
)
,.

ECOLE POLYTECHNIO!)E
FEDERALE DE LAUSANNE

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

Jar

Compute Node
(Shared Memory)

� Collection

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

Jar

Compute Node
(Shared Memory)

val res =
jar.map(jellyBean => doSomething(jellyBean))

� Collection

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

Jar

Compute Node
(Shared Memory)

val res =
jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

Split the data.

Workers/threads independently
operate on the data shards in parallel.

Combine when done (if necessary) .

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

------------ ·

------------- ·

Jar

Compute Node
(Shared Memory)

val res =
jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

Split the data.

Workers/threads independently
operate on the data shards in parallel.

Combine when done (if necessary) .

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

------------ ·

------------- ·

Jar

Compute Node
(Shared Memory)

val res =
jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

Split the data.

Workers/threads independently
operate on the data shards in parallel.

Combine when done (if necessary) .

Visualizing Shared Memory Data Parallelism

What does data-parallel look like? val res =

Processing .. .
doSomething(...)

------------ ·
Processing .. .
doSomething(...) ------------- ·

Jar

Compute Node
(Shared Memory)

Processing .. .
doSomething (...)

jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

Split the data.

Workers/threads independently
operate on the data shards in parallel.

Combine when done (if necessary).

Visualizing Shared Memory Data Parallelism

What does data-parallel look like? val res =

Processing .. .
doSomething(...)

------------ ·
Processing .. .
doSomething(...) ------------- ·

Jar

Compute Node
(Shared Memory)

Processing .. .
doSomething (...)

jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

Split the data.

Workers/threads independently
operate on the data shards in parallel.

Combine when done (if necessary).

Scala's Parallel Collections is a
collections abstraction over shared
memory data-parallel execution.

Visualizing Distributed Data-Parallelism

What does distributed data-parallel look like?

Shared memory data parallelism:

� Split the data.

� Workers/threads independently
operate on the data shards in parallel.

� Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed
Sha,eel ffl@fflOF:f data parallelism:

� Split the data over several nodes.

� Nodes independently operate on the
data shards in parallel.

� Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed data parallelism:

� Split the data over several nodes.

� Nodes independently operate on the
data shards in parallel.

� Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed data parallelism:

� Split the data over several nodes.

� Nodes independently operate on the
data shards in parallel.

� Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed data parallelism:

� Split the data over several nodes.

� Nodes independently operate on the
data shards in parallel.

� Combine when done (if necessary).

New concern:

Now we have to worry about
network latency between workers.

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like? val res =

jar.map(jellyBean => doSomething(jellyBean))

Distributed data parallelism:

Split the data over several nodes.

Nodes independently operate on the
data shards in parallel.

Combine when done (if necessary).

However, like parallel collections, we
can keep collections abstraction over
distributed data-parallel execution.

Data-Parallel to Distributed Data-Parallel

Shared memory: Distributed:

Processing .. .
doSomethine(...) --------- ·) <+> �----

Processing .. .
doSomething(...) �

<+>��
Processing .. .

doSometh ing (...) Jar

Shared memory case: Data-parallel programming model. Data
partitioned in memory and operated upon in parallel.

Distributed case: Data-parallel programming model. Data partitioned
between machines, network in between, operated upon in parallel.

Data-Parallel to Distributed Data-Parallel

Shared memory: Distributed:

Processing .. .
doSomethine(...) --------- ·) <+>

Processing .. .
doSomething(...) �

<+>��
Processing .. .

doSometh ing (...) Jar

Overall, most all properties we learned about related to shared memory
data-parallel collections can be applied to their distributed counterparts.
E.g., watch out for non-associative reduction operations! relAlt\ce(---) •

However, must now consider latency when using our model.

Apache Spark

Throughout this part of the course we will use the
Apache Spark framework for distributed data-parallel
programming.

Spark implements a distributed data parallel model called
Resilient Distributed Datasets (RDDs)

Distributed Data-Parallel: High Level Illustration

Given some large dataset that can't fit into memory on a single node . . .

Distributed Data-Parallel: High Level Illustration

Chunk up the data ...

Distributed Data-Parallel: High Level Illustration

Chunk up the data ...

Distributed Data-Parallel: High Level Illustration

Distribute it over your cluster of machines.

Distributed Data-Parallel: High Level Illustration

Distribute it over your cluster of machines.

•

Distributed Data-Parallel: High Level Illustration

From there, think of your distributed data like a single collection ...

val wiki: RDD[WikiArticle] = ••.

wiki

Example:
Transform the text (not titles) of
all wiki articles to lowercase.

wiki.map {
article => article.text.toLowerCase

}

ECOLE POLYTECHNIQVE
FEDERALE DE LAUSANNE

Data-Parallel Programming

In the Parallel Programming course, we learned:

...,. Data parallelism on a single multicore/multi-processor machine .
...,. Parallel collections as an implementation of this paradigm.

Data-Parallel Programming

In the Parallel Programming course, we learned:

...,. Data parallelism on a single multicore/multi-processor machine .
...,. Parallel collections as an implementation of this paradigm.

Today:

...,. Data parallelism in a distributed setting .
...,. Distributed collections abstraction from Apache Spark as an

implementation of this paradigm.

Distribution

Distribution introduces important concerns beyond what we had to worry
about when dealing with parallelism in the shared memory case:

111-- Partial failure: crash failures of a subset of the machines involved in a
distributed computation .

...,. Latency: certain operations have a much higher latency than other
operations due to network communication.

Distribution

Distribution introduces important concerns beyond what we had to worry
about when dealing with parallelism in the shared memory case:

111-- Partial failure: crash failures of a subset of the machines involved in a
distributed computation .

...,. Latency: certain operations have a much higher latency than other
operations due to network communication.

Latency cannot be masked completely; it will be an important
aspect that also impacts the programming model.

Important Latency Numbers

L 1 cache reference 0.5ns

Branch mispredict 5ns

L2 cache reference 7ns

Mutex lock/unlock 25ns

Main memory reference l00ns

Compress lK bytes with Zippy 3,000ns == 3µs

Send 2K bytes over lGbps network 20,000ns == 20µs

SSD random read 150,000ns == 150µs

Read 1 MB sequentially from 250,000ns == 250µs

Roundtrip within same datacenter 500,000ns == 0.5ms

Read 1MB sequentially from SSD 1,000,000ns == lms

Disk seek 10,000,000ns == l0ms

Read 1MB sequentially from disk 20,000,000ns == 20ms

Send packet US ---+ Europe ---+ US 150,000,000ns == 150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L 1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress lK bytes with Zippy

Send 2K bytes over lGbps network

SSD random read

0.5ns

5ns

7ns

25ns

l00ns

3,000ns == 3µs

20,000ns == 20µs

150,000ns == 150µs
Read 1 MB sequ�tially from yY\f,tflort _f50,000ns = 250µs

Roundtrip within same datacenter 500,000ns == 0.5ms

Read 1MB sequentially from SSD 1,000,000ns == lms

Disk seek 10,000,000ns == l0ms

Read 1MB sequentially from disk 20,000,000ns == 20ms -
Send packet US ---+ Europe ---+ US 150,000,000ns == 150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L 1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress lK bytes with Zippy

Send 2K bytes over lGbps network

SSD random read
Read 1 MB sequentially from

Roundtrip within same datacenter

Read 1MB sequentially from SSD

Disk seek

Read 1MB sequentially from disk

Send packet US ---+ Europe ---+ US

0.5ns

5ns

7ns

25ns

l00ns

3,000ns == 3µs

20,000ns == 20µs

150,000ns == 150µs

250,000ns == 250µs

500,000ns == 0.5ms

1,000,000ns == lms

10,000,000ns == l0ms

20 000 000ns == 20ms , ,

150,000,000ns == 150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L 1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

0.5ns

5ns

7ns

25ns

l00ns

Compress lK bytes with Zippy 3,000ns == 3µs
Send 2K bytes over lGbps network 20,000ns == 20µs

SSD random read 150,000ns == 150µs
Read 1 MB sequentially from M�o"1 250,000ns = 250µs

Roundtrip within same datacenter

Read 1MB sequentially from SSD

Disk seek

Read 1MB sequentially from disk

')>, Send packet US � Europe � US

500,000ns

1,000,000ns

10,000,000ns

20,000,000ns

150,000,000ns

== 0.5ms

== lms

== l0ms

== 20ms

== 150ms

YY\t,wto�i: fostat­
cJisK: slo�
ne:hJtY1C 1

• slovi tSi

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Latency Numbers Intuitively

To get a better intuition about the orders-of-magnitude differences of
these numbers, let's humanize these durations.

Method: multiply all these durations by a billion.

Then, we can map each latency number to a human activity.

Humanized Latency Numbers

Humanized durations grouped by magnitude:

Minute:

Ll cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock

Hour:

0.5 s
5 s
7 s
25 s

Main memory reference 100 s
Compress 1K bytes with Zippy 50 min

One heart beat (0.5 s)
Yawn
Long yawn
Making a coffee

Brushing your teeth
One episode of a TV show

Humanized Latency Numbers

Day:

Send 2K bytes over 1 Gbps network 5.5 hr

Week:

SSD random read 1 . 7 days
Read 1 MB sequentially from memory 2.9 days
Round trip within same datacenter 5.8 days
Read 1 MB sequentially from SSD 11 . 6 days

From lunch to end of work day

A normal weekend
A long weekend
A medium vacation
Waiting for almost 2
weeks for a delivery

More Humanized Latency Numbers

Year:

Disk seek 16 .5 weeks
Read 1 MB sequentially from disk 7 .8 months

The above 2 together 1 year

Decade:

Send packet CA->Netherlands->CA 4.8 years

A semester in university
Almost producing a new
human being

Average time it takes to
complete a bachelor's degree

Latency and System Design

Big Data Processing and Latency?

With some intuit ion now a bout how expensive network communication
and disk operations can be, one may ask:

How do these latency numbers relate to big data processing?

To answer this question, let's first start with Spark's predecessor, Hadoop.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's
an open source implementation of Google's MapReduce.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's
an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

...,. a simple AP I (simple map and reduce steps)
-.. ** fault tolerance **

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. It's
an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

...,. a simple AP I (simple map and reduce steps)
-.. ** fault tolerance **

Fault tolerance is what made it possible for Hadoop/MapReduce to scale
to 100s or 1000s of nodes at all.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway th rough a job.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway th rough a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

...,. computations on unthinkably large data sets to succeed to
completion.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway th rough a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

...,. computations on unthinkably large data sets to succeed to
completion.

Fault tolerance + simple API =
At Google, MapReduce made it possible for an average Google software
engineer to craft a complex pipeline of map/reduce stages on extremely
large data sets.

Why Spark?

•

Why Spark?

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in order to recover from potential
failures, Hadoop/MapReduce shuffles its data and write intermediate data
to disk.

Why Spark?

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in order to recover from potential
failures, Hadoop/MapReduce shuffles its data and write intermediate data
to disk.

Remember:
Reading/writing to disk: lOOlx slower than in-memory

Network communication: 1,000,000x slower than in-memory

Why Spark?

Spark ...

1111-- Retains fault-tolerance
..,. Different strategy for handling latency (latency significantly reduced!)

Why Spark?

Spark ...

1111-- Retains fault-tolerance
..,. Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Why Spark?

Spark ...

1111-- Retains fault-tolerance
..,. Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data immutable and in-memory. All operations on data
are just functional transformations, like regular Scala collections . Fault
tolerance is achieved by replaying functional transformations over original
dataset .

Why Spark?

Spark ...

_... Retains fault-tolerance
...,. Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data immutable and in-memory. All operations on data
are just functional transformations, like regular Scala collections. Fault
tolerance is achieved by replaying functional transformations over original
dataset.

Result: Spark has been shown to be l00x more performant than Hadoop,
while adding even more expressive APls.

Latency and System Design (t"tUJN\o,l\lZ:eJ. J

Spark versus Hadoop Performance?

C
0

�

120 .. .
r I Os

90

2 60
�
Q)

Q)
E
I-

30

0
Logistic Regression

Hadoop
Spark

Logistic Regression in
Hadoop and Spark
Source: spark.apache.org

Spark versus Hadoop Performance?

Logistic Regression in
Hadoop and Spark,
more iterations!
Source: https: //databricks.com/
blog /2014 /03 /20 /apache-spark-a­
del ig ht-for-developers. htm I

·-

Hadoop vs Spark Performance, More Intuitively

Day-to-day, these perforamnce improvements can mean the difference
between:

Hadoop/MapReduce
1. s-t o.rl- j O .b
2. u;t l�ncJ,, ll(
j. � �ft-ee
�- pi� vr l(io\J
5. job tArry(-t.k.s

Spark versus Hadoop Popularity?

According to Google Trends, Spark has surpassed Hadoop in popularity.

100

75

50

25

Feb 1, 2007 Jul 1,2010

Google Trends:
Apache Hadoop vs Apache Spark
February 2007 - February 2017

Dec 1, 2013

Apache Spark

Apache Hadoop

)

,.

ECOLE POLYTECHNIO!)E
FEDERALE DE LAUSANNE

Resi I ient Distributed Datasets (RD Ds)

RDDs seem a lot like immutable sequential or parallel Scala collections.

Resi I ient Distributed Datasets (RD Ds)

RDDs seem a lot like immutable sequential or parallel Scala collections.

abstract class RDD[TJ {

}

def map[U](f: T => U): RDD[UJ = ...
def flatMap[UJ(f: T => TraversableOnce[UJ): RDD[UJ = ...
def filter(f: T => Boolean): RDD[TJ = ...
def reduce(f: (T, T) => T): T = ...

Resi I ient Distributed Datasets (RD Ds)

RDDs seem a lot like immutable sequential or parallel Scala collections.

abstract class RDD[TJ {

}

def map[U](f: T => U): RDD[UJ = ...
def flatMap[UJ(f: T => TraversableOnce[UJ): RDD[UJ = ...
def filter(f: T => Boolean): RDD[TJ = ...
def reduce(f: (T, T) => T): T = ...

Most operations on RDDs, like Scala's immutable List, and Scala's
parallel collections, are higher-order functions.

That is, methods that work on RDDs, taking a function as an argument,
and which typically return RDDs.

Resi I ient Distributed Datasets (RD Ds)

RDDs seem a lot like immutable sequential or parallel Scala collections.

Resi I ient Distributed Datasets (RD Ds)

RDDs seem a lot like immutable sequential or parallel Scala collections.

Combinators on Scala
parallel/ sequential collections:
map

flatMap

filter

reduce

fold

aggregate

Combinators on RDDs:

map

flatMap

filter

reduce

fold

aggregate

Resi I ient Distributed Datasets (RD Ds)

While their signatures differ a bit, their semantics (macroscopically) are
the same:

map[BJ(f: A=> B): List[BJ // Scala List

map[B](f: A=> B): RDD[BJ // Spark ROD

flatMap[BJ(f: A=> TraversableOnce[B]): List[BJ // Scala List

flatMap[BJ(f: A=> TraversableOnce[B]): RDD[BJ // Spark ROD

filter(pred: A=> Boolean): List[AJ // Scala List

filter(pred: A=> Boolean): RDD[AJ // Spark ROD

Resi I ient Distributed Datasets (RD Ds)

While their signatures differ a bit, their semantics (macroscopically) are
the same:

reduce(op: (A, A)=> A): A// Scala List

reduce(op: (A, A)=> A): A// Spark RDD

fold(z: A)(op: (A, A)=> A): A// Scala List

fold(z: A)(op: (A, A)=> A): A// Spark RDD

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B // Scala

aggregate[BJ(z: B)(seqop: (B, A)=> B, combop: (B, B) => B): B // Spark RDD

Resi I ient Distributed Datasets (RD Ds)

Using RDDs in Spark feels a lot like normal Scala sequential/parallel
collections, with the added knowledge that your data is distributed across
several machines.

Example:

Given, val encyclopedia: RDD[String], say we want to search all of
encyclopedia for mentions of EPFL, and count the number of pages that
mention EPFL.

Resi I ient Distributed Datasets (RD Ds)

Using RDDs in Spark feels a lot like normal Scala sequential/parallel
collections, with the added knowledge that your data is distributed across
several machines.

Example:

Given, val encyclopedia: RDD[String], say we want to search all of
encyclopedia for mentions of EPFL, and count the number of pages that
mention EPFL.

val result= encyclopedia.filter(page => page.contains("EPFL"))
.count()

Example: Word Count

The 11 Hello, World!" of programming with large-scale data.

II Creat

val rdd = spark.textFile("hdfs:// ... ")

val count=???

Example: Word Count

The 11 Hello, World!" of programming with large-scale data.

II Create an RDD

val rdd = spark.textFile("hdfs:// ... ")

val count = rdd.flatMap(line => line.split(" "))// separate lines into words

Example: Word Count

The 11 Hello, World!" of programming with large-scale data.

II Create an RDD

val rdd = spark.textFile("hdfs:// ... ")

val count = rdd.flatMap(line => line.split(" "))// separate lines into words

.map(word => (word, 1)) // include something to count
a. I --

Example: Word Count

The 11 Hello, World!" of programming with large-scale data.

II Create an RDD

val rdd = spark.textFile("hdfs:// ... ")

val count = rdd.flatMap(line => line.split(" "))// separate lines into words

That's it.

.map(word => (word, 1)) // include something to count

.reduceByKey(_ + _) // sum up the 1s in the pairs

How to Create an ROD?

RDDs can be created in two ways:

How to Create an ROD?

RDDs can be created in two ways:

...,. Transforming an ex ist ing RDD .

...,. From a SparkContext (or SparkSession) object.

How to Create an ROD?

RDDs can be created in two ways:

..,. Transforming an existing RDD .

..,. From a SparkContext (or SparkSession) object.

Transforming an existing RDD.

Just like a call to map on a List returns a new List, many higher-order
functions defined on RDD return a new RDD.

•

How to Create an ROD?

RDDs can be created in two ways:

...,. Transforming an existing RDD .

...,. From a SparkContext (or SparkSession) object.

/I/
• • •

From a SparkContext (or SparkSession) object .
The SparkContext object (renamed SparkSession) can be thought of as
your handle to the Spark cluster. It represents the connection between the
Spark cluster and your running application. It defines a handful of
methods which can be used to create and populate a new RDD:

...,. �parallelize: convert a local Scala collection to an RDD .

...,. textFile: read a text file from HDFS or a local file system and return
an RDD of String

•

)

E�O�E POLYTECHNIQ1JE
FEDERALE DE LAUSANNE

Big Data Analysis with Scala and Spark

Heather Miller

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformers. Return new collections as results. (Not single values.)
Examples: map, filter, flatMap, groupBy

map(f: A=> B): Traversable[BJ

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformers. Return new collections as results. (Not single values.)
Examples: map, filter, flatMap, groupBy

map(f: A=> B): Traversable[BJ

Accessors: Return single values as results. (Not collections.)
Examples: reduce, fold, aggregate.

reduce(op: (A, A)=> A): A
,- A

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and accessors, but there are some
im portant differences.

Transformations. Return new caW@ctio1,s RDDs as results.

Actions. Com pute a result based on an RDD, and either returned or
saved to an external storage system (e.g. , HDFS).

\\I
• • •

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and accessors, but there are some
im portant differences.

�
Transformations. Return new collections RDDs as results.
They are laz , their result RDD is not immediately computed.

Actions. Com pute a result based on an RDD, and either returned or
saved to an external storage system (e.g. , HDFS).
They are eager, their result is immediately computed.

•

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and accessors, but there are some
im portant differences.

Transformations. Return new collections RDDs as results.
They are lazy, their result RDD is not immediately computed.

Actions. Com pute a result based on an RDD, and either returned or
saved to an external storage system (e.g. , HDFS).
They are eager, their result is immediately computed.

Laziness/eagerness is how we can limit network
communication using the programming model.

•

Example

Consider the following sim ple exam ple:

val largelist: List[String] = ...

val wordsRdd = sc.Rarallelize(largelist)

val lengthsRdd = wordsRdd.map(_.length)

RDD [S--lrit'\j1
R.t)t> (lVl4:1

What has happened on the cluster at this point?

Example

Consider the following sim ple exam ple:

val largelist: List[String] = ...
val wordsRdd = sc.parallelize(largelist)
val lengthsRdd = wordsRdd.map(_.length)

What has happened on the cluster at this point?

Nothing. Execution of map (a transform at ion) is deferred.

To kick off the com putation and wait for its resu It ...

Example

Consider the following sim ple exam ple:

val largelist: List[String] = ...

val wordsRdd = sc.parallelize(largelist)

val lengthsRdd = wordsRdd.map(_.length)

val totalChars = lengthsRdd.reduce(_ + _)

... we can add an action

Common Transformations in the Wild
lPri:='11 l .. .

map

flatMap

filter

distinct

map[BJ(f: A=> B): RDD[BJ L C

Apply function to each element in the ROD and
retrun an ROD of the result.

flatMap[BJ(f: A=> TraversableOnce[BJ): RDD[BJ �
Apply a function to each element in the ROD and return
an ROD of the contents of the iterators returned.

filter(pred: A=> Boolean): RDD[AJ� -

Apply predicate function to each element in the ROD and

return an ROD of elements that have passed the predicate
condition, pred.

distinct(): RDD[BJ<
Return ROD with duplicates removed.

Common Actions in the Wild
tA&�Gt- 1

.., ii.?=-

collect

count

take

reduce

foreach

collect(): Array[T] t.

Return all elements from RDD.

count(): Long t
Return the number of elements in the RDD.

take(num: Int): Array[T] E: -
Return the first num elements of the RDD.

reduce(op: (A, A) => A): A""
Combine the elements in the RDD together using op
function and return result.

foreach(f: T => Unit): Unit<
Apply function to each element in the RDD.

Another Exam pie

Let's assume that we have an RDD[String] which contains gigabytes of
logs collected over the previous year. Each element of this ROD represents
one line of logging.

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors
are logged with a prefix that includes the word 11error" ...

How would you determine the number of errors that were logged in

December 2016?

val lastYearslogs: RDD[String] = ...

Another Exam pie

Let's assume that we have an RDD[String] which contains gigabytes of
logs collected over the previous year. Each element of this ROD represents
one line of logging.

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors
are logged with a prefix that includes the word 11error" ...

How would you determine the number of errors that were logged in

December 2016?

val lastYearslogs: RDD[String] = ...
val numDecErrorlogs

= lastYearslogs.filter(lg => lg.contains("2016-12") && lg.contains("error"))
.count()

Benefits of Laziness for Large-Scale Data

Spark com putes RDDs the first time they are used in an action.

This helps when processing large amounts of data.

Example:

val lastYearslogs: RDD[String] = ...

val firstlogsWithErrors = lastYearslogs.filter(_.contains("ERROR")) .take(10)

The execution of filter is deferred until the take action is applied.

Spark leverages this by analyzing and optimizing the chain of operations before

executing it.

Spark will not compute intermediate RDDs. Instead, as soon as 10 elements of the

filtered RDD have been computed, firstLogsWi thErrors is done. At this point Spark

stops working, saving time and space computing elements of the unused result of filter.

Transformations on Two RDDs
LA�i __

rtAdJ r tld. 1..

\{ ,A_ y d J. 3 ::_ rJ.JJ . \A.t'\ i Oil (l-fAJ_ 2.)

RDDs also support set-like operations, like union and intersection.

Two-RDD transformations com bine two RDDs are com bined into one.

union

intersection

subtract

cartesian

union(other: RDD[T]): RDD[T] '=--

Return an RDD containing elements from both RDDs.

intersection(other: RDD[T]): RDD[T]'=

Return an RDD containing elements only found in
both RDDs.

subtract(other: RDD[T]): RDD[T]< -

Return an RDD with the contents of the other RDD
removed.

cartesian[U](other: RDD[U]): RDD[(T, U)] < -

Cartesian product with the other RDD.

Other Useful ROD Actions
����I V

RDDs also contain other im portant actions unrelated to regular Scala
collections, but which are useful when dealing with distributed data.

takeSample

takeOrdered

saveAsTextFile

takeSample(withRepl: Boolean, num: Int): Array[T] (::r---­

Return an array with a random sample of num elements of

the dataset, with or without replacement.

takeOrdered(num: Int)(implicit

ord: Ordering[T]): Array[T] ��-

Return the first n elements of the ROD using either

their natural order or a custom comparator.

saveAsTextFile(path: String): Unit:4:

Write the elements of the dataset as a text file in

the local filesystem or HDFS.

saveAsSequenceFile saveAsSequenceFile(path: String): Unit� -
Write the elements of the dataset as a Hadoop Se­

quenceFile in the local filesystem or HDFS.

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

Iteration and Big Data Processing

Iteration in Hadoop:

Input
(e.g., from HDFS)

iteration 1 iteration 2 iteration 3 …
file sy

stem

read
file sy

stem

write file sy
stem

read
file sy

stem

write file sy
stem

read
file sy

stem

write

Read/write
intermediate data

Read/write
intermediate data

Read/write
intermediate data

MapReduce program MapReduce program MapReduce program

Iteration and Big Data Processing

Iteration in Hadoop:

Input
(e.g., from HDFS)

iteration 1 iteration 2 iteration 3 …
file sy

stem

read
file sy

stem

write file sy
stem

read
file sy

stem

write file sy
stem

read
file sy

stem

write

Read/write
intermediate data

Read/write
intermediate data

Read/write
intermediate data

MapReduce program MapReduce program MapReduce program

>90% of time in IO that Spark can avoid.

Iteration and Big Data Processing

Iteration in Hadoop:

Input
(e.g., from HDFS)

iteration 1 iteration 2 iteration 3 …
file sy

stem

read
file sy

stem

write file sy
stem

read
file sy

stem

write file sy
stem

read
file sy

stem

write

Read/write
intermediate data

Read/write
intermediate data

Read/write
intermediate data

MapReduce program MapReduce program MapReduce program

Iteration in Spark:

Input
(e.g., from HDFS)

iteration 1 iteration 2 iteration 3 …
file sy

stem

read

In-memory computations, no need to read/write to disk.

� � � ·
�

=1

(; ,)

� � � ·
�

=1

(; ,)

val =

var =

for <-

val = =>

_ _

val =

var =

for <-

val = =>

_ _

points

To tell Spark to cache an RDD in memory, simply call
persist() or cache() on it.

val : RDD String =

val = _

val =

val : RDD String =

val = _

val =

val =

count logsWithErrors

val =

var =

for <-

val = =>

_ _

points

�
�
�
�
�

cache

persist

�
†

�

†

MEMORY_ONLY

�
†

�

†

Key takeaway:
Despite similar-looking API to Scala Collections,

the deferred semantics of Spark's RDDs are very unlike Scala Collections.

Key takeaway:
Despite similar-looking API to Scala Collections,

the deferred semantics of Spark's RDDs are very unlike Scala Collections.

�

�

Key takeaway:
Despite similar-looking API to Scala Collections,

the deferred semantics of Spark's RDDs are very unlike Scala Collections.

�

�

val : RDD String =

val = _

val : RDD String =

val = _

val : RDD String =

val = _

_

val : RDD String =

val = _

_

)

,,.

E�O�E POLYTECHNIQlJE
FEDERALE DE LAUSANNE

case class : String : Int

val : RDD Person =

case class : String : Int

val : RDD Person =

val =

Array[Person] first10

How Spark Jobs are Executed

Master

Workers

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

This is the node you’re interacting with
when you’re writing Spark programs!

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

This is the node you’re interacting with
when you’re writing Spark programs!

These are the nodes actually
executing the jobs!

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

This is the node you’re interacting with
when you’re writing Spark programs!

These are the nodes actually
executing the jobs!

But how do they
all communicate?

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

via a cluster manager.
Cluster Manager

Allocates resources across
cluster, manages scheduling.

e.g., YARN/Mesos

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

All these processes are coordinated by
the driver program.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

All these processes are coordinated by
the driver program.

The driver is:
‣ the process where the main() method of your

program runs.
‣ the process running the code that creates a

SparkContext, creates RDDs, and stages up or
sends off transformations and actions.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

These processes that run computations
and store data for your application are
executors.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

These processes that run computations
and store data for your application are
executors.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

These processes that run computations
and store data for your application are
executors.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes
running on a cluster.

These processes that run computations
and store data for your application are
executors.

Executors:
‣ Run the tasks that represent the application.

‣ Provide in-memory storage for cached RDDs.
‣ Return computed results to the driver.

How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

Execution of a Spark program:
1. The driver program runs the Spark application, which

creates a SparkContext upon start-up.
2. The SparkContext connects to a cluster manager (e.g.,

Mesos/YARN) which allocates resources.
3. Spark acquires executors on nodes in the cluster, which

are processes that run computations and store data for
your application.

4. Next, driver program sends your application code to the
executors.

5. Finally, SparkContext sends tasks for the executors to
run.

case class : String : Int

val : RDD Person =

case class : String : Int

val : RDD Person =

case class : String : Int

val : RDD Person =

case class : String : Int

val : RDD Person =

val =

Array[Person] first10

case class : String : Int

val : RDD Person =

val =

