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?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ?? 

Think again what happens when you have to do a groupBy or a groupByKey. 

Remember our data is distributed! Did you notice anything odd? 
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?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ?? 

Think again what happens when you have to do a groupBy or a groupByKey. 

Remember our data is distributed! Did you notice anything odd? 

val pairs = sc.parallelize(List((1, "one"), (2, "two"), (3, "three"))) 

pairs.groupByKey() 

II res2: org.apache.spark.rdd.RDD[(Int, Iterable[String])J 

II = ShuffledRDD[16] at groupByKey at <console>:37 

We typically have to move data from one node to another to be "grouped 

with" its key. Doing this is called "shuffling". 

Shuffles Happen 

Shuffles can be an enormous hit to because it means that Spark must send 

data from one node to another. Why? Latency! 



Grouping and Reducing, Example 

Let's start with an example. Given: 

case class CFFPurchase(customerid: Int, destination: String, price: Double) 

Assume we have an RDD of the purchases that users of the Swiss train 

company's, the CFF's, mobile app have made in the past month. 

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile( ... ) 

Goal: calculate how many trips, and how much money was spent by 

each individual customer over the course of the month. 
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Grouping and Reducing, Example 

Goal: calculate how many trips, and how much money was spent by 

each individual customer over the course of the month. 

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile( ... ) 

// Returns: Array[(Int, (Int, Double))] 

val purchasesPerMonth = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() // groupByKey returns RDD[(K, Iterable[VJ )J 

.map(p => (p._1, (p._2.size, p._2.sum))) 

.collect() 



Grouping and Reducing, Example - What's Happening? 

Let's start with an example dataset: 

val purchases = List(CFFPurchase(100, "Geneva", 22.25), 

CFFPurchase (300, ''Zurich'', 42. 10), 

CFFPurchase(100, "Fribourg", 12.40), 

CFFPurchase (200, ''St. Gallen'', 8. 20), 

CFFPurchase(100, ''Lucerne'', 31.60), 

CFFPurchase (300, ''Basel'', 16. 20)) 

What might the cluster look like with this data distributed over it? 
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What might the cluster look like with this data distributed over it? 

Starting with purchasesRdd: 
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CFFPurchase(100, "Lucerne", 31 .60) 

CFFPurchase(100, "Fribourg", 12.40) 
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Grouping and Reducing, Example - What's Happening? 

What might this look like on the cluster? 

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

I 

I 

I ----------
,
---------

-

(100, 22.25) 

( 1 00 , 31 . 60) 

CFFPurchase(100, "Fribourg", 12.40) 

CFFPurchase(200, "St. Gallen", 8.20) 

I 

I --------- ---------

( 1 00 , 1 2 . 40) 

(200, 8.20) 

CFFPurchase(300, "Zurich", 42.10) 

CFFPurchase(300, "Basel", 16.20) 

I 

I 

----------
,
---------

-
------

map 
(300, 42.10) 

(300, 16.20) 
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.groupByKey() // groupByKey returns RDD[K, Iterable[VJ J 



Grouping and Reducing, Example 

Goal: calculate how many trips, and how much money was spent by 

each individual customer over the course of the month. 

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile( ... ) 

val purchasesPerMonth = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() // groupByKey returns RDD[K, Iterable[VJ J 

Note: groupByKey results in one key-value pair per key. And this 

single key-value pair cannot span across multiple worker nodes. 



Grouping and Reducing, Example - What's Happening? 

What might this look like on the cluster? 

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

I 

I 

I ----------
,
---------

-

(100, 22.25) 

( 1 00 , 31 . 60) 

CFFPurchase(100, "Fribourg", 12.40) 

CFFPurchase(200, "St. Gallen", 8.20) 

I 

I --------- ---------

( 1 00 , 1 2 . 40) 

(200, 8.20) 

CFFPurchase(300, "Zurich", 42.10) 

CFFPurchase(300, "Basel", 16.20) 

I 

I 

----------
,
---------

-
------

map 
(300, 42.10) 

(300, 16.20) 



Grouping and Reducing, Example - What's Happening? 

What might this look like on the cluster? 

--:==--=--=--=--=---=---=---=---=----=----=----=----=----=-----=-----=-----_-_-_-_- _- _- _- _- _- _-�- �--_ -_ -_ -_ -_ -- -- -- -----------�������������----==;-' --:==--=--=--=---=---=---=---=----=----=----=----=----=-----=-----=-----=-----_-_-_-_-_- _- _- _- _- _-�-

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

I 

I 

I ---------- ---------

(100, 22.25) 

( 1 00 , 31 . 60) 

---------

(100, [22.25, 12.40, 31.60]) 

CFFPurchase(100, "Fribourg", 12.40) 

CFFPurchase(200, "St. Gallen", 8.20) 

I 

I 

CFFPurchase(300, "Zurich", 42.10) 

CFFPurchase(300, "Basel", 16.20) 

I 

I 

--------- --------- ---------- --------- ------

( 1 00 , 1 2 . 40) 

(200, 8.20) 

(200, [8.20]) 

(300, 42.10) 

(300, 16.20) 

map 

--------- ----- · 
groupByKey 

(300, [42.10, 16.20]) 



Grouping and Reducing, Example - What's Happening? 

What might this look like on the cluster? 

--:==--=--=--=--=--=--=--=-================-=-=-=---===;-' --:==--=--=-================-=-=-=-=--=---=---=---=-----===;-'--:==--=--=--=--=--=--=-================-=-=-=--=----===;-' 

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

I 

I 

I ---------- ---------

(100, 22.25) 

( 1 00 , 31 . 60) 

SHUFFLE 
"Shuffles" data 
across network 

(100, [22.25, 12.40, 31.60]) 

CFFPurchase(100, "Fribourg", 12.40) 

CFFPurchase(200, "St. Gallen", 8.20) 

I 

I 

CFFPurchase(300, "Zurich", 42.10) 

CFFPurchase(300, "Basel", 16.20) 

I 

I 

--------- --------- ---------- --------- ------

( 1 00 , 1 2 . 40) 

(200, 8.20) 

(200, [8.20]) 

(300, 42.10) 

(300, 16.20) 

(300, [42.10, 16.20]) 

map 



Reminder: Latency Matters (Humanized) 

Shared Memory Distributed 

Seconds Days 

L1 cache reference .......... 0.5s 
Roundtrip within 

L2 cache reference ............ 7s same datacenter ......... 5.8 days 

Mutex lock/unlock ............ 25s 

Minutes Years 

Main memory reference ..... 1m 40s Send packet 

CA->Netherlands->CA .... 4.8 years 

We don't want to be sending all of our data over the network if it's 

not absolutely required. Too much network communication kills 

performance. 



Can we do a better job? 

Perhaps we don't need to send all pairs over the network. 

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

I 

I 

I ----------
,
---------

-

(100, 22.25) 

( 1 00 , 31 . 60) 

CFFPurchase(100, "Fribourg", 12.40) 

CFFPurchase(200, "St. Gallen" 
' 

8.20) 

I 

I --------- ,---------
(100, 12.40) 

(200, 8.20) 

CFFPurchase(300, "Zurich" 
' 

42. 10) 

CFFPurchase(300, "Basel" 
' 

16.20) 

I 

I 

• ----------
,
---------

-

(300, 42. 10) 

(300, 16.20) 

------
map 



Can we do a better job? 

Perhaps we don't need to send all pairs over the network. 

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

CFFPurchase(100, "Fribourg", 12.40) 

CFFPurchase(200, "St. Gallen", 8.20) 

CFFPurchase(300, 

CFFPurchase(300, 

"Zurich" 
' 

42. 10) 

"Basel" 
' 

16.20) 

I 

I 

I 

I 

I __________ 
t 
_________ _ --------- --------- ----------

,
---------

-

(100, 22.25) 

( 1 00 , 31 . 60) 

( 1 00, 1 2 . 40) 

(200, 8.20) 

(300, 

(300, 

42. 10) 

16.20) 

Perhaps we can reduce before we shuffle. This could greatly reduce the 

amount of data we have to send over the network. 

------
map 



Grouping and Reducing, Example - Optimized 

We can use reduceByKey. 

Conceptually, reduceByKey can be thought of as a combination of first 

doing groupByKey and then reduce-ing on all the values grouped per key. 

It's more efficient though, than using each separately. We'll see how in the 

following example. 

Signature: 

def reduceByKey(func: (V, V) => V): RDD[(K, V)J 



Grouping and Reducing, Example - Optimized 

Goal: calculate how many trips, and how much money was spent by each 

individual customer over the course of the month. 

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile( ... ) 

val purchasesPerMonth = 

purchasesRdd.map(p => (p.customerld, (1, p.price) ) )  // Pair ROD 

.reduceByKey( ... ) //? 



Grouping and Reducing, Example - Optimized 

Goal: calculate how many trips, and how much money was spent by each 

individual customer over the course of the month. 

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile( ... ) 

val purchasesPerMonth = 

purchasesRdd.map(p => (p.customerld, (1, p.price))) // Pair ROD 

.reduceByKey( ... ) //? 

Notice that the function passed to map has changed. It's now p => 

(p.customerld, (1, p.price)). 

What function do we pass to reduceByKey in order to get a result 

that looks like: ( customerid, (numTrips, totalSpent)) returned? 



Grouping and Reducing, Example - Optimized 

val purchasesPerMonth = 

purchasesRdd.map(p => (p.customerld, 

.reduceByKey( ... ) //? 

p.price) ) )  / Pair ROD 

( I VltJ Do�le 



Grouping and Reducing, Example - Optimized 

val purchasesPerMonth = 

purchasesRdd.map(p => (p.customerld, (1, p.price) ) )  // Pair ROD 

.reduceByKey((v1, v2) => (v1 ._1 + v2._1, v1 ._2 + v2._2)) 

.collect() 

l+f 



Grouping and Reducing, Example - Optimized 

val purchasesPerMonth = 

purchasesRdd.map(p => (p.customerld, (1, p.price))) // Pair ROD 

.reduceByKey((v1, v2) => (v1 ._1 + v2._1, v1 ._2 + v2._2)) 

.collect() 

What might this look like on the cluster? 



Grouping and Reducing, Example - Optimized 

What might this look like on the cluster? 

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

CFFPurchase(100, "Fribourg", 12. 40) 

CFFPurchase(200, "St. Gallen", 8.20) 

I 

I 

CFFPurchase(300, 

CFFPurchase(300, 

"Zurich" 
' 

42.10) 

"Basel" 
' 

16.20) 

I 
I 

I 

I __________ 
t 
_________ _ --------- --------- ----------

,
---------

-

(100, (1, 22.25) ) 

( 1 00, ( 1 , 31 . 60) ) 

( 100, ( 1 , 1 2. 40) ) 

(200, (1, 8.20) ) 

(300, 

(300, 

(1, 42.10) ) 

( 1 ' 16.20) ) 

------
map 



• 

• 

Grouping and Reducing, Example - Optimized 

What might this look like on the cluster? 

CFFPurchase(100, "Geneva", 22. 25) 

CFFPurchase(100, "Lucerne", 31 . 60) 

I 

I 

I ---------- ---------

(100, (2, 53. 85)) 

-------------------

CFFPurchase(100, "Fribourg", 12. 40) 

CFFPurchase(200, "St. Gallen", 8. 20) 

I 

I --------- ---------

( 100, ( 1 , 1 2. 40)) 

( 200, ( 1 , 8. 20)) 

--------------------

CFFPurchase(300, "Zurich" 
' 

42. 10) 

CFFPurchase(300, "Basel" 
' 

16. 20) 

I 

I 

----------
,
---------

(300, (2, 58. 30)) 

------
map 

reduce 
0n the 

ma\l\>er 
�,de 

_f\rs-t\. _ 
-
-------------------

] redu ceByKey 



Grouping and Reducing, Example - Optimized 

What might this look like on the cluster? 

--;::::=_--=------=------=------=-------=-------=-------=-------=-------=--------=--------=--------=---------=----------=----------=----------=---------_-_-_- _- _- _- _- _-�� �--_ -_ -_ -_ -_ -_ -_ -_ -_ ---
-

---------=---=--=--=--=--=--=--=--=--=--=------==:::;-' --;::::=_--=------=------=-------=-------=-------=-------=-------=--------=--------=--------=---------=----------=----------=----------=-----------=---------_-_- _-_- _- _- _- _-�� 

CFFPurchase(100, "Geneva", 22.25) 

CFFPurchase(100, "Lucerne", 31 .60) 

I 

I 

I 

CFFPurchase(100, "Fribourg", 12. 40) 

CFFPurchase(200, "St. Gallen", 8.20) 

I 

I 

CFFPurchase(300, "Zurich", 42.10) 

CFFPurchase(300, "Basel", 16.20) 

I 

I 

---------- --------- --------- --------- ---------- --------- ------

(100, (2, 53.85)) 

I 

I 

I ---------. I 

(100, (3, 66.25) ) 

( 100, ( 1 , 1 2. 40) ) 

(200, (1, 8.20) ) 

(200, (1, 8.20)) 

(300, (2, 58.30) ) 

I 

I 

I 

(300, (2, 58.30) ) 

map 

------



Grouping and Reducing, Example - Optimized 

What are the benefits of this approach? 



Grouping and Reducing, Example - Optimized 

What are the benefits of this approach? 

By reducing the dataset first, the amount of data sent over the network 

during the shuffle is greatly reduced . 

This can result in non-trival gains in performance! 



Grouping and Reducing, Example - Optimized 

What are the benefits of this approach? 

By reducing the dataset first, the amount of data sent over the network 

during the shuffle is greatly reduced . 

This can result in non-trival gains in performance! 

Let's benchmark on a real cluster. 



groupByKey and reduceByKey Running Times 

> val purchasesPerMonthSlowLarge - purchasesRddlarge.map(p => (p.customerld, p.price)) 
• g roupByKey() 

purchasesPerMonthSlowLarge: Long - 100000 

(command took 15.48s) 

.map(p => (p._1, (p._2.size, p._2.sum))) 

.count() 

> �al purchasesPerMonthFastLarge - purchasesRddlarge.map(p => (p.customerld, (1, p.price))) 
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2)} 
.count() 

purchasesPerMonthFastLarge: Long= 100000 

(command took 4.6ssJ 



Shuffling 

Recall our example using groupByKey: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 



Shuffling 

Recall our example using groupByKey: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 

Grouping all values of key-value pairs with the same key requires collecting 

all key-value pairs with the same key on the same machine. 

But how does Spark know which key to put on which machine? 



Shuffling 

Recall our example using groupByKey: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 

Grouping all values of key-value pairs with the same key requires collecting 

all key-value pairs with the same key on the same machine. 

But how does Spark know which key to put on which machine? 

..,.. By default, Spark uses hash partitioning to determine which key-value 

pair should be sent to which machine. 
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'' Pa rt it i o n i n g '' ? 

In the last session, we were looking at an example involving groupByKey, 

before we discovered that this operation causes data to be shuffled over 
the network. 

Grouping all values of key-value pairs with the same key requires 

collecting all key-value pairs with the same key on the same 

machine. 

We concluded the last session asking ourselves, 

But how does Spark know which key to put on which machine? 

Before we try to optimize that example any further, let's first take 

a quick detour into what partitioning is ... 



Partitions 

The data within an RDD is split into several partitions. 

Properties of partitions: 

...,. Partitions never span multiple machines, i.e. ,  tuples in the same 
partition are guaranteed to be on the same machine . 

...,. Each machine in the cluster contains one or more partitions . 

...,. The number of partitions to use is configurable. By default, it equals 
the total number of cores on all executor nodes. 

Two kinds of partitioning available in Spark: 

...,. Hash partitioning 

...,. Range partitioning 

Customizing a partitioning is only possible on Pair RDDs. 



Hash partitioning 

Back to our example. Given a Pair RDD that should be grouped: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 



Hash partitioning 

Back to our example. Given a Pair RDD that should be grouped: 

val purchasesPerCust = 
purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 

groupByKey first computes per tu pie (k, v) its partition p: 

p = k.hashCode() % numPartitions 

Then, all tuples in the same partition p are sent to the machine hosting p. 

Intuition: hash partitioning attempts to spread data evenly across 
partitions based on the key. 



Range partitioning 

Pair RDDs may contain keys that have an ordering defined . 

...,. Examples: Int, Char, String, ... 

For such RDDs, range partitioning may be more efficient. 

Using a range partitioner, keys are partitioned according to: 

1. an ordering for keys 

2. a set of sorted ranges of keys 

Property: tuples with keys in the same range appear on the same machine. 



Hash Pa rt it io n ing: Example 

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a 

desired number of partitions of 4. 



Hash Partitioning: Example 

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a 

desired number of partitions of 4. 

Furthermore, suppose that hashCode () is the identity ( n. hashCode () == n). 

-::::. K. h � h cod e () 7 • "" � f er<-ti'n Ms 

=- Kio� 



Hash Pa rt it io n ing: Example 

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a 
desired number of partitions of 4. 

Furthermore, suppose that hashCode () is the identity ( n. hashCode () == n). 

In this case, hash partitioning distributes the keys as follows among the 
partitions: 

...,. partition 0: [8, 96, 240, 400, 800] 

...,. partition 1: [ 401 J 

...,. partition 2: [J 

...,. partition 3: [J 

The result is a very unbalanced distribution which hurts performance. 



Range Partitioning: Example 

Using range partitioning the distribution can be improved significantly: 

..,. Assumptions: (a) keys non-negative, (b) 800 is biggest key in the 
RDD 

..,. Set of ranges: [1 , 200], [201 , 400], [ 401 , 600], [601 , 800] 



Range Partitioning: Example 

Using range partitioning the distribution can be improved significantly: 

..,. Assumptions: (a) keys non-negative, ( b) 800 is biggest key in the 
RDD 

..,. Set of ranges: [1 , 200], [201 , 400], [ 401 , 600], [601 , 800] 

In this case, range partitioning distributes the keys as follows among the 
partitions: 

..,. partition 0: [8, 96] 

..,. partition 1: [240, 400 J 

..,. partition 2: [ 401 J 

..,. partition 3: [800] 

The resulting partitioning is much more balanced. 



Partitioning Data 

How do we set a partitioning for our data? 



Partitioning Data 

How do we set a partitioning for our data? 

There are two ways to create RDDs with specific partitionings: 

1. Call parti tionBy on an RDD, providing an explicit Partitioner. 

2. Using transformations that return RDDs with specific partitioners. 



Partitioning Data: parti tionBy 

Invoking parti tionBy creates an RDD with a specified partitioner. 
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Partitioning Data: parti tionBy 

Invoking parti tionBy creates an RDD with a specified partitioner. 

Example: 

val pairs = purchasesRdd.map(p => (p.customerld, p.price)) 

val tunedPartitioner = new RangePartitioner(8, pairs) 

val partitioned = pairs.partitionBy(tunedPartitioner).persist() 

;:: 



Partitioning Data: parti tionBy 

Invoking parti tionBy creates an RDD with a specified partitioner. 

Example: 

val pairs = purchasesRdd.map(p => (p.customerld, p.price)) 

val tunedPartitioner = new RangePartitioner(8, pairs) 

val partitioned = pairs.partitionBy(tunedPartitioner).persist() 

Creating a RangeParti tioner requires: 

1. Specifying the desired number of partitions. 

2. Providing a Pair RDD with ordered keys. This RDD is sampled to 

create a suitable set of sorted ranges. 



Partitioning Data: parti tionBy 

Invoking parti tionBy creates an RDD with a specified partitioner. 

Example: 

val pairs = purchasesRdd.map(p => (p.customerld, p.price)) 

val tunedPartitioner = new RangePartitioner(8, pairs) 

val partitioned = pairs.partitionBy(tunedPartitioner).persist() 

Creating a RangeParti tioner requires: 

1. Specifying the desired number of partitions. 

2. Providing a Pair RDD with ordered keys. This RDD is sampled to 

create a suitable set of sorted ranges. 

Important: the result of parti tionBy should 
the partitioning is repeatedly applied (involv1 
time the artitioned RDD is used. 

therwise, 
each 



Partitioning Data Using Transformations 

Partitioner from parent RDD: 

Pair RDDs that are the result of a transformation on a partitioned Pair 

RDD typically is configured to use the hash partitioner that was used to 

construct it. 

Automatically-set partitioners: 

Some operations on RDDs automatically result in an RDD with a known 

partitioner - for when it makes sense. 

For example, by default, when using sortByKey, a RangeParti tioner is 

used. Further, the default partitioner when using groupByKey, is a 

HashParti tioner, as we saw earlier. 



Partitioning Data Using Transformations 

Operations on Pair RD Ds that hold to ( and propagate) a partitioner: 

a,.. cogroup 

.._ groupWi th 
• • a,.. JOln 

a,.. leftOuter Join 

a,.. rightOuterJoin 

a,.. groupByKey 

..., reduceByKey 

..., foldByKey 

.._ combineByKey 

a,.. parti tionBy 

_,... sort 

..., mapValues (if parent has a partitioner) 

..., flatMapValues (if parent has a partitioner) 

..., f i 1 ter (if parent has a partitioner) 

All other operations will produce a result without a partitioner. 
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Partition ing Data Using Transformations 

... All other operations will produce a result without a partitioner. 

Why? 

Consider the map transformation. Given that we have a hash partitioned 

Pair RDD, why would it make sense for map to lose the partitioner in its 

result RDD? 

Because it's possible for map to change the key . E.g.,: 

rdd.map((k: String, v: Int)=> (''doh!'', v)) 

In th is case, if the map transformation preserved the partitioner in the 

result RDD, it no longer make sense, as now the keys are all different. 

Hence mapValues. It enables us to still do map transformations �-,;;==- =-

without changing the keys, thereby preserving the partitioner. 
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Optimizing with Partitioners 

We saw in the last session that Spark makes a few kinds of partitioners 

available out-of-the-box to users: 

...,. hash partitioners and 

...,. range partitioners. 

We also learned what kinds of operations may introduce new partitioners, 

or which may discard custom partitioners. 

However, we haven't covered why someone would want to repartition their 

data. 



Optimizing with Partitioners 

We saw in the last session that Spark makes a few kinds of partitioners 

available out-of-the-box to users: 

...,. hash partitioners and 

...,. range partitioners. 

We also learned what kinds of operations may introduce new partitioners, 

or which may discard custom partitioners. 

However, we haven't covered why someone would want to repartition their 

data. 

Partitioning can bring substantial performance gains, especially in 

the face of shuffles. 
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Using range partitioners we can optimize our earlier use of reduceByKey so 

that it does not involve any shuffling over the network at all! 



Optimization using range partitioning 

Using range partitioners we can optimize our earlier use of reduceByKey so 

that it does not involve any shuffling over the network at all! 

val pairs = purchasesRdd.map(p => (p.customerld, p.price)) 

val tunedPartitioner = new RangePartitioner(8, pairs) 

val partitioned = pairs.partitionBy(tunedPartitioner) 

.persist() 

val purchasesPerCust = 

partitioned.map(p => (p._1, (1, p._2))) 

val purchasesPerMonth = purchasesPerCust 

.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2)) 

.collect() 



Optimization using range partitioning 

> val purchasesPerMonthSlowLarge = purchasesRddLarge.map(p => (p.customerld, p.price)) 
.groupByKey() 

purchasesPerMonthSlowLarge: Long - 100000 

(command took 15.48s) 

.map(p => (p._1, (p._2.size, p._2.sum))) 

.count() 

> �al purchasesPerMonthFastLarge = purchasesRddLarge.map(p => (p.customerld, (1, p.price))) 
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl._2 + v2._2)) 
.count() 

purchasesPerMonthFastLarge: Long - 100000 

(command took 4.6ss) 

On the range partitioned data: 
> val purchasesPerMonthFasterLarge = partitioned.map(x => x)J 

purchasesPerMonthFasterLarge: Long= 100000 

(command took 1.79s) 

.reduceByKey((vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2)) 

. count ( ) 



Optimization using range partitioning 

> val purchasesPerMonthSlowLarge = purchasesRddLarge.map(p => (p.customerld, p.price)) 
.groupByKey() 

purchasesPerMonthSlowLarge: Long - 100000 

(command took 15.48s) 

.map(p => (p._1, (p._2.size, p._2.sum))) 

.count() 

> �al purchasesPerMonthFastLarge = purchasesRddLarge.map(p => (p.customerld, (1, p.price))) 
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl._2 + v2._2)) 
.count() 

purchasesPerMonthFastLarge: Long - 100000 

(command took 4.6ss) 

On the range partitioned data: 
> val purchasesPerMonthFasterLarge = partitioned.map(x => x)J 

purchasesPerMonthFasterLarge: Long= 100000 

.reduceByKey((vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2)) 

. count ( ) 

I Command took 1. 79s) almost Q 9x speedup over 
purchasePerMonthSlowlarge! 



Partitioning Data: parti tionBy, Another Example 

From pages 61-64 of the Learning Spark book 

Consider an application that keeps a large table of user information in 

memory: 

...,. userData - BIG, containing (User ID, User Info) pairs, where User Info 

contains a list of topics the user is subscribed to. 

The application periodically combines this big table with a smaller file 

representing events that happened in the past five minutes . 

...,. events - small, containing (UserID, Linklnfo) pairs for users who 

have clicked a link on a website in those five minutes: 

For example, we may wish to count how many users visited a link that was 

not to one of their subscribed topics. We can perform this combination 

with Spark's join operation, which can be used to group the Userlnfo and 

Linklnfo pairs for each UserID by key. 



Partitioning Data: parti tionBy, Another Example 

From pages 61-64 of the Learning Spark book 

val sc = new SparkContext( ... ) 

val userData = sc.sequenceFile[UserID, Userlnfo]("hdfs:// ... ").persist() 

def processNewlogs(logFileName: String) { 

val events = sc.sequenceFile[UserID, Linklnfo](logFileName) 

val joined = userData.join(events) //ROD of (UserID, (Userlnfo, Linklnfo)) 

val offTopicVisits = joined.filter { 

case (userld, (userlnfo, linklnfo)) => //Expand the tuple 

!userlnfo.topics.contains(linklnfo.topic) 

}.count() 

println(''Number of visits to non-subscribed topics: '' + offTopicVisi ts) 

} 

Is this OK? 



Partitioning Data: parti tionBy, Another Example 

From pages 61-64 of the Learning Spark book 

It will be very inefficient! 

Why? The join operation, called each time processNewLogs is invoked, 

does not know anything about how the keys are partitioned in the datasets. 

By default, this operation will hash 

all the keys of both datasets, 

sending elements with the same key 

hash across the network to the 

same machine, and then join 

together the elements with the 

same key on that machine. Even 

though userData doesn't 

change! 

userData 

• 

• 

• 

joined 

• 

• 

• 

events 

• 

• 

• 

network communication 
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Fixing this is easy. Just use parti tionBy on the big userData RDD at the 

start of the program! 



Partitioning Data: parti tionBy, Another Example 

Fixing this is easy. Just use parti tionBy on the big userData RDD at the 

start of the program! 

Therefore, userData becomes: 

val userData = sc.sequenceFile[UserID, Userlnfo]("hdfs:// ... ") 

.partitionBy(new HashPartitioner(100)) // Create 100 partitions 

.persist() 

Since we called parti tionBy when building userData, Spark will now know 

that it is hash-partitioned, and calls to join on it will take advantage of 

this information. 

In particular, when we call userData.join(events), Spark will shuffle only 

the events ROD, sending events with each particular UserID to the 

machine that contains the corresponding hash partition of userData. 



Partitioning Data: parti tionBy, Another Example 

Or, shown visually: 

userData 

,.. , 

• 

• 

• 

,.. , 

...i 

"' -

-

"' -

"' -

jo ined events 

• 

• 

• 

• 

• 

• 

network communication 

- - - - - ----• 

llocal reference 

Now that userData is pre-partitioned, Spark will shuffle only the events 

RDD, sending events with each particular UserID to the machine that 

contains the corresponding hash partition of userData. 



Back to shuffling 

Recall our example using groupByKey: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 



Back to shuffling 

Recall our example using groupByKey: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 

Grouping all values of key-value pairs with the same key requires collecting 

all key-value pairs with the same key on the same machine. 



Back to shuffling 

Recall our example using groupByKey: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 

Grouping all values of key-value pairs with the same key requires collecting 

all key-value pairs with the same key on the same machine. 

Grouping is done using a hash partitioner with default parameters. 



Back to shuffling 

Recall our example using groupByKey: 

val purchasesPerCust = 

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD 

.groupByKey() 

Grouping all values of key-value pairs with the same key requires collecting 

all key-value pairs with the same key on the same machine. 

Grouping is done using a hash partitioner with default parameters. 

The result RDD, purchasesPerCust, is configured to use the hash 

partitioner that was used to construct it. 



How do I know a shuffle will occur? 

Rule of thumb: a shuffle can occur when the resulting RDD depends on 

other elements from the same RDD or another RDD. 



How do I know a shuffle will occur? 

Rule of thumb: a shuffle can occur when the resulting RDD depends on 

other elements from the same RDD or another RDD. 

Note: sometimes one can be clever and avoid much or all network 

communication while still using an operation like join via smart 

partitioning 



How do I know a shuffle will occur? 

You can also figure out whether a shuffle has been planned/executed via: 

1. The return type of certain transformations, e.g., 

org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[l3661J 

2. Using function toDebugString to see its execution plan: 

partitioned.reduceByKey((v1, v2) => (v1 ._1 + v2._1, v1 ._2 + v2._2)) 
.toDebugString 

res9: String= 

(8) MapPartitionsRDD[l6221J at reduceByKey at <console>:49 [] 
I ShuffledRDD[l6151J at partitionBy at <console>:48 [] 

CachedPartitions: �; MemorySize: 117541-� MB; DiskSize: �-� B 



Operations that might cause a shuffle 

-.... cogroup 

-.... groupWi th 

-.... join 

-.... leftOuter Join 

-.... rightOuterJoin 

-.... groupByKey 

..,. reduceByKey 

..,. combineByKey 

-.... distinct 

-.... intersection 

-.... repartition 

-.... coalesce 



Avoiding a Network Shuffle By Partitioning 

There are a few ways to use operations that might cause a shuffle and to 

still avoid much or all network shuffling. 

Can you think of an example? 



Avoiding a Network Shuffle By Partitioning 

There are a few ways to use operations that might cause a shuffle and to 

still avoid much or all network shuffling. 

Can you think of an example? 

2 Examples: 

1. reduceByKey running on a pre-partitioned ROD will cause the values 

to be computed locally, requiring only the final reduced value has to 

be sent from the worker to the driver. 

2. join called on two RDDs that are pre-partitioned with the same 

partitioner and cached on the same machine will cause the join to be 

computed locally, with no shuffling across the network. 



Shuffles Happen: Key Takeaways 

How your data is organized on the cluster, and what operations 

you're doing with it matters! 

We've seen speedups of lOx on small examples just by trying to ensure 

that data is not transmitted over the network to other machines. 

This can hugely affect your day job if you're trying to run a job that 

should run in 4 hours, but due to a missed opportunity to partition data or 

optimize away a shuffle, it could take 40 hours instead. 
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How are RDDs represented?

RDDs are made up of 2 important parts.

RDD

‣ Partitions. Atomic pieces of the dataset. 
One or many per compute node.

‣ Dependencies. Models relationship 
between this RDD and its partitions 
with the RDD(s) it was derived from.

‣ A function for computing the dataset 
based on its parent RDDs.

RDDs are represented as:

‣ Metadata about its partitioning scheme 
and data placement.

(but are made up of 4 parts in total)

!
function
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Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example 
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Conceptually assuming the DAG:

What do the dependencies 
look like?  
Which dependencies are 
wide, and which are narrow?
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Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example 
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

narrow

narrow

narrow

wide

wide

Wide transformations:
groupBy,	join

Narrow transformations:
map,	union,	join

why is this 
side of the 
join narrow!?

⚠



Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example 
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Since G would be derived from B, 
which itself is derived from a 
groupBy and a shuffle on A, you 
could imagine that we will have 
already co-partitioned and 
cached B in memory following 
the call to groupBy.

cached in memory

Part of this join is thus a 
narrow transformation.
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Recover from failures by recomputing lost partitions from lineage graphs.
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