!_____________________________________________________________________________! !_____________________________________________________________________________! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!! Electrons moments RHS !!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !_____________________________________________________________________________! SUBROUTINE moments_eq_rhs_e USE basic USE time_integration USE array USE fields USE grid USE model USE prec_const USE collision use geometry IMPLICIT NONE INTEGER :: p_int, j_int ! loops indices and polynom. degrees REAL(dp) :: kx, ky, kperp2, dzlnB_o_J COMPLEX(dp) :: Tnepj, Tnepp2j, Tnepm2j, Tnepjp1, Tnepjm1, Tpare, Tphi ! Terms from b x gradB and drives COMPLEX(dp) :: Tmir, Tnepp1j, Tnepm1j, Tnepp1jm1, Tnepm1jm1 ! Terms from mirror force with non adiab moments COMPLEX(dp) :: UNepm1j, UNepm1jp1, UNepm1jm1 ! Terms from mirror force with adiab moments COMPLEX(dp) :: TColl ! terms of the rhs COMPLEX(dp) :: i_ky REAL(dp) :: delta_p0, delta_p1, delta_p2 INTEGER :: izm2, izm1, izp1, izp2 ! indices for centered FDF ddz ! Measuring execution time CALL cpu_time(t0_rhs) ploope : DO ip = ips_e, ipe_e ! loop over Hermite degree indices p_int = parray_e(ip) ! Hermite polynom. degree delta_p0 = 0._dp; delta_p1 = 0._dp; delta_p2 = 0._dp IF(p_int .EQ. 0) delta_p0 = 1._dp IF(p_int .EQ. 1) delta_p1 = 1._dp IF(p_int .EQ. 2) delta_p2 = 1._dp jloope : DO ij = ijs_e, ije_e ! loop over Laguerre degree indices j_int = jarray_e(ij) ! Loop on kspace zloope : DO iz = izs,ize ! Obtain the index with an array that accounts for boundary conditions ! e.g. : 4 stencil with periodic BC, izarray(Nz+2) = 2, izarray(-1) = Nz-1 izp1 = izarray(iz+1); izp2 = izarray(iz+2); izm1 = izarray(iz-1); izm2 = izarray(iz-2); ! kxloope : DO ikx = ikxs,ikxe kx = kxarray(ikx) ! radial wavevector kyloope : DO iky = ikys,ikye ky = kyarray(iky) ! toroidal wavevector i_ky = imagu * ky ! toroidal derivative IF (Nky .EQ. 1) i_ky = imagu * kxarray(ikx) ! If 1D simulation we put kx as ky ! kperp2= gxx(iz)*kx**2 + 2._dp*gxy(iz)*kx*ky + gyy(iz)*ky**2 kperp2= kparray(ikx,iky,iz)**2 !! Compute moments mixing terms ! Perpendicular dynamic ! term propto n_e^{p,j} Tnepj = xnepj(ip,ij)* nadiab_moments_e(ip,ij,ikx,iky,iz) ! term propto n_e^{p+2,j} Tnepp2j = xnepp2j(ip) * nadiab_moments_e(ip+pp2,ij,ikx,iky,iz) ! term propto n_e^{p-2,j} Tnepm2j = xnepm2j(ip) * nadiab_moments_e(ip-pp2,ij,ikx,iky,iz) ! term propto n_e^{p,j+1} Tnepjp1 = xnepjp1(ij) * nadiab_moments_e(ip,ij+1,ikx,iky,iz) ! term propto n_e^{p,j-1} Tnepjm1 = xnepjm1(ij) * nadiab_moments_e(ip,ij-1,ikx,iky,iz) ! Parallel dynamic ! ddz derivative for Landau damping term Tpare = xnepp1j(ip) * & ( onetwelfth*nadiab_moments_e(ip+1,ij,ikx,iky,izm2)& - twothird*nadiab_moments_e(ip+1,ij,ikx,iky,izm1)& + twothird*nadiab_moments_e(ip+1,ij,ikx,iky,izp1)& -onetwelfth*nadiab_moments_e(ip+1,ij,ikx,iky,izp2))& +xnepm1j(ip) * & ( onetwelfth*nadiab_moments_e(ip-1,ij,ikx,iky,izm2)& - twothird*nadiab_moments_e(ip-1,ij,ikx,iky,izm1)& + twothird*nadiab_moments_e(ip-1,ij,ikx,iky,izp1)& -onetwelfth*nadiab_moments_e(ip-1,ij,ikx,iky,izp2)) ! Mirror terms Tnepp1j = ynepp1j(ip,ij) * nadiab_moments_e(ip+1,ij ,ikx,iky,iz) Tnepp1jm1 = ynepp1jm1(ip,ij) * nadiab_moments_e(ip+1,ij-1,ikx,iky,iz) Tnepm1j = ynepm1j(ip,ij) * nadiab_moments_e(ip-1,ij ,ikx,iky,iz) Tnepm1jm1 = ynepm1jm1(ip,ij) * nadiab_moments_e(ip-1,ij-1,ikx,iky,iz) ! Trapping terms UNepm1j = zNepm1j(ip,ij) * nadiab_moments_e(ip-1,ij ,ikx,iky,iz) UNepm1jp1 = zNepm1jp1(ip,ij) * nadiab_moments_e(ip-1,ij+1,ikx,iky,iz) UNepm1jm1 = zNepm1jm1(ip,ij) * nadiab_moments_e(ip-1,ij-1,ikx,iky,iz) Tmir = Tnepp1j + Tnepp1jm1 + Tnepm1j + Tnepm1jm1 + UNepm1j + UNepm1jp1 + UNepm1jm1 !! Electrical potential term IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 Tphi = phi(ikx,iky,iz) * (xphij(ip,ij)*kernel_e(ij,ikx,iky,iz) & + xphijp1(ip,ij)*kernel_e(ij+1,ikx,iky,iz) & + xphijm1(ip,ij)*kernel_e(ij-1,ikx,iky,iz) ) ELSE Tphi = 0._dp ENDIF !! Collision IF (CO .EQ. 0) THEN ! Lenard Bernstein CALL LenardBernstein_e(ip,ij,ikx,iky,iz,TColl) ELSEIF (CO .EQ. 1) THEN ! GK Dougherty CALL DoughertyGK_e(ip,ij,ikx,iky,iz,TColl) ELSE ! COSOLver matrix TColl = TColl_e(ip,ij,ikx,iky,iz) ENDIF !! Sum of all linear terms (the sign is inverted to match RHS) moments_rhs_e(ip,ij,ikx,iky,iz,updatetlevel) = & ! Perpendicular magnetic gradient/curvature effects - imagu*Ckxky(ikx,iky,iz)*hatR(iz)* (Tnepj + Tnepp2j + Tnepm2j + Tnepjp1 + Tnepjm1)& ! Parallel coupling (Landau Damping) - Tpare*inv_deltaz*gradz_coeff(iz) & ! Mirror term (parallel magnetic gradient) - gradzB(iz)* Tmir *gradz_coeff(iz) & ! Drives (density + temperature gradients) - i_ky * Tphi & ! Electrostatic background gradients - i_ky * K_E * moments_e(ip,ij,ikx,iky,iz,updatetlevel) & ! Numerical hyperdiffusion (totally artificial, for stability purpose) - mu*kperp2**2 * moments_e(ip,ij,ikx,iky,iz,updatetlevel) & ! Collision term + TColl !! Adding non linearity IF ( NON_LIN ) THEN moments_rhs_e(ip,ij,ikx,iky,iz,updatetlevel) = & moments_rhs_e(ip,ij,ikx,iky,iz,updatetlevel) - Sepj(ip,ij,ikx,iky,iz) ENDIF END DO kyloope END DO kxloope END DO zloope END DO jloope END DO ploope ! Execution time end CALL cpu_time(t1_rhs) tc_rhs = tc_rhs + (t1_rhs-t0_rhs) END SUBROUTINE moments_eq_rhs_e !_____________________________________________________________________________! !_____________________________________________________________________________! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!! Ions moments RHS !!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !_____________________________________________________________________________! SUBROUTINE moments_eq_rhs_i USE basic USE time_integration, ONLY: updatetlevel USE array USE fields USE grid USE model USE prec_const USE collision IMPLICIT NONE INTEGER :: p_int, j_int ! loops indices and polynom. degrees REAL(dp) :: kx, ky, kperp2 COMPLEX(dp) :: Tnipj, Tnipp2j, Tnipm2j, Tnipjp1, Tnipjm1, Tpari, Tphi COMPLEX(dp) :: Tmir, Tnipp1j, Tnipm1j, Tnipp1jm1, Tnipm1jm1 ! Terms from mirror force with non adiab moments COMPLEX(dp) :: UNipm1j, UNipm1jp1, UNipm1jm1 ! Terms from mirror force with adiab moments COMPLEX(dp) :: TColl ! terms of the rhs COMPLEX(dp) :: i_ky REAL(dp) :: delta_p0, delta_p1, delta_p2 INTEGER :: izm2, izm1, izp1, izp2 ! indices for centered FDF ddz ! Measuring execution time CALL cpu_time(t0_rhs) ploopi : DO ip = ips_i, ipe_i ! Hermite loop p_int= parray_i(ip) ! Hermite degree delta_p0 = 0._dp; delta_p1 = 0._dp; delta_p2 = 0._dp IF(p_int .EQ. 0) delta_p0 = 1._dp IF(p_int .EQ. 1) delta_p1 = 1._dp IF(p_int .EQ. 2) delta_p2 = 1._dp jloopi : DO ij = ijs_i, ije_i ! This loop is from 1 to jmaxi+1 j_int = jarray_i(ij) ! Loop on kspace zloopi : DO iz = izs,ize ! Obtain the index with an array that accounts for boundary conditions ! e.g. : 4 stencil with periodic BC, izarray(Nz+2) = 2, izarray(-1) = Nz-1 izp1 = izarray(iz+1); izp2 = izarray(iz+2); izm1 = izarray(iz-1); izm2 = izarray(iz-2); ! kxloopi : DO ikx = ikxs,ikxe kx = kxarray(ikx) ! radial wavevector kyloopi : DO iky = ikys,ikye ky = kyarray(iky) ! toroidal wavevector i_ky = imagu * ky ! toroidal derivative IF (Nky .EQ. 1) i_ky = imagu * kxarray(ikx) ! If 1D simulation we put kx as ky ! kperp2= gxx(iz)*kx**2 + 2._dp*gxy(iz)*kx*ky + gyy(iz)*ky**2 kperp2= kparray(ikx,iky,iz)**2 !! Compute moments mixing terms ! Perpendicular dynamic ! term propto n_i^{p,j} Tnipj = xnipj(ip,ij) * nadiab_moments_i(ip,ij,ikx,iky,iz) ! term propto n_i^{p+2,j} Tnipp2j = xnipp2j(ip) * nadiab_moments_i(ip+pp2,ij,ikx,iky,iz) ! term propto n_i^{p-2,j} Tnipm2j = xnipm2j(ip) * nadiab_moments_i(ip-pp2,ij,ikx,iky,iz) ! term propto n_e^{p,j+1} Tnipjp1 = xnipjp1(ij) * nadiab_moments_i(ip,ij+1,ikx,iky,iz) ! term propto n_e^{p,j-1} Tnipjm1 = xnipjm1(ij) * nadiab_moments_i(ip,ij-1,ikx,iky,iz) ! Parallel dynamic ! term propto N_i^{p,j+1}, centered FDF Tpari = xnipp1j(ip) * & ( onetwelfth*nadiab_moments_i(ip+1,ij,ikx,iky,izm2)& - twothird*nadiab_moments_i(ip+1,ij,ikx,iky,izm1)& + twothird*nadiab_moments_i(ip+1,ij,ikx,iky,izp1)& -onetwelfth*nadiab_moments_i(ip+1,ij,ikx,iky,izp2))& +xnipm1j(ip) * & ( onetwelfth*nadiab_moments_i(ip-1,ij,ikx,iky,izm2)& - twothird*nadiab_moments_i(ip-1,ij,ikx,iky,izm1)& + twothird*nadiab_moments_i(ip-1,ij,ikx,iky,izp1)& -onetwelfth*nadiab_moments_i(ip-1,ij,ikx,iky,izp2)) ! Mirror terms Tnipp1j = ynipp1j(ip,ij) * nadiab_moments_i(ip+1,ij ,ikx,iky,iz) Tnipp1jm1 = ynipp1jm1(ip,ij) * nadiab_moments_i(ip+1,ij-1,ikx,iky,iz) Tnipm1j = ynipm1j(ip,ij) * nadiab_moments_i(ip-1,ij ,ikx,iky,iz) Tnipm1jm1 = ynipm1jm1(ip,ij) * nadiab_moments_i(ip-1,ij-1,ikx,iky,iz) ! Trapping terms Unipm1j = znipm1j(ip,ij) * nadiab_moments_i(ip-1,ij ,ikx,iky,iz) Unipm1jp1 = znipm1jp1(ip,ij) * nadiab_moments_i(ip-1,ij+1,ikx,iky,iz) Unipm1jm1 = znipm1jm1(ip,ij) * nadiab_moments_i(ip-1,ij-1,ikx,iky,iz) Tmir = Tnipp1j + Tnipp1jm1 + Tnipm1j + Tnipm1jm1 + UNipm1j + UNipm1jp1 + UNipm1jm1 !! Electrical potential term IF ( p_int .LE. 2 ) THEN ! kronecker p0 p1 p2 Tphi = phi(ikx,iky,iz) * (xphij(ip,ij)*kernel_i(ij,ikx,iky,iz) & + xphijp1(ip,ij)*kernel_i(ij+1,ikx,iky,iz) & + xphijm1(ip,ij)*kernel_i(ij-1,ikx,iky,iz) ) ELSE Tphi = 0._dp ENDIF !! Collision IF (CO .EQ. 0) THEN ! Lenard Bernstein CALL LenardBernstein_i(ip,ij,ikx,iky,iz,TColl) ELSEIF (CO .EQ. 1) THEN ! GK Dougherty CALL DoughertyGK_i(ip,ij,ikx,iky,iz,TColl) ELSE! COSOLver matrix (Sugama, Coulomb) TColl = TColl_i(ip,ij,ikx,iky,iz) ENDIF !! Sum of all linear terms (the sign is inverted to match RHS) moments_rhs_i(ip,ij,ikx,iky,iz,updatetlevel) = & ! Perpendicular magnetic gradient/curvature effects - imagu*Ckxky(ikx,iky,iz)*hatR(iz)*(Tnipj + Tnipp2j + Tnipm2j + Tnipjp1 + Tnipjm1)& ! Parallel coupling (Landau Damping) - Tpari*inv_deltaz*gradz_coeff(iz) & ! Mirror term (parallel magnetic gradient) - gradzB(iz)*Tmir*gradz_coeff(iz) & ! Drives (density + temperature gradients) - i_ky * Tphi & ! Electrostatic background gradients - i_ky * K_E * moments_i(ip,ij,ikx,iky,iz,updatetlevel) & ! Numerical hyperdiffusion (totally artificial, for stability purpose) - mu*kperp2**2 * moments_i(ip,ij,ikx,iky,iz,updatetlevel) & ! Collision term + TColl !! Adding non linearity IF ( NON_LIN ) THEN moments_rhs_i(ip,ij,ikx,iky,iz,updatetlevel) = & moments_rhs_i(ip,ij,ikx,iky,iz,updatetlevel) - Sipj(ip,ij,ikx,iky,iz) ENDIF END DO kyloopi END DO kxloopi END DO zloopi END DO jloopi END DO ploopi ! Execution time end CALL cpu_time(t1_rhs) tc_rhs = tc_rhs + (t1_rhs-t0_rhs) END SUBROUTINE moments_eq_rhs_i