LOAD = -1; % Start a new simulation serie %% OPTIONS LINEARITY = 'linear'; % activate non-linearity (is cancelled if KXEQ0 = 1) CO = 'DG'; % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau) GKCO = 0; % Gyrokinetic operator ABCO = 1; % INTERSPECIES collisions INIT_ZF = 0; % Initialize zero-field quantities HRCY_CLOS = 'truncation'; % Closure model for higher order moments DMAX = -1; NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments NMAX = 0; KERN = 0; % Kernel model (0 : GK) INIT_OPT = 'mom00'; % Start simulation with a noisy mom00/phi/allmom NUMERICAL_SCHEME = 'RK4'; % Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5) %% OUTPUTS W_DOUBLE = 1; % Output flag for double moments W_GAMMA = 1; % Output flag for gamma (Gyrokinetic Energy) W_HF = 1; % Output flag for high-frequency potential energy W_PHI = 1; % Output flag for potential W_NA00 = 1; % Output flag for nalpha00 (density of species alpha) W_DENS = 1; % Output flag for total density W_TEMP = 1; % Output flag for temperature W_NAPJ = 1; % Output flag for nalphaparallel (parallel momentum of species alpha) W_SAPJ = 0; % Output flag for saparallel (parallel current of species alpha) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% UNUSED PARAMETERS % These parameters are usually not to play with in linear runs MU = 0.0; % Hyperdiffusivity coefficient MU_X = MU; % Hyperdiffusivity coefficient in x direction MU_Y = MU; % Hyperdiffusivity coefficient in y direction N_HD = 4; % Degree of spatial-hyperdiffusivity MU_Z = 1.0; % Hyperdiffusivity coefficient in z direction HYP_V = 'hypcoll'; % Kinetic-hyperdiffusivity model MU_P = 0.0; % Hyperdiffusivity coefficient for Hermite MU_J = 0.0; % Hyperdiffusivity coefficient for Laguerre LAMBDAD = 0.0; % Lambda Debye NOISE0 = 0.0e-5; % Initial noise amplitude BCKGD0 = 1.0e-5; % Initial background k_gB = 1.0; % Magnetic gradient strength k_cB = 1.0; % Magnetic curvature strength COLL_KCUT = 1; % Cutoff for collision operator