MODULE nonlinear USE array, ONLY : dnjs, Sapj, kernel USE initial_par, ONLY : ACT_ON_MODES USE basic, ONLY : t0_Sapj, t1_Sapj, tc_Sapj USE fourier, ONLY : bracket_sum_r, bracket_sum_c, planf, planb, poisson_bracket_and_sum USE fields, ONLY : phi, psi, moments USE grid, ONLY: local_na, & local_np,ngp,parray,pmax,& local_nj,ngj,jarray,jmax, local_nj_offset, dmax,& kyarray, AA_y, local_nky_ptr, local_nky_ptr_offset,inv_Ny,& local_nkx_ptr,kxarray, AA_x, inv_Nx,& local_nz,ngz,zarray,nzgrid USE model, ONLY : LINEARITY, CLOS, NL_CLOS, EM USE prec_const, ONLY : dp USE species, ONLY : sqrt_tau_o_sigma USE time_integration, ONLY : updatetlevel use, intrinsic :: iso_c_binding IMPLICIT NONE INCLUDE 'fftw3-mpi.f03' COMPLEX(dp), DIMENSION(:,:), ALLOCATABLE :: F_cmpx, G_cmpx COMPLEX(dp), DIMENSION(:,:), ALLOCATABLE :: Fx_cmpx, Gy_cmpx COMPLEX(dp), DIMENSION(:,:), ALLOCATABLE :: Fy_cmpx, Gx_cmpx, F_conv_G INTEGER :: in, is, p_int, j_int, n_int INTEGER :: nmax, smax REAL(dp):: sqrt_p, sqrt_pp1 PUBLIC :: compute_Sapj, nonlinear_init CONTAINS SUBROUTINE nonlinear_init IMPLICIT NONE ALLOCATE( F_cmpx(local_nky_ptr,local_nkx_ptr)) ALLOCATE( G_cmpx(local_nky_ptr,local_nkx_ptr)) ALLOCATE(Fx_cmpx(local_nky_ptr,local_nkx_ptr)) ALLOCATE(Gy_cmpx(local_nky_ptr,local_nkx_ptr)) ALLOCATE(Fy_cmpx(local_nky_ptr,local_nkx_ptr)) ALLOCATE(Gx_cmpx(local_nky_ptr,local_nkx_ptr)) ALLOCATE(F_conv_G(local_nky_ptr,local_nkx_ptr)) END SUBROUTINE nonlinear_init SUBROUTINE compute_Sapj IMPLICIT NONE ! This routine is meant to compute the non linear term for each specie and degree !! In real space Sapj ~ b*(grad(phi) x grad(g)) which in moments in fourier becomes !! Sapj = Sum_n (ikx Kn phi)#(iky Sum_s d_njs Naps) - (iky Kn phi)#(ikx Sum_s d_njs Naps) !! where # denotes the convolution. ! Execution time start CALL cpu_time(t0_Sapj) SELECT CASE(LINEARITY) CASE ('nonlinear') CALL compute_nonlinear CASE ('linear') Sapj = 0._dp CASE DEFAULT ERROR STOP '>> ERROR << Linearity not recognized ' END SELECT ! Execution time END CALL cpu_time(t1_Sapj) tc_Sapj = tc_Sapj + (t1_Sapj - t0_Sapj) END SUBROUTINE compute_Sapj SUBROUTINE compute_nonlinear IMPLICIT NONE INTEGER :: iz,ij,ip,eo,ia,ikx,iky,izi,ipi,iji,ini,isi DO iz = 1,local_nz izi = iz + ngz/2 DO ij = 1,local_nj ! Loop over Laguerre moments iji = ij + ngj/2 j_int=jarray(iji) DO ip = 1,local_np ! Loop over Hermite moments ipi = ip + ngp/2 p_int = parray(ipi) sqrt_p = SQRT(REAL(p_int,dp)) sqrt_pp1 = SQRT(REAL(p_int,dp) + 1._dp) eo = min(nzgrid,MODULO(parray(ip),2)+1) DO ia = 1,local_na IF((CLOS .NE. 1) .OR. (p_int+2*j_int .LE. dmax)) THEN !compute for every moments except for closure 1 ! Set non linear sum truncation IF (NL_CLOS .EQ. -2) THEN nmax = Jmax ELSEIF (NL_CLOS .EQ. -1) THEN nmax = Jmax-j_int ELSE nmax = min(NL_CLOS,Jmax-j_int) ENDIF bracket_sum_r = 0._dp ! initialize sum over real nonlinear term DO in = 1,nmax+1 ! Loop over laguerre for the sum ini = in+ngj/2 !-----------!! ELECTROSTATIC CONTRIBUTION ! First convolution terms F_cmpx(:,:) = phi(:,:,izi) * kernel(ia,ini,:,:,izi,eo) ! Second convolution terms G_cmpx = 0._dp ! initialization of the sum smax = MIN( (in-1)+(ij-1), Jmax ); DO is = 1, smax+1 ! sum truncation on number of moments isi = is + ngj/2 G_cmpx(:,:) = G_cmpx(:,:) + & dnjs(in,ij,is) * moments(ia,ipi,isi,:,:,izi,updatetlevel) ENDDO ! this function add its result to bracket_sum_r CALL poisson_bracket_and_sum(kyarray,kxarray,inv_Ny,inv_Nx,AA_y,AA_x,local_nky_ptr,local_nkx_ptr,F_cmpx,G_cmpx,bracket_sum_r) !-----------!! ELECTROMAGNETIC CONTRIBUTION -sqrt(tau)/sigma*{Sum_s dnjs [sqrt(p+1)Nap+1s + sqrt(p)Nap-1s], Kernel psi} IF(EM) THEN ! First convolution terms F_cmpx(:,:) = -sqrt_tau_o_sigma(ia) * psi(:,:,izi) * kernel(ia,ini,:,:,izi,eo) ! Second convolution terms G_cmpx = 0._dp ! initialization of the sum smax = MIN( (in-1)+(ij-1), Jmax ); DO is = 1, smax+1 ! sum truncation on number of moments isi = is + ngj/2 G_cmpx(:,:) = G_cmpx(:,:) + & dnjs(in,ij,is) * (sqrt_pp1*moments(ia,ipi+1,isi,:,:,izi,updatetlevel)& +sqrt_p *moments(ia,ipi-1,isi,:,:,izi,updatetlevel)) ENDDO ! this function add its result to bracket_sum_r CALL poisson_bracket_and_sum(kyarray,kxarray,inv_Ny,inv_Nx,AA_y,AA_x,local_nky_ptr,local_nkx_ptr,F_cmpx,G_cmpx,bracket_sum_r) ENDIF ENDDO ! Put the real nonlinear product into k-space call fftw_mpi_execute_dft_r2c(planf, bracket_sum_r, bracket_sum_c) ! Retrieve convolution in input format and apply anti aliasing DO ikx = 1,local_nkx_ptr DO iky = 1,local_nky_ptr Sapj(ia,ip,ij,iky,ikx,iz) = bracket_sum_c(ikx,iky)*AA_x(ikx)*AA_y(iky) ENDDO ENDDO ELSE Sapj(ia,ip,ij,:,:,iz) = 0._dp ENDIF ENDDO ENDDO ENDDO ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! END SUBROUTINE compute_nonlinear !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! END MODULE nonlinear