
)

ECOLE POLYTECHNIQlJE
� �

FEDERALE DE LAUSANNE

Shuffling: What it is and why it's

important

Big Data Analysis with Scala and Spark

Heather Miller

?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a groupByKey.

Remember our data is distributed! Did you notice anything odd?

?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a groupByKey.

Remember our data is distributed! Did you notice anything odd?

val pairs = sc.parallelize(List((1, "one"), (2, "two"), (3, "three")))

pairs.groupByKey()

II res2: org.apache.spark.rdd.RDD[(Int, Iterable[String])J

II = ShuffledRDD[16] at groupByKey at <console>:37

?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a groupByKey.

Remember our data is distributed! Did you notice anything odd?

val pairs = sc.parallelize(List((1, "one"), (2, "two"), (3, "three")))

pairs.groupByKey()

II res2: org.apache.spark.rdd.RDD[(Int, Iterable[String])J

II = ShuffledRDD[16] at groupByKey at <console>:37

We typically have to move data from one node to another to be "grouped

with" its key. Doing this is called "shuffling".

?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ??

Think again what happens when you have to do a groupBy or a groupByKey.

Remember our data is distributed! Did you notice anything odd?

val pairs = sc.parallelize(List((1, "one"), (2, "two"), (3, "three")))

pairs.groupByKey()

II res2: org.apache.spark.rdd.RDD[(Int, Iterable[String])J

II = ShuffledRDD[16] at groupByKey at <console>:37

We typically have to move data from one node to another to be "grouped

with" its key. Doing this is called "shuffling".

Shuffles Happen

Shuffles can be an enormous hit to because it means that Spark must send

data from one node to another. Why? Latency!

Grouping and Reducing, Example

Let's start with an example. Given:

case class CFFPurchase(customerid: Int, destination: String, price: Double)

Assume we have an RDD of the purchases that users of the Swiss train

company's, the CFF's, mobile app have made in the past month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

Goal: calculate how many trips, and how much money was spent by

each individual customer over the course of the month.

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by

each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

val purchasesPerMonth = ...

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by

each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by

each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[K, Iterable[VJ J

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by

each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

// Returns: Array[(Int, (Int, Double))]

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[(K, Iterable[VJ)J

.map(p => (p._1, (p._2.size, p._2.sum)))

.collect()

Grouping and Reducing, Example - What's Happening?

Let's start with an example dataset:

val purchases = List(CFFPurchase(100, "Geneva", 22.25),

CFFPurchase (300, ''Zurich'', 42. 10),

CFFPurchase(100, "Fribourg", 12.40),

CFFPurchase (200, ''St. Gallen'', 8. 20),

CFFPurchase(100, ''Lucerne'', 31.60),

CFFPurchase (300, ''Basel'', 16. 20))

What might the cluster look like with this data distributed over it?

Grouping and Reducing, Example - What's Happening?

What might the cluster look like with this data distributed over it?

Starting with purchasesRdd:

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

CFFPurchase(100, "Fribourg", 12.40)

CFFPurchase(200, "St. Gallen", 8.20)

CFFPurchase(300,

CFFPurchase(300,

"Zurich", 42. 10)

"Basel"
'

16.20)

Grouping and Reducing, Example - What's Happening?

What might this look like on the cluster?

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

I

I

I ----------
,

-

(100, 22.25)

(1 00 , 31 . 60)

CFFPurchase(100, "Fribourg", 12.40)

CFFPurchase(200, "St. Gallen", 8.20)

I

I --------- ---------

(1 00 , 1 2 . 40)

(200, 8.20)

CFFPurchase(300, "Zurich", 42.10)

CFFPurchase(300, "Basel", 16.20)

I

I

,

-

map
(300, 42.10)

(300, 16.20)

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by

each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[K, Iterable[VJ J

Grouping and Reducing, Example

Goal: calculate how many trips, and how much money was spent by

each individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey() // groupByKey returns RDD[K, Iterable[VJ J

Note: groupByKey results in one key-value pair per key. And this

single key-value pair cannot span across multiple worker nodes.

Grouping and Reducing, Example - What's Happening?

What might this look like on the cluster?

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

I

I

I ----------
,

-

(100, 22.25)

(1 00 , 31 . 60)

CFFPurchase(100, "Fribourg", 12.40)

CFFPurchase(200, "St. Gallen", 8.20)

I

I --------- ---------

(1 00 , 1 2 . 40)

(200, 8.20)

CFFPurchase(300, "Zurich", 42.10)

CFFPurchase(300, "Basel", 16.20)

I

I

,

-

map
(300, 42.10)

(300, 16.20)

Grouping and Reducing, Example - What's Happening?

What might this look like on the cluster?

--:==--=--=--=--=---=---=---=---=----=----=----=----=----=-----=-----=-----_-_-_-_- _- _- _- _- _- _-�- �--_ -_ -_ -_ -_ -- -- -- -----------�������������----==;-' --:==--=--=--=---=---=---=---=----=----=----=----=----=-----=-----=-----=-----_-_-_-_-_- _- _- _- _- _-�-

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

I

I

I ---------- ---------

(100, 22.25)

(1 00 , 31 . 60)

(100, [22.25, 12.40, 31.60])

CFFPurchase(100, "Fribourg", 12.40)

CFFPurchase(200, "St. Gallen", 8.20)

I

I

CFFPurchase(300, "Zurich", 42.10)

CFFPurchase(300, "Basel", 16.20)

I

I

--------- --------- ---------- --------- ------

(1 00 , 1 2 . 40)

(200, 8.20)

(200, [8.20])

(300, 42.10)

(300, 16.20)

map

--------- ----- ·
groupByKey

(300, [42.10, 16.20])

Grouping and Reducing, Example - What's Happening?

What might this look like on the cluster?

--:==--=--=--=--=--=--=--=-================-=-=-=---===;-' --:==--=--=-================-=-=-=-=--=---=---=---=-----===;-'--:==--=--=--=--=--=--=-================-=-=-=--=----===;-'

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

I

I

I ---------- ---------

(100, 22.25)

(1 00 , 31 . 60)

SHUFFLE
"Shuffles" data
across network

(100, [22.25, 12.40, 31.60])

CFFPurchase(100, "Fribourg", 12.40)

CFFPurchase(200, "St. Gallen", 8.20)

I

I

CFFPurchase(300, "Zurich", 42.10)

CFFPurchase(300, "Basel", 16.20)

I

I

--------- --------- ---------- --------- ------

(1 00 , 1 2 . 40)

(200, 8.20)

(200, [8.20])

(300, 42.10)

(300, 16.20)

(300, [42.10, 16.20])

map

Reminder: Latency Matters (Humanized)

Shared Memory Distributed

Seconds Days

L1 cache reference 0.5s
Roundtrip within

L2 cache reference 7s same datacenter 5.8 days

Mutex lock/unlock 25s

Minutes Years

Main memory reference 1m 40s Send packet

CA->Netherlands->CA 4.8 years

We don't want to be sending all of our data over the network if it's

not absolutely required. Too much network communication kills

performance.

Can we do a better job?

Perhaps we don't need to send all pairs over the network.

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

I

I

I ----------
,

-

(100, 22.25)

(1 00 , 31 . 60)

CFFPurchase(100, "Fribourg", 12.40)

CFFPurchase(200, "St. Gallen"
'

8.20)

I

I --------- ,---------
(100, 12.40)

(200, 8.20)

CFFPurchase(300, "Zurich"
'

42. 10)

CFFPurchase(300, "Basel"
'

16.20)

I

I

• ----------
,

-

(300, 42. 10)

(300, 16.20)

map

Can we do a better job?

Perhaps we don't need to send all pairs over the network.

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

CFFPurchase(100, "Fribourg", 12.40)

CFFPurchase(200, "St. Gallen", 8.20)

CFFPurchase(300,

CFFPurchase(300,

"Zurich"
'

42. 10)

"Basel"
'

16.20)

I

I

I

I

I __________
t
_________ _ --------- --------- ----------

,

-

(100, 22.25)

(1 00 , 31 . 60)

(1 00, 1 2 . 40)

(200, 8.20)

(300,

(300,

42. 10)

16.20)

Perhaps we can reduce before we shuffle. This could greatly reduce the

amount of data we have to send over the network.

map

Grouping and Reducing, Example - Optimized

We can use reduceByKey.

Conceptually, reduceByKey can be thought of as a combination of first

doing groupByKey and then reduce-ing on all the values grouped per key.

It's more efficient though, than using each separately. We'll see how in the

following example.

Signature:

def reduceByKey(func: (V, V) => V): RDD[(K, V)J

Grouping and Reducing, Example - Optimized

Goal: calculate how many trips, and how much money was spent by each

individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, (1, p.price))) // Pair ROD

.reduceByKey(...) //?

Grouping and Reducing, Example - Optimized

Goal: calculate how many trips, and how much money was spent by each

individual customer over the course of the month.

val purchasesRdd: RDD[CFFPurchaseJ = sc.textFile(...)

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, (1, p.price))) // Pair ROD

.reduceByKey(...) //?

Notice that the function passed to map has changed. It's now p =>

(p.customerld, (1, p.price)).

What function do we pass to reduceByKey in order to get a result

that looks like: (customerid, (numTrips, totalSpent)) returned?

Grouping and Reducing, Example - Optimized

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld,

.reduceByKey(...) //?

p.price))) / Pair ROD

(I VltJ Do�le

Grouping and Reducing, Example - Optimized

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, (1, p.price))) // Pair ROD

.reduceByKey((v1, v2) => (v1 ._1 + v2._1, v1 ._2 + v2._2))

.collect()

l+f

Grouping and Reducing, Example - Optimized

val purchasesPerMonth =

purchasesRdd.map(p => (p.customerld, (1, p.price))) // Pair ROD

.reduceByKey((v1, v2) => (v1 ._1 + v2._1, v1 ._2 + v2._2))

.collect()

What might this look like on the cluster?

Grouping and Reducing, Example - Optimized

What might this look like on the cluster?

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

CFFPurchase(100, "Fribourg", 12. 40)

CFFPurchase(200, "St. Gallen", 8.20)

I

I

CFFPurchase(300,

CFFPurchase(300,

"Zurich"
'

42.10)

"Basel"
'

16.20)

I
I

I

I __________
t
_________ _ --------- --------- ----------

,

-

(100, (1, 22.25))

(1 00, (1 , 31 . 60))

(100, (1 , 1 2. 40))

(200, (1, 8.20))

(300,

(300,

(1, 42.10))

(1 ' 16.20))

map

•

•

Grouping and Reducing, Example - Optimized

What might this look like on the cluster?

CFFPurchase(100, "Geneva", 22. 25)

CFFPurchase(100, "Lucerne", 31 . 60)

I

I

I ---------- ---------

(100, (2, 53. 85))

CFFPurchase(100, "Fribourg", 12. 40)

CFFPurchase(200, "St. Gallen", 8. 20)

I

I --------- ---------

(100, (1 , 1 2. 40))

(200, (1 , 8. 20))

CFFPurchase(300, "Zurich"
'

42. 10)

CFFPurchase(300, "Basel"
'

16. 20)

I

I

,

(300, (2, 58. 30))

map

reduce
0n the

ma\l\>er
�,de

_f\rs-t\. _
-

] redu ceByKey

Grouping and Reducing, Example - Optimized

What might this look like on the cluster?

--;::::=_--=------=------=------=-------=-------=-------=-------=-------=--------=--------=--------=---------=----------=----------=----------=---------_-_-_- _- _- _- _- _-�� �--_ -_ -_ -_ -_ -_ -_ -_ -_ ---
-

---------=---=--=--=--=--=--=--=--=--=--=------==:::;-' --;::::=_--=------=------=-------=-------=-------=-------=-------=--------=--------=--------=---------=----------=----------=----------=-----------=---------_-_- _-_- _- _- _- _-��

CFFPurchase(100, "Geneva", 22.25)

CFFPurchase(100, "Lucerne", 31 .60)

I

I

I

CFFPurchase(100, "Fribourg", 12. 40)

CFFPurchase(200, "St. Gallen", 8.20)

I

I

CFFPurchase(300, "Zurich", 42.10)

CFFPurchase(300, "Basel", 16.20)

I

I

---------- --------- --------- --------- ---------- --------- ------

(100, (2, 53.85))

I

I

I ---------. I

(100, (3, 66.25))

(100, (1 , 1 2. 40))

(200, (1, 8.20))

(200, (1, 8.20))

(300, (2, 58.30))

I

I

I

(300, (2, 58.30))

map

Grouping and Reducing, Example - Optimized

What are the benefits of this approach?

Grouping and Reducing, Example - Optimized

What are the benefits of this approach?

By reducing the dataset first, the amount of data sent over the network

during the shuffle is greatly reduced .

This can result in non-trival gains in performance!

Grouping and Reducing, Example - Optimized

What are the benefits of this approach?

By reducing the dataset first, the amount of data sent over the network

during the shuffle is greatly reduced .

This can result in non-trival gains in performance!

Let's benchmark on a real cluster.

groupByKey and reduceByKey Running Times

> val purchasesPerMonthSlowLarge - purchasesRddlarge.map(p => (p.customerld, p.price))
• g roupByKey()

purchasesPerMonthSlowLarge: Long - 100000

(command took 15.48s)

.map(p => (p._1, (p._2.size, p._2.sum)))

.count()

> �al purchasesPerMonthFastLarge - purchasesRddlarge.map(p => (p.customerld, (1, p.price)))
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2)}
.count()

purchasesPerMonthFastLarge: Long= 100000

(command took 4.6ssJ

Shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

Shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

..,.. By default, Spark uses hash partitioning to determine which key-value

pair should be sent to which machine.

)

E�O�E POLYTECHNIQ1JE
FEDERALE DE LAUSANNE

Partitioning

Big Data Analysis with Scala and Spark

Heather Miller

'' Pa rt it i o n i n g '' ?

In the last session, we were looking at an example involving groupByKey,

before we discovered that this operation causes data to be shuffled over
the network.

Grouping all values of key-value pairs with the same key requires

collecting all key-value pairs with the same key on the same

machine.

We concluded the last session asking ourselves,

But how does Spark know which key to put on which machine?

Before we try to optimize that example any further, let's first take

a quick detour into what partitioning is ...

Partitions

The data within an RDD is split into several partitions.

Properties of partitions:

...,. Partitions never span multiple machines, i.e. , tuples in the same
partition are guaranteed to be on the same machine .

...,. Each machine in the cluster contains one or more partitions .

...,. The number of partitions to use is configurable. By default, it equals
the total number of cores on all executor nodes.

Two kinds of partitioning available in Spark:

...,. Hash partitioning

...,. Range partitioning

Customizing a partitioning is only possible on Pair RDDs.

Hash partitioning

Back to our example. Given a Pair RDD that should be grouped:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Hash partitioning

Back to our example. Given a Pair RDD that should be grouped:

val purchasesPerCust =
purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

groupByKey first computes per tu pie (k, v) its partition p:

p = k.hashCode() % numPartitions

Then, all tuples in the same partition p are sent to the machine hosting p.

Intuition: hash partitioning attempts to spread data evenly across
partitions based on the key.

Range partitioning

Pair RDDs may contain keys that have an ordering defined .

...,. Examples: Int, Char, String, ...

For such RDDs, range partitioning may be more efficient.

Using a range partitioner, keys are partitioned according to:

1. an ordering for keys

2. a set of sorted ranges of keys

Property: tuples with keys in the same range appear on the same machine.

Hash Pa rt it io n ing: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a

desired number of partitions of 4.

Hash Partitioning: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a

desired number of partitions of 4.

Furthermore, suppose that hashCode () is the identity (n. hashCode () == n).

-::::. K. h � h cod e () 7 • "" � f er<-ti'n Ms

=- Kio�

Hash Pa rt it io n ing: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a
desired number of partitions of 4.

Furthermore, suppose that hashCode () is the identity (n. hashCode () == n).

In this case, hash partitioning distributes the keys as follows among the
partitions:

...,. partition 0: [8, 96, 240, 400, 800]

...,. partition 1: [401 J

...,. partition 2: [J

...,. partition 3: [J

The result is a very unbalanced distribution which hurts performance.

Range Partitioning: Example

Using range partitioning the distribution can be improved significantly:

..,. Assumptions: (a) keys non-negative, (b) 800 is biggest key in the
RDD

..,. Set of ranges: [1 , 200], [201 , 400], [401 , 600], [601 , 800]

Range Partitioning: Example

Using range partitioning the distribution can be improved significantly:

..,. Assumptions: (a) keys non-negative, (b) 800 is biggest key in the
RDD

..,. Set of ranges: [1 , 200], [201 , 400], [401 , 600], [601 , 800]

In this case, range partitioning distributes the keys as follows among the
partitions:

..,. partition 0: [8, 96]

..,. partition 1: [240, 400 J

..,. partition 2: [401 J

..,. partition 3: [800]

The resulting partitioning is much more balanced.

Partitioning Data

How do we set a partitioning for our data?

Partitioning Data

How do we set a partitioning for our data?

There are two ways to create RDDs with specific partitionings:

1. Call parti tionBy on an RDD, providing an explicit Partitioner.

2. Using transformations that return RDDs with specific partitioners.

Partitioning Data: parti tionBy

Invoking parti tionBy creates an RDD with a specified partitioner.

Partitioning Data: parti tionBy

Invoking parti tionBy creates an RDD with a specified partitioner.

Example:

val pairs = purchasesRdd.map(p => (p.customerld, p.price))

Partitioning Data: parti tionBy

Invoking parti tionBy creates an RDD with a specified partitioner.

Example:

val pairs = purchasesRdd.map(p => (p.customerld, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner).persist()

;::

Partitioning Data: parti tionBy

Invoking parti tionBy creates an RDD with a specified partitioner.

Example:

val pairs = purchasesRdd.map(p => (p.customerld, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner).persist()

Creating a RangeParti tioner requires:

1. Specifying the desired number of partitions.

2. Providing a Pair RDD with ordered keys. This RDD is sampled to

create a suitable set of sorted ranges.

Partitioning Data: parti tionBy

Invoking parti tionBy creates an RDD with a specified partitioner.

Example:

val pairs = purchasesRdd.map(p => (p.customerld, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner).persist()

Creating a RangeParti tioner requires:

1. Specifying the desired number of partitions.

2. Providing a Pair RDD with ordered keys. This RDD is sampled to

create a suitable set of sorted ranges.

Important: the result of parti tionBy should
the partitioning is repeatedly applied (involv1
time the artitioned RDD is used.

therwise,
each

Partitioning Data Using Transformations

Partitioner from parent RDD:

Pair RDDs that are the result of a transformation on a partitioned Pair

RDD typically is configured to use the hash partitioner that was used to

construct it.

Automatically-set partitioners:

Some operations on RDDs automatically result in an RDD with a known

partitioner - for when it makes sense.

For example, by default, when using sortByKey, a RangeParti tioner is

used. Further, the default partitioner when using groupByKey, is a

HashParti tioner, as we saw earlier.

Partitioning Data Using Transformations

Operations on Pair RD Ds that hold to (and propagate) a partitioner:

a,.. cogroup

.._ groupWi th
• • a,.. JOln

a,.. leftOuter Join

a,.. rightOuterJoin

a,.. groupByKey

..., reduceByKey

..., foldByKey

.._ combineByKey

a,.. parti tionBy

_,... sort

..., mapValues (if parent has a partitioner)

..., flatMapValues (if parent has a partitioner)

..., f i 1 ter (if parent has a partitioner)

All other operations will produce a result without a partitioner.

Partitioning Data Using Transformations

... All other operations will produce a result without a partitioner.

Why?

Partitioning Data Using Transformations

... All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned
Pair RDD, why would it make sense for map to lose the partitioner in its
result RDD?

Partitioning Data Using Transformations

... All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned
Pair RDD, why would it make sense for map to lose the partitioner in its
result RDD?

Because it's possible for map to change the key . E.g.,:

•

Partition ing Data Using Transformations

... All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned

Pair RDD, why would it make sense for map to lose the partitioner in its

result RDD?

Because it's possible for map to change the key . E.g.,:

rdd.map((k: String, v: Int)=> (''doh!'', v))

In th is case, if the map transformation preserved the partitioner in the

result RDD, it no longer make sense, as now the keys are all different.

Hence mapValues. It enables us to still do map transformations �-,;;==- =-

without changing the keys, thereby preserving the partitioner.

)

E�O�E POLYTECHNIQ1JE
FEDERALE DE LAUSANNE

Optimizing with Partitioners

Big Data Analysis with Scala and Spark

Heather Miller

Optimizing with Partitioners

We saw in the last session that Spark makes a few kinds of partitioners

available out-of-the-box to users:

...,. hash partitioners and

...,. range partitioners.

We also learned what kinds of operations may introduce new partitioners,

or which may discard custom partitioners.

However, we haven't covered why someone would want to repartition their

data.

Optimizing with Partitioners

We saw in the last session that Spark makes a few kinds of partitioners

available out-of-the-box to users:

...,. hash partitioners and

...,. range partitioners.

We also learned what kinds of operations may introduce new partitioners,

or which may discard custom partitioners.

However, we haven't covered why someone would want to repartition their

data.

Partitioning can bring substantial performance gains, especially in

the face of shuffles.

Optimization using range partitioning

Using range partitioners we can optimize our earlier use of reduceByKey so

that it does not involve any shuffling over the network at all!

Optimization using range partitioning

Using range partitioners we can optimize our earlier use of reduceByKey so

that it does not involve any shuffling over the network at all!

val pairs = purchasesRdd.map(p => (p.customerld, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)

val partitioned = pairs.partitionBy(tunedPartitioner)

.persist()

val purchasesPerCust =

partitioned.map(p => (p._1, (1, p._2)))

val purchasesPerMonth = purchasesPerCust

.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))

.collect()

Optimization using range partitioning

> val purchasesPerMonthSlowLarge = purchasesRddLarge.map(p => (p.customerld, p.price))
.groupByKey()

purchasesPerMonthSlowLarge: Long - 100000

(command took 15.48s)

.map(p => (p._1, (p._2.size, p._2.sum)))

.count()

> �al purchasesPerMonthFastLarge = purchasesRddLarge.map(p => (p.customerld, (1, p.price)))
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl._2 + v2._2))
.count()

purchasesPerMonthFastLarge: Long - 100000

(command took 4.6ss)

On the range partitioned data:
> val purchasesPerMonthFasterLarge = partitioned.map(x => x)J

purchasesPerMonthFasterLarge: Long= 100000

(command took 1.79s)

.reduceByKey((vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2))

. count ()

Optimization using range partitioning

> val purchasesPerMonthSlowLarge = purchasesRddLarge.map(p => (p.customerld, p.price))
.groupByKey()

purchasesPerMonthSlowLarge: Long - 100000

(command took 15.48s)

.map(p => (p._1, (p._2.size, p._2.sum)))

.count()

> �al purchasesPerMonthFastLarge = purchasesRddLarge.map(p => (p.customerld, (1, p.price)))
.reduceByKey({vl, v2) => (vl._1 + v2._1, vl._2 + v2._2))
.count()

purchasesPerMonthFastLarge: Long - 100000

(command took 4.6ss)

On the range partitioned data:
> val purchasesPerMonthFasterLarge = partitioned.map(x => x)J

purchasesPerMonthFasterLarge: Long= 100000

.reduceByKey((vl, v2) => (vl._1 + v2._1, vl. 2 + v2._2))

. count ()

I Command took 1. 79s) almost Q 9x speedup over
purchasePerMonthSlowlarge!

Partitioning Data: parti tionBy, Another Example

From pages 61-64 of the Learning Spark book

Consider an application that keeps a large table of user information in

memory:

...,. userData - BIG, containing (User ID, User Info) pairs, where User Info

contains a list of topics the user is subscribed to.

The application periodically combines this big table with a smaller file

representing events that happened in the past five minutes .

...,. events - small, containing (UserID, Linklnfo) pairs for users who

have clicked a link on a website in those five minutes:

For example, we may wish to count how many users visited a link that was

not to one of their subscribed topics. We can perform this combination

with Spark's join operation, which can be used to group the Userlnfo and

Linklnfo pairs for each UserID by key.

Partitioning Data: parti tionBy, Another Example

From pages 61-64 of the Learning Spark book

val sc = new SparkContext(...)

val userData = sc.sequenceFile[UserID, Userlnfo]("hdfs:// ... ").persist()

def processNewlogs(logFileName: String) {

val events = sc.sequenceFile[UserID, Linklnfo](logFileName)

val joined = userData.join(events) //ROD of (UserID, (Userlnfo, Linklnfo))

val offTopicVisits = joined.filter {

case (userld, (userlnfo, linklnfo)) => //Expand the tuple

!userlnfo.topics.contains(linklnfo.topic)

}.count()

println(''Number of visits to non-subscribed topics: '' + offTopicVisi ts)

}

Is this OK?

Partitioning Data: parti tionBy, Another Example

From pages 61-64 of the Learning Spark book

It will be very inefficient!

Why? The join operation, called each time processNewLogs is invoked,

does not know anything about how the keys are partitioned in the datasets.

By default, this operation will hash

all the keys of both datasets,

sending elements with the same key

hash across the network to the

same machine, and then join

together the elements with the

same key on that machine. Even

though userData doesn't

change!

userData

•

•

•

joined

•

•

•

events

•

•

•

network communication

Partitioning Data: parti tionBy, Another Example

Fixing this is easy. Just use parti tionBy on the big userData RDD at the

start of the program!

Partitioning Data: parti tionBy, Another Example

Fixing this is easy. Just use parti tionBy on the big userData RDD at the

start of the program!

Therefore, userData becomes:

val userData = sc.sequenceFile[UserID, Userlnfo]("hdfs:// ... ")

.partitionBy(new HashPartitioner(100)) // Create 100 partitions

.persist()

Since we called parti tionBy when building userData, Spark will now know

that it is hash-partitioned, and calls to join on it will take advantage of

this information.

In particular, when we call userData.join(events), Spark will shuffle only

the events ROD, sending events with each particular UserID to the

machine that contains the corresponding hash partition of userData.

Partitioning Data: parti tionBy, Another Example

Or, shown visually:

userData

,.. ,

•

•

•

,.. ,

...i

"' -

-

"' -

"' -

jo ined events

•

•

•

•

•

•

network communication

- - - - - ----•

llocal reference

Now that userData is pre-partitioned, Spark will shuffle only the events

RDD, sending events with each particular UserID to the machine that

contains the corresponding hash partition of userData.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

Grouping is done using a hash partitioner with default parameters.

Back to shuffling

Recall our example using groupByKey:

val purchasesPerCust =

purchasesRdd.map(p => (p.customerld, p.price)) // Pair RDD

.groupByKey()

Grouping all values of key-value pairs with the same key requires collecting

all key-value pairs with the same key on the same machine.

Grouping is done using a hash partitioner with default parameters.

The result RDD, purchasesPerCust, is configured to use the hash

partitioner that was used to construct it.

How do I know a shuffle will occur?

Rule of thumb: a shuffle can occur when the resulting RDD depends on

other elements from the same RDD or another RDD.

How do I know a shuffle will occur?

Rule of thumb: a shuffle can occur when the resulting RDD depends on

other elements from the same RDD or another RDD.

Note: sometimes one can be clever and avoid much or all network

communication while still using an operation like join via smart

partitioning

How do I know a shuffle will occur?

You can also figure out whether a shuffle has been planned/executed via:

1. The return type of certain transformations, e.g.,

org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[l3661J

2. Using function toDebugString to see its execution plan:

partitioned.reduceByKey((v1, v2) => (v1 ._1 + v2._1, v1 ._2 + v2._2))
.toDebugString

res9: String=

(8) MapPartitionsRDD[l6221J at reduceByKey at <console>:49 []
I ShuffledRDD[l6151J at partitionBy at <console>:48 []

CachedPartitions: �; MemorySize: 117541-� MB; DiskSize: �-� B

Operations that might cause a shuffle

-.... cogroup

-.... groupWi th

-.... join

-.... leftOuter Join

-.... rightOuterJoin

-.... groupByKey

..,. reduceByKey

..,. combineByKey

-.... distinct

-.... intersection

-.... repartition

-.... coalesce

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that might cause a shuffle and to

still avoid much or all network shuffling.

Can you think of an example?

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that might cause a shuffle and to

still avoid much or all network shuffling.

Can you think of an example?

2 Examples:

1. reduceByKey running on a pre-partitioned ROD will cause the values

to be computed locally, requiring only the final reduced value has to

be sent from the worker to the driver.

2. join called on two RDDs that are pre-partitioned with the same

partitioner and cached on the same machine will cause the join to be

computed locally, with no shuffling across the network.

Shuffles Happen: Key Takeaways

How your data is organized on the cluster, and what operations

you're doing with it matters!

We've seen speedups of lOx on small examples just by trying to ensure

that data is not transmitted over the network to other machines.

This can hugely affect your day job if you're trying to run a job that

should run in 4 hours, but due to a missed opportunity to partition data or

optimize away a shuffle, it could take 40 hours instead.

)

.>

ECOLE POLYTECHNIQ!JE
.> .>

FEDERALE DE LAUSANNE

�

�
�
�

val =

val =

val =

val =

input file

rdd

filtered

count reduced

map,	filter

reducecount

val =

val =

val =

val =

input file

rdd

filtered

count reduced

map,	filter

reducecount

How are RDDs represented?

RDDs are made up of 2 important parts.

RDD

RDDs are represented as:

(but are made up of 4 parts in total)

RDD

How are RDDs represented?

RDDs are made up of 2 important parts.

RDD

Partition

Partition

Partition

‣ Partitions. Atomic pieces of the dataset.
One or many per compute node.

RDDs are represented as:

(but are made up of 4 parts in total)

How are RDDs represented?

RDDs are made up of 2 important parts.

‣ Partitions. Atomic pieces of the dataset.
One or many per compute node.

‣ Dependencies. Models relationship
between this RDD and its partitions
with the RDD(s) it was derived from.

RDDs are represented as:

(but are made up of 4 parts in total)

RDDRDD

Dependency

(Parent) (Child)

map

How are RDDs represented?

RDDs are made up of 2 important parts.

‣ Partitions. Atomic pieces of the dataset.
One or many per compute node.

‣ Dependencies. Models relationship
between this RDD and its partitions
with the RDD(s) it was derived from.

RDDs are represented as:

(but are made up of 4 parts in total)

RDDRDD

Dependencies
(Parent) (Child)

map

How are RDDs represented?

RDDs are made up of 2 important parts.

RDD

‣ Partitions. Atomic pieces of the dataset.
One or many per compute node.

‣ Dependencies. Models relationship
between this RDD and its partitions
with the RDD(s) it was derived from.

‣ A function for computing the dataset
based on its parent RDDs.

RDDs are represented as:

‣ Metadata about its partitioning scheme
and data placement.

(but are made up of 4 parts in total)

!
function

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

map,	filter

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

map,	filter

union

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

map,	filter

unionjoin	with
co-partitioned	inputs

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

map,	filter

unionjoin	with
co-partitioned	inputs

Wide dependencies:
Each partition of the parent RDD may be
depended on by multiple child partitions.

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

map,	filter

unionjoin	with
co-partitioned	inputs

Wide dependencies:
Each partition of the parent RDD may be
depended on by multiple child partitions.

groupByKey

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

map,	filter

unionjoin	with
co-partitioned	inputs

Wide dependencies:
Each partition of the parent RDD may be
depended on by multiple child partitions.

join
with		
inputs	not		
co-partitioned	

groupByKey

Narrow Dependencies vs Wide Dependences, Visually

Narrow dependencies:
Each partition of the parent RDD is used
by at most one partition of the child RDD.

map,	filter

unionjoin	with
co-partitioned	inputs

Wide dependencies:
Each partition of the parent RDD may be
depended on by multiple child partitions.

join
with		
inputs	not		
co-partitioned	

groupByKey

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Conceptually assuming the DAG:

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Conceptually assuming the DAG:

What do the dependencies
look like?
Which dependencies are
wide, and which are narrow?

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Which dependencies are
wide, and which are narrow?

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

wide

wide

Wide transformations:
groupBy,	join

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

narrow

narrow

narrow

wide

wide

Wide transformations:
groupBy,	join

Narrow transformations:
map,	union,	join

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

narrow

narrow

narrow

wide

wide

Wide transformations:
groupBy,	join

Narrow transformations:
map,	union,	join

why is this
side of the
join narrow!?

⚠

Narrow Dependencies vs Wide Dependences, Visually

Let’s visualize an example
program and its dependencies.

C D

E
F

G

A

groupBy

map

B

union

join

Since G would be derived from B,
which itself is derived from a
groupBy and a shuffle on A, you
could imagine that we will have
already co-partitioned and
cached B in memory following
the call to groupBy.

cached in memory

Part of this join is thus a
narrow transformation.

dependencies

�

�

�

�

dependencies

val =

val = =>

toDebugString

val =

val = =>

�
�

�

�
�

�

Recover from failures by recomputing lost partitions from lineage graphs.

C D

E
F

G

A

groupBy

map

B

union

join

C D

E
F

G

A

groupBy

map

B

union

join

C D

E
F

G

A

groupBy

map

B

union

join

C D

E
F

G

A

groupBy

map

B

union

join

C D

E
F

G

A

groupBy

map

B

union

join

C D

E
F

G

A

groupBy

map

B

union

join

✔

C D

E
F

G

A

groupBy

map

B

union

join

