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Visualizing Shared Memory Data Parallelism 

What does data-parallel look like? val res = 

Processing .. . 
doSomething( ... ) 

------------ · 
Processing .. . 
doSomething( ... ) ------------- · 

Jar 

Compute Node 
(Shared Memory) 

Processing .. . 
doSomething ( ... ) 

jar.map(jellyBean => doSomething(jellyBean)) 

Shared memory data parallelism: 

Split the data. 

Workers/threads independently 
operate on the data shards in parallel. 

Combine when done (if necessary). 

Scala's Parallel Collections is a 
collections abstraction over shared 
memory data-parallel execution. 
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Visualizing Distributed Data-Parallelism 

What does distributed data-parallel 
look like? 

Distributed data parallelism: 

� Split the data over several nodes. 

� Nodes independently operate on the 
data shards in parallel. 

� Combine when done ( if necessary). 

New concern: 

Now we have to worry about 
network latency between workers. 



Visualizing Distributed Data-Parallelism 

What does distributed data-parallel 
look like? val res = 

jar.map(jellyBean => doSomething(jellyBean)) 

Distributed data parallelism: 

Split the data over several nodes. 

Nodes independently operate on the 
data shards in parallel. 

Combine when done (if necessary). 

However, like parallel collections, we 
can keep collections abstraction over 
distributed data-parallel execution. 



Data-Parallel to Distributed Data-Parallel 

Shared memory: Distributed: 

Processing .. . 
doSomethine( ... ) --------- · ) <+> �----

Processing .. . 
doSomething( ... ) � 

<+>�� 
Processing .. . 

doSometh ing ( ... ) Jar 

Shared memory case: Data-parallel programming model. Data 
partitioned in memory and operated upon in parallel. 

Distributed case: Data-parallel programming model. Data partitioned 
between machines, network in between, operated upon in parallel. 



Data-Parallel to Distributed Data-Parallel 

Shared memory: Distributed: 

Processing .. . 
doSomethine( ... ) --------- · ) <+> 

Processing .. . 
doSomething( ... ) � 

<+>�� 
Processing .. . 

doSometh ing ( ... ) Jar 

Overall, most all properties we learned about related to shared memory 
data-parallel collections can be applied to their distributed counterparts. 
E.g., watch out for non-associative reduction operations! relAlt\ce(---) • 

However, must now consider latency when using our model. 



Apache Spark 

Throughout this part of the course we will use the 
Apache Spark framework for distributed data-parallel 
programming. 

Spark implements a distributed data parallel model called 
Resilient Distributed Datasets (RDDs) 



Distributed Data-Parallel: High Level Illustration 

Given some large dataset that can't fit into memory on a single node . . .  



Distributed Data-Parallel: High Level Illustration 

Chunk up the data ... 



Distributed Data-Parallel: High Level Illustration 

Chunk up the data ... 



Distributed Data-Parallel: High Level Illustration 

Distribute it over your cluster of machines. 



Distributed Data-Parallel: High Level Illustration 

Distribute it over your cluster of machines. 



• 

Distributed Data-Parallel: High Level Illustration 

From there, think of your distributed data like a single collection ... 

val wiki: RDD[WikiArticle] = ••. 

wiki 

Example: 
Transform the text (not titles) of 
all wiki articles to lowercase. 

wiki.map { 
article => article.text.toLowerCase 

} 
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Data-Parallel Programming 

In the Parallel Programming course, we learned: 

...,. Data parallelism on a single multicore/multi-processor machine . 
...,. Parallel collections as an implementation of this paradigm. 



Data-Parallel Programming 

In the Parallel Programming course, we learned: 

...,. Data parallelism on a single multicore/multi-processor machine . 
...,. Parallel collections as an implementation of this paradigm. 

Today: 

...,. Data parallelism in a distributed setting . 
...,. Distributed collections abstraction from Apache Spark as an 

implementation of this paradigm. 
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Distribution introduces important concerns beyond what we had to worry 
about when dealing with parallelism in the shared memory case: 

111-- Partial failure: crash failures of a subset of the machines involved in a 
distributed computation . 

...,. Latency: certain operations have a much higher latency than other 
operations due to network communication. 



Distribution 

Distribution introduces important concerns beyond what we had to worry 
about when dealing with parallelism in the shared memory case: 

111-- Partial failure: crash failures of a subset of the machines involved in a 
distributed computation . 

...,. Latency: certain operations have a much higher latency than other 
operations due to network communication. 

Latency cannot be masked completely; it will be an important 
aspect that also impacts the programming model. 



Important Latency Numbers 

L 1 cache reference 0.5ns 

Branch mispredict 5ns 

L2 cache reference 7ns 

Mutex lock/unlock 25ns 

Main memory reference l00ns 

Compress lK bytes with Zippy 3,000ns == 3µs 

Send 2K bytes over lGbps network 20,000ns == 20µs 

SSD random read 150,000ns == 150µs 

Read 1 MB sequentially from 250,000ns == 250µs 

Roundtrip within same datacenter 500,000ns == 0.5ms 

Read 1MB sequentially from SSD 1,000,000ns == lms 

Disk seek 10,000,000ns == l0ms 

Read 1MB sequentially from disk 20,000,000ns == 20ms 

Send packet US ---+ Europe ---+ US 150,000,000ns == 150ms 

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer 
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Important Latency Numbers 

L 1 cache reference 

Branch mispredict 

L2 cache reference 

Mutex lock/unlock 

Main memory reference 

0.5ns 

5ns 

7ns 

25ns 

l00ns 

Compress lK bytes with Zippy 3,000ns == 3µs 
Send 2K bytes over lGbps network 20,000ns == 20µs 

SSD random read 150,000ns == 150µs 
Read 1 MB sequentially from M�o"1 250,000ns = 250µs 

Roundtrip within same datacenter 

Read 1MB sequentially from SSD 

Disk seek 

Read 1MB sequentially from disk 

' )>, Send packet US � Europe � US 

500,000ns 

1,000,000ns 

10,000,000ns 

20,000,000ns 

150,000,000ns 

== 0.5ms 

== lms 

== l0ms 

== 20ms 

== 150ms 

YY\t,wto�i: fostat­
cJisK: slo� 
ne:hJtY1C 1

• slovi tSi 

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer 



Latency Numbers Intuitively 

To get a better intuition about the orders-of-magnitude differences of 
these numbers, let's humanize these durations. 

Method: multiply all these durations by a billion. 

Then, we can map each latency number to a human activity. 



Humanized Latency Numbers 

Humanized durations grouped by magnitude: 

Minute: 

Ll cache reference 
Branch mispredict 
L2 cache reference 
Mutex lock/unlock 

Hour: 

0.5 s 
5 s 
7 s 
25 s 

Main memory reference 100 s 
Compress 1K bytes with Zippy 50 min 

One heart beat (0.5 s) 
Yawn 
Long yawn 
Making a coffee 

Brushing your teeth 
One episode of a TV show 



Humanized Latency Numbers 

Day: 

Send 2K bytes over 1 Gbps network 5.5 hr 

Week: 

SSD random read 1 . 7 days 
Read 1 MB sequentially from memory 2.9 days 
Round trip within same datacenter 5.8 days 
Read 1 MB sequentially from SSD 11 . 6 days 

From lunch to end of work day 

A normal weekend 
A long weekend 
A medium vacation 
Waiting for almost 2 
weeks for a delivery 



More Humanized Latency Numbers 

Year: 

Disk seek 16 .5 weeks 
Read 1 MB sequentially from disk 7 .8 months 

The above 2 together 1 year 

Decade: 

Send packet CA->Netherlands->CA 4.8 years 

A semester in university 
Almost producing a new 
human being 

Average time it takes to 
complete a bachelor's degree 



Latency and System Design 



Big Data Processing and Latency? 

With some intuit ion now a bout how expensive network communication 
and disk operations can be, one may ask: 

How do these latency numbers relate to big data processing? 

To answer this question, let's first start with Spark's predecessor, Hadoop. 
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Hadoop is a widely-used large-scale batch data processing framework. It's 
an open source implementation of Google's MapReduce. 
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Hadoop/MapReduce 

Hadoop is a widely-used large-scale batch data processing framework. It's 
an open source implementation of Google's MapReduce. 

MapReduce was ground-breaking because it provided: 

...,. a simple AP I (simple map and reduce steps) 
-.. ** fault tolerance ** 

Fault tolerance is what made it possible for Hadoop/MapReduce to scale 
to 100s or 1000s of nodes at all. 
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Hadoop/MapReduce + Fault Tolerance 

Why is this important? 

For 100s or 1000s of old commodity machines, likelihood of at least one 
node failing is very high midway th rough a job. 

Thus, Hadoop/MapReduce's ability to recover from node failure enabled: 

...,. computations on unthinkably large data sets to succeed to 
completion. 

Fault tolerance + simple API = 
At Google, MapReduce made it possible for an average Google software 
engineer to craft a complex pipeline of map/reduce stages on extremely 
large data sets. 



Why Spark? 
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Why Spark? 

Fault-tolerance in Hadoop/MapReduce comes at a cost. 

Between each map and reduce step, in order to recover from potential 
failures, Hadoop/MapReduce shuffles its data and write intermediate data 
to disk. 



Why Spark? 

Fault-tolerance in Hadoop/MapReduce comes at a cost. 

Between each map and reduce step, in order to recover from potential 
failures, Hadoop/MapReduce shuffles its data and write intermediate data 
to disk. 

Remember: 
Reading/writing to disk: lOOlx slower than in-memory 

Network communication: 1,000,000x slower than in-memory 
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Why Spark? 

Spark ... 

_... Retains fault-tolerance 
...,. Different strategy for handling latency (latency significantly reduced!) 

Achieves this using ideas from functional programming! 

Idea: Keep all data immutable and in-memory. All operations on data 
are just functional transformations, like regular Scala collections. Fault 
tolerance is achieved by replaying functional transformations over original 
dataset. 

Result: Spark has been shown to be l00x more performant than Hadoop, 
while adding even more expressive APls. 



Latency and System Design ( t"tUJN\o,l\lZ:eJ. J 







Spark versus Hadoop Performance? 
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Logistic Regression in 
Hadoop and Spark 
Source: spark.apache.org 



Spark versus Hadoop Performance? 

Logistic Regression in 
Hadoop and Spark, 
more iterations! 
Source: https: //databricks.com/ 
blog /2014 /03 /20 /apache-spark-a­
del ig ht-for-developers. htm I 

·-



Hadoop vs Spark Performance, More Intuitively 

Day-to-day, these perforamnce improvements can mean the difference 
between: 

Hadoop/MapReduce 
1. s-t o.rl- j O .b 
2. u;t l�ncJ,, ll( 
j. � �ft-ee 
�- pi� vr l(io\J 
5. job tArry(-t.k.s 



Spark versus Hadoop Popularity? 

According to Google Trends, Spark has surpassed Hadoop in popularity. 

100 

75 

50 

25 

Feb 1, 2007 Jul 1,2010 

Google Trends: 
Apache Hadoop vs Apache Spark 
February 2007 - February 2017 

Dec 1, 2013 

Apache Spark 

Apache Hadoop 
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Resi I ient Distributed Datasets ( RD Ds) 

RDDs seem a lot like immutable sequential or parallel Scala collections. 

abstract class RDD[TJ { 

} 

def map[U](f: T => U): RDD[UJ = ... 
def flatMap[UJ(f: T => TraversableOnce[UJ): RDD[UJ = ... 
def filter(f: T => Boolean): RDD[TJ = ... 
def reduce(f: (T, T) => T): T = ... 

Most operations on RDDs, like Scala's immutable List, and Scala's 
parallel collections, are higher-order functions. 

That is, methods that work on RDDs, taking a function as an argument, 
and which typically return RDDs. 
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Resi I ient Distributed Datasets ( RD Ds) 

RDDs seem a lot like immutable sequential or parallel Scala collections. 

Combinators on Scala 
parallel/ sequential collections: 
map 

flatMap 

filter 

reduce 

fold 

aggregate 

Combinators on RDDs: 

map 

flatMap 

filter 

reduce 

fold 

aggregate 



Resi I ient Distributed Datasets ( RD Ds) 

While their signatures differ a bit, their semantics (macroscopically) are 
the same: 

map[BJ(f: A=> B): List[BJ // Scala List 

map[B](f: A=> B): RDD[BJ // Spark ROD 

flatMap[BJ(f: A=> TraversableOnce[B]): List[BJ // Scala List 

flatMap[BJ(f: A=> TraversableOnce[B]): RDD[BJ // Spark ROD 

filter(pred: A=> Boolean): List[AJ // Scala List 

filter(pred: A=> Boolean): RDD[AJ // Spark ROD 



Resi I ient Distributed Datasets ( RD Ds) 

While their signatures differ a bit, their semantics (macroscopically) are 
the same: 

reduce(op: (A, A)=> A): A// Scala List 

reduce(op: (A, A)=> A): A// Spark RDD 

fold(z: A)(op: (A, A)=> A): A// Scala List 

fold(z: A)(op: (A, A)=> A): A// Spark RDD 

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B // Scala 

aggregate[BJ(z: B)(seqop: (B, A)=> B, combop: (B, B) => B): B // Spark RDD 



Resi I ient Distributed Datasets ( RD Ds) 

Using RDDs in Spark feels a lot like normal Scala sequential/parallel 
collections, with the added knowledge that your data is distributed across 
several machines. 

Example: 

Given, val encyclopedia: RDD[String], say we want to search all of 
encyclopedia for mentions of EPFL, and count the number of pages that 
mention EPFL. 



Resi I ient Distributed Datasets ( RD Ds) 

Using RDDs in Spark feels a lot like normal Scala sequential/parallel 
collections, with the added knowledge that your data is distributed across 
several machines. 

Example: 

Given, val encyclopedia: RDD[String], say we want to search all of 
encyclopedia for mentions of EPFL, and count the number of pages that 
mention EPFL. 

val result= encyclopedia.filter(page => page.contains("EPFL")) 
.count() 



Example: Word Count 

The 11 Hello, World!" of programming with large-scale data. 

II Creat 

val rdd = spark.textFile("hdfs:// ... ") 

val count=??? 
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Example: Word Count 

The 11 Hello, World!" of programming with large-scale data. 

II Create an RDD 

val rdd = spark.textFile("hdfs:// ... ") 

val count = rdd.flatMap(line => line.split(" "))// separate lines into words 

.map(word => (word, 1)) // include something to count 
a. I --



Example: Word Count 

The 11 Hello, World!" of programming with large-scale data. 

II Create an RDD 

val rdd = spark.textFile("hdfs:// ... ") 

val count = rdd.flatMap(line => line.split(" "))// separate lines into words 

That's it. 

.map(word => (word, 1)) // include something to count 

.reduceByKey(_ + _) // sum up the 1s in the pairs 
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RDDs can be created in two ways: 
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How to Create an ROD? 

RDDs can be created in two ways: 

..,. Transforming an existing RDD . 

..,. From a SparkContext ( or SparkSession) object. 

Transforming an existing RDD. 

Just like a call to map on a List returns a new List, many higher-order 
functions defined on RDD return a new RDD. 



• 

How to Create an ROD? 

RDDs can be created in two ways: 

...,. Transforming an existing RDD . 

...,. From a SparkContext (or SparkSession) object. 

/I/ 
• • • 

From a SparkContext (or SparkSession) object . 
The SparkContext object (renamed SparkSession) can be thought of as 
your handle to the Spark cluster. It represents the connection between the 
Spark cluster and your running application. It defines a handful of 
methods which can be used to create and populate a new RDD: 

...,. �parallelize: convert a local Scala collection to an RDD . 

...,. textFile: read a text file from HDFS or a local file system and return 
an RDD of String 

• 
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Transformations and Actions 

Recall transformers and accessors from Scala sequential and parallel 
collections. 

Transformers. Return new collections as results. (Not single values.) 
Examples: map, filter, flatMap, groupBy 

map(f: A=> B): Traversable[BJ 

Accessors: Return single values as results. (Not collections.) 
Examples: reduce, fold, aggregate. 

reduce(op: (A, A)=> A): A 
,- A 



Transformations and Actions 

Similarly, Spark defines transformations and actions on RDDs. 

They seem similar to transformers and accessors, but there are some 
im portant differences. 

Transformations. Return new caW@ctio1,s RDDs as results. 

Actions. Com pute a result based on an RDD, and either returned or 
saved to an external storage system (e.g. ,  HDFS). 
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They seem similar to transformers and accessors, but there are some 
im portant differences. 

� 
Transformations. Return new collections RDDs as results. 
They are laz , their result RDD is not immediately computed. 

Actions. Com pute a result based on an RDD, and either returned or 
saved to an external storage system (e.g. ,  HDFS). 
They are eager, their result is immediately computed. 
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Transformations and Actions 

Similarly, Spark defines transformations and actions on RDDs. 

They seem similar to transformers and accessors, but there are some 
im portant differences. 

Transformations. Return new collections RDDs as results. 
They are lazy, their result RDD is not immediately computed. 

Actions. Com pute a result based on an RDD, and either returned or 
saved to an external storage system (e.g. ,  HDFS). 
They are eager, their result is immediately computed. 

Laziness/eagerness is how we can limit network 
communication using the programming model. 

• 



Example 

Consider the following sim ple exam ple: 

val largelist: List[String] = ... 

val wordsRdd = sc.Rarallelize(largelist) 

val lengthsRdd = wordsRdd.map(_.length) 

RDD [S--lrit'\j1 
R.t)t> (lVl4:1 

What has happened on the cluster at this point? 



Example 

Consider the following sim ple exam ple: 

val largelist: List[String] = ... 
val wordsRdd = sc.parallelize(largelist) 
val lengthsRdd = wordsRdd.map(_.length) 

What has happened on the cluster at this point? 

Nothing. Execution of map ( a transform at ion) is deferred. 

To kick off the com putation and wait for its resu It ... 



Example 

Consider the following sim ple exam ple: 

val largelist: List[String] = ... 

val wordsRdd = sc.parallelize(largelist) 

val lengthsRdd = wordsRdd.map(_.length) 

val totalChars = lengthsRdd.reduce(_ + _) 

... we can add an action 



Common Transformations in the Wild 
lPri:='11 l .. . 

map 

flatMap 

filter 

distinct 

map[BJ(f: A=> B): RDD[BJ L C 

Apply function to each element in the ROD and 
retrun an ROD of the result. 

flatMap[BJ(f: A=> TraversableOnce[BJ): RDD[BJ � 
Apply a function to each element in the ROD and return 
an ROD of the contents of the iterators returned. 

filter(pred: A=> Boolean): RDD[AJ� -

Apply predicate function to each element in the ROD and 

return an ROD of elements that have passed the predicate 
condition, pred. 

distinct(): RDD[BJ< 
Return ROD with duplicates removed. 



Common Actions in the Wild 
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collect 

count 

take 

reduce 

foreach 

collect(): Array[T] t. 

Return all elements from RDD. 

count(): Long t 
Return the number of elements in the RDD. 

take(num: Int): Array[T] E: -
Return the first num elements of the RDD. 

reduce(op: (A, A) => A): A"" 
Combine the elements in the RDD together using op 
function and return result. 

foreach(f: T => Unit): Unit< 
Apply function to each element in the RDD. 



Another Exam pie 

Let's assume that we have an RDD[String] which contains gigabytes of 
logs collected over the previous year. Each element of this ROD represents 
one line of logging. 

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors 
are logged with a prefix that includes the word 11error" ... 

How would you determine the number of errors that were logged in 

December 2016? 

val lastYearslogs: RDD[String] = ... 
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Let's assume that we have an RDD[String] which contains gigabytes of 
logs collected over the previous year. Each element of this ROD represents 
one line of logging. 

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors 
are logged with a prefix that includes the word 11error" ... 

How would you determine the number of errors that were logged in 

December 2016? 

val lastYearslogs: RDD[String] = ... 
val numDecErrorlogs 

= lastYearslogs.filter(lg => lg.contains("2016-12") && lg.contains("error")) 
.count() 



Benefits of Laziness for Large-Scale Data 

Spark com putes RDDs the first time they are used in an action. 

This helps when processing large amounts of data. 

Example: 

val lastYearslogs: RDD[String] = ... 

val firstlogsWithErrors = lastYearslogs.filter(_.contains("ERROR") ) .take(10) 

The execution of filter is deferred until the take action is applied. 

Spark leverages this by analyzing and optimizing the chain of operations before 

executing it. 

Spark will not compute intermediate RDDs. Instead, as soon as 10 elements of the 

filtered RDD have been computed, firstLogsWi thErrors is done. At this point Spark 

stops working, saving time and space computing elements of the unused result of filter. 



Transformations on Two RDDs 
LA�i \_\_ 

rtAdJ r tld. 1.. 

\{ ,A_ y d J. 3 ::_ rJ.JJ . \A.t'\ i Oil ( l-fAJ_ 2.) 

RDDs also support set-like operations, like union and intersection. 

Two-RDD transformations com bine two RDDs are com bined into one. 

union 

intersection 

subtract 

cartesian 

union(other: RDD[T]): RDD[T] '=--

Return an RDD containing elements from both RDDs. 

intersection(other: RDD[T]): RDD[T]'= 

Return an RDD containing elements only found in 
both RDDs. 

subtract(other: RDD[T]): RDD[T]< -

Return an RDD with the contents of the other RDD 
removed. 

cartesian[U](other: RDD[U]): RDD[(T, U)] < -

Cartesian product with the other RDD. 



Other Useful ROD Actions 
����I V 

RDDs also contain other im portant actions unrelated to regular Scala 
collections, but which are useful when dealing with distributed data. 

takeSample 

takeOrdered 

saveAsTextFile 

takeSample(withRepl: Boolean, num: Int): Array[T] (::r---­

Return an array with a random sample of num elements of 

the dataset, with or without replacement. 

takeOrdered(num: Int)(implicit 

ord: Ordering[T]): Array[T] ��-

Return the first n elements of the ROD using either 

their natural order or a custom comparator. 

saveAsTextFile(path: String): Unit:4: 

Write the elements of the dataset as a text file in 

the local filesystem or HDFS. 

saveAsSequenceFile saveAsSequenceFile(path: String): Unit� -
Write the elements of the dataset as a Hadoop Se­

quenceFile in the local filesystem or HDFS. 
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Iteration in Spark:

Input
(e.g., from HDFS)

iteration 1 iteration 2 iteration 3 …
file sy

stem
 

read

In-memory computations, no need to read/write to disk.
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To tell Spark to cache an RDD in memory, simply call 
persist() or cache() on it.



val : RDD String =

val = _

val =



val : RDD String =

val = _

val =

val =

count logsWithErrors



val =

var =

for <-

val = =>

_ _

points
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Key takeaway:
Despite similar-looking API to Scala Collections, 

the deferred semantics of Spark's RDDs are very unlike Scala Collections.
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case class : String : Int

val : RDD Person =



case class : String : Int

val : RDD Person =

val =

Array[Person] first10
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How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

This is the node you’re interacting with 
when you’re writing Spark programs!

These are the nodes actually 
executing the jobs!

But how do they 
all communicate?



How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

via a cluster manager.
Cluster Manager

Allocates resources across 
cluster, manages scheduling.  

e.g., YARN/Mesos
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How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes 
running on a cluster. 

All these processes are coordinated by 
the driver program.

The driver is:
‣ the process where the main() method of your 

program runs.
‣ the process running the code that creates a 

SparkContext, creates RDDs, and stages up or 
sends off transformations and actions.
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How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

A Spark application is a set of processes 
running on a cluster. 

These processes that run computations 
and store data for your application are  
executors.

Executors:
‣ Run the tasks that represent the application.

‣ Provide in-memory storage for cached RDDs.
‣ Return computed results to the driver.



How Spark Jobs are Executed

Driver Program

Worker Node Worker Node Worker Node

Spark Context

Executor Executor Executor

Cluster Manager

Execution of a Spark program:
1. The driver program runs the Spark application, which 

creates a SparkContext upon start-up. 
2. The SparkContext connects to a cluster manager (e.g., 

Mesos/YARN) which allocates resources. 
3. Spark acquires executors on nodes in the cluster, which 

are processes that run computations and store data for 
your application. 

4. Next, driver program sends your application code to the 
executors. 

5. Finally, SparkContext sends tasks for the executors to 
run.
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