!! MODULE NUMERICS ! The module numerics contains a set of routines that are called only once at ! the beginng of a run. These routines do not need to be optimzed MODULE numerics USE prec_const, ONLY: xp implicit none PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op PUBLIC :: compute_lin_coeff, build_dv4Hp_table CONTAINS !******************************************************************************! !!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin !******************************************************************************! SUBROUTINE build_dnjs_table USE array, ONLY : dnjs USE FMZM, ONLY : TO_DP USE coeff, ONLY : ALL2L USE grid, ONLY : jmax IMPLICIT NONE INTEGER :: in, ij, is, J INTEGER :: n_, j_, s_ J = jmax DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetrys n_ = in - 1 DO ij = in,J+1 j_ = ij - 1 DO is = ij,J+1 s_ = is - 1 dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0)) ! By symmetry dnjs(in,is,ij) = dnjs(in,ij,is) dnjs(ij,in,is) = dnjs(in,ij,is) dnjs(ij,is,in) = dnjs(in,ij,is) dnjs(is,ij,in) = dnjs(in,ij,is) dnjs(is,in,ij) = dnjs(in,ij,is) ENDDO ENDDO ENDDO END SUBROUTINE build_dnjs_table !******************************************************************************! !!!!!!! Build the fourth derivative Hermite coefficient table !******************************************************************************! SUBROUTINE build_dv4Hp_table USE array, ONLY: dv4_Hp_coeff USE grid, ONLY: pmax USE prec_const, ONLY: xp, PI IMPLICIT NONE INTEGER :: p_ DO p_ = -2,pmax if (p_ < 4) THEN dv4_Hp_coeff(p_) = 0._xp ELSE dv4_Hp_coeff(p_) = 4_xp*SQRT(REAL((p_-3)*(p_-2)*(p_-1)*p_,xp)) ENDIF ENDDO !we scale it w.r.t. to the max degree since !D_4^{v}\sim (\Delta v/2)^4 and \Delta v \sim 2pi/kvpar = pi/\sqrt{2P} ! dv4_Hp_coeff = dv4_Hp_coeff*(1._xp/2._xp/SQRT(REAL(pmax,xp)))**4 IF(pmax .GT. 0) & dv4_Hp_coeff = dv4_Hp_coeff*(PI/2._xp/SQRT(2._xp*REAL(pmax,xp)))**4 END SUBROUTINE build_dv4Hp_table !******************************************************************************! !******************************************************************************! !!!!!!! Evaluate the kernels once for all !******************************************************************************! SUBROUTINE evaluate_kernels USE basic USE prec_const, ONLY: xp USE array, ONLY : kernel!, HF_phi_correction_operator USE grid, ONLY : local_na, local_nj,ngj, local_nkx, local_nky, local_nz, ngz, jarray, kp2array,& nzgrid USE species, ONLY : sigma2_tau_o2 IMPLICIT NONE INTEGER :: j_int, ia, eo, ikx, iky, iz, ij REAL(xp) :: j_xp, y_, factj, sigma_i sigma_i = 1._xp ! trivial singe sigma_a = sqrt(m_a/m_i) DO ia = 1,local_na DO eo = 1,nzgrid DO ikx = 1,local_nkx DO iky = 1,local_nky DO iz = 1,local_nz + ngz DO ij = 1,local_nj + ngj j_int = jarray(ij) j_xp = REAL(j_int,xp) y_ = sigma2_tau_o2(ia) * kp2array(iky,ikx,iz,eo) IF(j_int .LT. 0) THEN !ghosts values kernel(ia,ij,iky,ikx,iz,eo) = 0._xp ELSE factj = REAL(GAMMA(j_xp+1._xp),xp) kernel(ia,ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj ENDIF ENDDO ENDDO ENDDO ENDDO ENDDO ! !! Correction term for the evaluation of the heat flux ! HF_phi_correction_operator(:,:,:) = & ! 2._xp * Kernel(ia,1,:,:,:,1) & ! -1._xp * Kernel(ia,2,:,:,:,1) ! ! DO ij = 1,local_Nj ! j_int = jarray(ij) ! j_xp = REAL(j_int,xp) ! HF_phi_correction_operator(:,:,:) = HF_phi_correction_operator(:,:,:) & ! - Kernel(ia,ij,:,:,:,1) * (& ! 2._xp*(j_xp+1.5_xp) * Kernel(ia,ij ,:,:,:,1) & ! - (j_xp+1.0_xp) * Kernel(ia,ij+1,:,:,:,1) & ! - j_xp * Kernel(ia,ij-1,:,:,:,1)) ! ENDDO ENDDO END SUBROUTINE evaluate_kernels !******************************************************************************! !******************************************************************************! SUBROUTINE evaluate_EM_op IMPLICIT NONE CALL evaluate_poisson_op CALL evaluate_ampere_op END SUBROUTINE evaluate_EM_op !!!!!!! Evaluate inverse polarisation operator for Poisson equation !******************************************************************************! SUBROUTINE evaluate_poisson_op USE basic USE array, ONLY : kernel, inv_poisson_op, inv_pol_ion USE grid, ONLY : local_na, local_nkx, local_nky, local_nz,& kxarray, kyarray, local_nj, ngj, ngz, ieven USE species, ONLY : q2_tau USE model, ONLY : ADIAB_E, ADIAB_I, tau_i, q_i USE prec_const, ONLY: xp IMPLICIT NONE REAL(xp) :: pol_tot, operator_ion INTEGER :: in,ikx,iky,iz,ia REAL(xp) :: sumker ! This term has no staggered grid dependence. It is evalued for the ! even z grid since poisson uses p=0 moments and phi only. kxloop: DO ikx = 1,local_nkx kyloop: DO iky = 1,local_nky zloop: DO iz = 1,local_nz IF( (kxarray(iky,ikx).EQ.0._xp) .AND. (kyarray(iky).EQ.0._xp) ) THEN inv_poisson_op(iky, ikx, iz) = 0._xp inv_pol_ion (iky, ikx, iz) = 0._xp ELSE ! loop over n only up to the max polynomial degree pol_tot = 0._xp ! total polarisation term a:DO ia = 1,local_na ! sum over species ! ia = 1 sumker = 0._xp ! sum of ion polarisation term (Z_a^2/tau_a (1-sum_n kernel_na^2)) DO in=1,local_nj sumker = sumker + q2_tau(ia)*kernel(ia,in+ngj/2,iky,ikx,iz+ngz/2,ieven)**2 ! ... sum recursively ... END DO pol_tot = pol_tot + q2_tau(ia) - sumker ENDDO a operator_ion = pol_tot IF(ADIAB_E) & ! Adiabatic electron model pol_tot = pol_tot + 1._xp IF(ADIAB_I) & ! adiabatic ions model, kernel_i = 0 and -q_i/tau_i*phi = rho_i pol_tot = pol_tot + q_i**2/tau_i inv_poisson_op(iky, ikx, iz) = 1._xp/pol_tot inv_pol_ion (iky, ikx, iz) = 1._xp/operator_ion ENDIF END DO zloop END DO kyloop END DO kxloop END SUBROUTINE evaluate_poisson_op !******************************************************************************! !******************************************************************************! !!!!!!! Evaluate inverse polarisation operator for Poisson equation !******************************************************************************! SUBROUTINE evaluate_ampere_op USE prec_const, ONLY : xp USE array, ONLY : kernel, inv_ampere_op USE grid, ONLY : local_na, local_nkx, local_nky, local_nz, ngz, total_nj, ngj,& kp2array, kxarray, kyarray, SOLVE_AMPERE, iodd USE model, ONLY : beta, ADIAB_I USE species, ONLY : q, sigma USE geometry, ONLY : hatB USE prec_const, ONLY: xp IMPLICIT NONE REAL(xp) :: sum_jpol, kperp2, operator, q_i, sigma_i INTEGER :: in,ikx,iky,iz,ia q_i = 1._xp ! single charge ion sigma_i = 1._xp ! trivial singe sigma_a = sqrt(m_a/m_i) ! We do not solve Ampere if beta = 0 to spare waste of ressources IF(SOLVE_AMPERE) THEN x:DO ikx = 1,local_nkx y:DO iky = 1,local_nky z:DO iz = 1,local_nz kperp2 = kp2array(iky,ikx,iz+ngz/2,iodd) IF( (kxarray(iky,ikx).EQ.0._xp) .AND. (kyarray(iky).EQ.0._xp) ) THEN inv_ampere_op(iky, ikx, iz) = 0._xp ELSE sum_jpol = 0._xp a:DO ia = 1,local_na ! loop over n only up to the max polynomial degree DO in=1,total_nj sum_jpol = sum_jpol + q(ia)**2/(sigma(ia)**2)*kernel(ia,in+ngj/2,iky,ikx,iz+ngz/2,iodd)**2 ! ... sum recursively ... END DO END DO a IF(ADIAB_I) THEN ! no ion contribution ENDIF operator = 2._xp*kperp2*hatB(iz+ngz/2,iodd)**2 + beta*sum_jpol inv_ampere_op(iky, ikx, iz) = 1._xp/operator ENDIF END DO z END DO y END DO x ENDIF END SUBROUTINE evaluate_ampere_op !******************************************************************************! SUBROUTINE compute_lin_coeff USE array, ONLY: xnapj, & ynapp1j, ynapm1j, ynapp1jm1, ynapm1jm1,& zNapm1j, zNapm1jp1, zNapm1jm1,& xnapj, xnapjp1, xnapjm1,& xnapp1j, xnapm1j, xnapp2j, xnapm2j,& xphij, xphijp1, xphijm1,& xpsij, xpsijp1, xpsijm1 USE species, ONLY: k_T, k_N, tau, q, sqrt_tau_o_sigma USE model, ONLY: k_cB, k_gB USE prec_const, ONLY: xp, SQRT2, SQRT3 USE grid, ONLY: parray, jarray, local_na, local_np, local_nj, ngj, ngp INTEGER :: ia,ip,ij,p_int, j_int ! polynom. dagrees REAL(xp) :: p_xp, j_xp !! linear coefficients for moment RHS !!!!!!!!!! DO ia = 1,local_na DO ip = 1,local_np p_int= parray(ip+ngp/2) ! Hermite degree p_xp = REAL(p_int,xp) ! REAL of Hermite degree DO ij = 1,local_nj j_int= jarray(ij+ngj/2) ! Laguerre degree j_xp = REAL(j_int,xp) ! REAL of Laguerre degree ! All Napj terms xnapj(ia,ip,ij) = tau(ia)/q(ia)*(k_cB*(2._xp*p_xp + 1._xp) & +k_gB*(2._xp*j_xp + 1._xp)) ! Mirror force terms ynapp1j (ia,ip,ij) = -sqrt_tau_o_sigma(ia) * (j_xp+1._xp)*SQRT(p_xp+1._xp) ynapm1j (ia,ip,ij) = -sqrt_tau_o_sigma(ia) * (j_xp+1._xp)*SQRT(p_xp) ynapp1jm1(ia,ip,ij) = +sqrt_tau_o_sigma(ia) * j_xp*SQRT(p_xp+1._xp) ynapm1jm1(ia,ip,ij) = +sqrt_tau_o_sigma(ia) * j_xp*SQRT(p_xp) ! Trapping terms zNapm1j (ia,ip,ij) = +sqrt_tau_o_sigma(ia) *(2._xp*j_xp+1._xp)*SQRT(p_xp) zNapm1jp1(ia,ip,ij) = -sqrt_tau_o_sigma(ia) * (j_xp+1._xp)*SQRT(p_xp) zNapm1jm1(ia,ip,ij) = -sqrt_tau_o_sigma(ia) * j_xp*SQRT(p_xp) ENDDO ENDDO DO ip = 1,local_np p_int= parray(ip+ngp/2) ! Hermite degree p_xp = REAL(p_int,xp) ! REAL of Hermite degree ! Landau damping coefficients (ddz napj term) xnapp1j(ia,ip) = sqrt_tau_o_sigma(ia) * SQRT(p_xp+1._xp) xnapm1j(ia,ip) = sqrt_tau_o_sigma(ia) * SQRT(p_xp) ! Magnetic curvature term xnapp2j(ia,ip) = tau(ia)/q(ia) * k_cB * SQRT((p_xp+1._xp)*(p_xp + 2._xp)) xnapm2j(ia,ip) = tau(ia)/q(ia) * k_cB * SQRT( p_xp *(p_xp - 1._xp)) ENDDO DO ij = 1,local_nj j_int= jarray(ij+ngj/2) ! Laguerre degree j_xp = REAL(j_int,xp) ! REAL of Laguerre degree ! Magnetic gradient term xnapjp1(ia,ij) = -tau(ia)/q(ia) * k_gB * (j_xp + 1._xp) xnapjm1(ia,ij) = -tau(ia)/q(ia) * k_gB * j_xp ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! ES linear coefficients for moment RHS !!!!!!!!!! DO ip = 1,local_np p_int= parray(ip+ngp/2) ! Hermite degree DO ij = 1,local_nj j_int= jarray(ij+ngj/2) ! REALof Laguerre degree j_xp = REAL(j_int,xp) ! REALof Laguerre degree !! Electrostatic potential pj terms IF (p_int .EQ. 0) THEN ! kronecker p0 xphij (ia,ip,ij) = +k_N(ia) + 2._xp*j_xp*k_T(ia) xphijp1(ia,ip,ij) = -k_T(ia)*(j_xp+1._xp) xphijm1(ia,ip,ij) = -k_T(ia)* j_xp ELSE IF (p_int .EQ. 2) THEN ! kronecker p2 xphij(ia,ip,ij) = +k_T(ia)/SQRT2 xphijp1(ia,ip,ij) = 0._xp; xphijm1(ia,ip,ij) = 0._xp; ELSE xphij (ia,ip,ij) = 0._xp; xphijp1(ia,ip,ij) = 0._xp xphijm1(ia,ip,ij) = 0._xp; ENDIF ENDDO ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Electromagnatic linear coefficients for moment RHS !!!!!!!!!! DO ip = 1,local_np p_int= parray(ip+ngp/2) ! Hermite degree DO ij = 1,local_nj j_int= jarray(ij+ngj/2) ! REALof Laguerre degree j_xp = REAL(j_int,xp) ! REALof Laguerre degree IF (p_int .EQ. 1) THEN ! kronecker p1 xpsij (ia,ip,ij) = +(k_N(ia) + (2._xp*j_xp+1._xp)*k_T(ia))* sqrt_tau_o_sigma(ia) xpsijp1(ia,ip,ij) = - k_T(ia)*(j_xp+1._xp) * sqrt_tau_o_sigma(ia) xpsijm1(ia,ip,ij) = - k_T(ia)* j_xp * sqrt_tau_o_sigma(ia) ELSE IF (p_int .EQ. 3) THEN ! kronecker p3 xpsij (ia,ip,ij) = + k_T(ia)*SQRT3/SQRT2 * sqrt_tau_o_sigma(ia) xpsijp1(ia,ip,ij) = 0._xp; xpsijm1(ia,ip,ij) = 0._xp; ELSE xpsij (ia,ip,ij) = 0._xp; xpsijp1(ia,ip,ij) = 0._xp xpsijm1(ia,ip,ij) = 0._xp; ENDIF ENDDO ENDDO ENDDO END SUBROUTINE compute_lin_coeff END MODULE numerics