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What we've seen so far 

_... we defined Distributed Data Parallelism 

..., we saw that Apache Spark implements this model 

..., we got a feel for what latency means to distributed systems 



What we've seen so far 

_... we defined Distributed Data Parallelism 

..., we saw that Apache Spark implements this model 

..., we got a feel for what latency means to distributed systems 

Spark's Programming Model 

..., We saw that, at a glance, Spark looks like Scala collections 

..., However, internally, Spark behaves differently than Scala collections 

� Spark uses laziness to save time and memory 

_... We saw transformations and actions 

..., We saw caching and persistence (i.e., cache in memory, save time!) 

..., We saw how the cluster topology comes into the programming model 



Transformations to Action s 

Most of our intuitions have focused on distributing transformations such 

as map, flatMap, filter, etc. 

We've visualized how transformations like these are distributed and 
parallelized. 



Transformations to Action s 

Most of our intuitions have focused on distributing transformations such 

as map, flatMap, filter, etc. 

We've visualized how transformations like these are distributed and 
parallelized. 

But what about actions? In particular, how are common reduce-like 

actions distributed in Spark? 



Reduction Operations, Generally 

First, what do we mean by "reduction operations"? 

Recall operations such as fold, reduce, and aggregate from Scala 
sequential collections. All of these operations and their variants (such as 
foldleft, reduceRight, etc) have something in common. 
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Reduction Operations, Generally 

Reduction Operations: 

walk though a collection and combine neighboring elements of the 
collection together to produce a single combined result. 
( rather than another collection) 

Example: 

case class Taco(kind: String, price: Double) 

val tacoOrder = 

List( 

Taco("Carnitas", 2.25), 

Taco("Corn", 1 . 75), 

Taco("Barbacoa", 2.50), 

Taco("Chicken", 2.00)) 

val cost= tacoOrder.foldleft(0.0)((sum, taco)=> sum + taco.price) 



Parallel Reduction Operations 

Recall what we learned in the course Parallel Programming course 

about foldleft vs fold. 

Which of these two were parallelizable? 



Parallel Reduction Operations 

Recall what we learned in the course Parallel Programming course 

about foldleft vs fold. 

Which of these two were parallelizable? 

f oldleft is not parallelizable. 

def foldleft[B](z: B)(f: (B, A)=> B): B 

Applies a binary operator to a start value and all elements of this 
collection or iterator, going left to right. 

A 

B 

- Scala API documentation 

B 



Para I lel Reduction Operations: Fold Left 

f oldleft is not parallelizable. 

def foldleft[B](z: B)(f: (B, A)=> B): B 

Being able to change the result type from A to B forces us to have to 
execute foldleft sequentially from left to right. 

Concretely, given: 

val xs = List(1, 2, 3, 4) 
val res = xs.foldleft("")((str: String, i: Int)=> str + i) 

What happens if we try to break this collection in two and parallelize? 



Para I lel Reduction Operations: Fold Left 

f oldleft is not parallelizable. 

def foldleft[B](z: B)(f: (B, A)=> B): B 

val xs = List(1, 2, 3, 4) 

val res = xs.foldleft('"')((str: String, i: Int) => str + i) Strir 

Lislll> 1.) 

\\ ,, -t 3 => � a 9 

''O'' + � · => \\�11 '' 



Parallel Reduction Operations: Fold 

fold enables us to parallelize things, but it restricts us to always returning 

the same type. 

def fold(z: A)(f: (A, A)=> A): A 

A 

It enables us to parallelize using a single function f by enabling us 

to build parallelizable reduce trees. 



Parallel Reduction Operations: Fold 

It enables us to parallelize using a single function f by enabling us 

to build parallelizable reduce trees. 

def fold(z: A)(f: (A, A)=> A): A 

I 

A 

A 

��I _J 
A A A 



Parallel Reduction Operations: Aggregate 

Does anyone remember what aggregate does? 



Parallel Reduction Operations: Aggregate 

Does anyone remember what aggregate does? 

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B 



Parallel Reduction Operations: Aggregate 

Does anyone remember what aggregate does? 

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B 

aggregate is said to be general because it gets you the best of both worlds. 

Properties of aggregate 

1. Parallelizable. 

2. Possible to change the return type. 



Parallel Reduction Operations: Aggregate 

aggregate[BJ(z: => B)(seqop: (B, A)=> B, combop: (B, B) => B): B 

I 
B 

A
� ,___

A 
........ 

,.......A ......... ,_____, ) 
[]] B B 1 

Aggregate lets you still do sequential-style folds in chunks which change 
the result type. Additionally requiring the combop function enables building 
one of these nice reduce trees that we saw is possible with fold to 
combine these chunks in parallel. 
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fold 
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reduce 
aggregate 
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reduce 
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Reduction Operations  on RDDs 

Scala collections: 
fold 
fold Left/fold Right 
reduce 
aggregate 

Spark: 
fold 
fold Left/fold RigRt 
reduce 
aggregate 

Spark doesn't even give you the option to use foldLeft/foldRight. Which 
means that if you have to change the return type of your reduction 
operation, your only choice is to use aggregate. 

Question: Why not still have a serial foldLeft/foldRight on Spark? 

Doing things serially across a cluster is actually difficult. Lots of 
synchronization. Doesn't make a lot of sense. 



ROD Reduction Operations: Aggregate 

In Spark, aggregate is a more desirable reduction operator a majority of 

the time. Why do you think that's the case? 
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In Spark, aggregate is a more desirable reduction operator a majority of 

the time. Why do you think that's the case? 
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As you will realize from experimenting with our Spark cluster, much of the 

time when working with large-scale data, our goal is to project down 
from larger /more complex data types. 



ROD Reduction Operations: Aggregate 

In Spark, aggregate is a more desirable reduction operator a majority of 

the time. Why do you think that's the case? 

As you will realize from experimenting with our Spark cluster, much of the 

time when working with large-scale data, our goal is to project down 
from larger /more complex data types. 

Example: 

case class WikipediaPage( 

title: String, 

redirectTitle: String, 

timestamp: String, 

lastContributorUsername: String, 

text: String) 



• 

ROD Reduction Operations: Aggregate 

As you will realize after experimenting with Spark a bit, much of the time 

when working with large-scale data, your goal is to project down from 
larger/more complex data types. 

Example: 

case class WikipediaPage( 

title: String, 

redirectTitle: String, 

timestamp: String, 

lastContributorUsername: String, 

text: String) 

I might only care about title and timestamp, for example. In this case, it'd save a lot of 
time/memory to not have to carry around the full-text of each article {text) in our 
accumulator! 

Hence, why accumulate is often more desirable in Spark than in Scala collections! 
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Distributed Key-Value Pairs

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-

ated implementation for processing and generating large

data sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key. Many

real world tasks are expressible in this model, as shown

in the paper.

Programs written in this functional style are automati-

cally parallelized and executed on a large cluster of com-

modity machines. The run-time system takes care of the

details of partitioning the input data, scheduling the pro-

given day, etc. Most such computations are conceptu-

ally straightforward. However, the input data is usually

large and the computations have to be distributed across

hundreds or thousands of machines in order to finish in

a reasonable amount of time. The issues of how to par-

allelize the computation, distribute the data, and handle

failures conspire to obscure the original simple compu-

tation with large amounts of complex code to deal with

these issues.

As a reaction to this complexity, we designed a new

abstraction that allows us to express the simple computa-

tions we were trying to perform but hides the messy de-

tails of parallelization, fault-tolerance, data distribution

and load balancing in a library. Our abstraction is in-

(2004 research paper)



Distributed Key-Value Pairs

Abstract

MapReduce is a programming model and an associ-

ated implementation for processing and generating large

data sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key. Many

real world tasks are expressible in this model, as shown

in the paper.

Programs written in this functional style are automati-

cally parallelized and executed on a large cluster of com-

modity machines. The run-time system takes care of the

details of partitioning the input data, scheduling the pro-

gram’s execution across a set of machines, handling ma-

chine failures, and managing the required inter-machine

communication. This allows programmers without any

experience with parallel and distributed systems to eas-

ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large

cluster of commodity machines and is highly scalable:

a typical MapReduce computation processes many ter-

abytes of data on thousands of machines. Programmers

find the system easy to use: hundreds ofMapReduce pro-

grams have been implemented and upwards of one thou-

sand MapReduce jobs are executed on Google’s clusters

every day.

given day, etc. Most such computations are conceptu-

ally straightforward. However, the input data is usually

large and the computations have to be distributed across

hundreds or thousands of machines in order to finish in

a reasonable amount of time. The issues of how to par-

allelize the computation, distribute the data, and handle

failures conspire to obscure the original simple compu-

tation with large amounts of complex code to deal with

these issues.

As a reaction to this complexity, we designed a new

abstraction that allows us to express the simple computa-

tions we were trying to perform but hides the messy de-

tails of parallelization, fault-tolerance, data distribution

and load balancing in a library. Our abstraction is in-

spired by the map and reduce primitives present in Lisp

and many other functional languages. We realized that

most of our computations involved applying a map op-

eration to each logical “record” in our input in order to

compute a set of intermediate key/value pairs, and then

applying a reduce operation to all the values that shared

the same key, in order to combine the derived data ap-

propriately. Our use of a functional model with user-

specified map and reduce operations allows us to paral-

lelize large computations easily and to use re-execution

as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and

powerful interface that enables automatic parallelization

and distribution of large-scale computations, combined

(2004 research paper)





String Property

case class : String : String : String





K V



def : RDD K Iterable V

def : V V => : RDD K V

def W : RDD K W : RDD K V W



val : RDD WikipediaPage =

val =



val : RDD WikipediaPage =

val = =>
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Some interesting Pair RDDs operations 

Important operations defined on Pair RDDs: 
(But not available on regular RD Os) 

Transformations 

� groupByKey 

..,_ reduceByKey 

� mapValues 

..,. keys 
• • 

� JOln 

..,_ left0uterJoin/right0uterJoin 

Action 

� countByKey 



Pair ROD Transformation: groupByKey 

Recall groupBy from Scala collections. 



Pair ROD Transformation: groupByKey 

Recall groupBy from Scala collections. 

def groupBy[KJ(f: A=> K): Map[K, Traversable[AJJ 

Partitions this traversable collection into a map of traversable 

collections according to some discriminator function. 

In English: Breaks up a collection into two or m ore collections according 
to a function that you pass to it. Result of the function is the key, the 
collection of results that return that key when the function is applied to it. 
Returns a Map mapping computed keys to collections of corresponding 
values. 



Pair ROD Transformation: groupByKey 

Recall groupBy from Scala collections. 

def groupBy[KJ(f: A=> K): Map[K, Traversable[AJJ 

Example: 

Let's group the below list of ages into "child", "adult", and "senior" categories. 

val ages = List(2, 52, 44, 23, 17, 14, 12, 82, 51, 64) 

val grouped = ages.groupBy {age => 

if (age >= 18 && age < 65) ''adult'' 

else if (age < 18) ''child'' 

else ''senior'' 

} 
// grouped: scala.collection.immutable.Map[String,List[Int]J = 

// Map(senior -> List(82), adult-> List(52, 44, 23, 51, 64), 

//child-> List(2, 17, 14, 12)) 



Pair ROD Transformation: groupByKey 

Recall groupBy from Scala collections. groupByKey can be thought of as a 
groupBy on Pair RDDs that is specialized on grouping all values that have 
the sam e key. As a result, it takes no argum ent. 

def groupByKey(): RDD[(K, lterable[VJ)J 



Pair ROD Transformation: groupByKey 

Recall groupBy from Scala collections. groupByKey can be thought of as a 
groupBy on Pair RDDs that is specialized on grouping all values that have 
the same key. As a result, it takes no argument. 

def groupByKey(): RDD[(K, lterable[VJ)J 

Example: 

case class Event(organizer: String, name: String, budget: Int) 

val eventsRdd = sc.parallelize( ... ) 
.map(event => (event.organizer, event.budget)) 

val groupedRdd = eventsRdd.groupByKey() 

Here the key is organizer. What does this call do? 



Pair ROD Transformation: groupByKey 

Example: 

case class Event(organizer: String, name: String, budget: Int) 

val eventsRdd = sc.parallelize( ... ) 
.map(event => (event.organizer, event.budget)) 

val groupedRdd = eventsRdd.groupByKey() 

// TRICK QUESTION! As-is, it "does" nothing. It returns an unevaluated RDD 

groupedRdd.collect().foreach(println) 
// (Prime Sound, CompactBuffer(42000)) 
// (Sportorg, CompactBuffer(23000, 12000, 1400)) 

I I ... 



Pair ROD Transformation: reduceByKey 

Conceptually, reduceByKey can be thought of as a com bination of 
groupByKey and reduce-ing on all the values per key. It's more efficient 
though, than using each separately. (We'll see why later. ) 

def reduceByKey(func: (V, V) => V): RDD[(K, V)J 



Pair ROD Transformation: reduceByKey 

Conceptually, reduceByKey can be thought of as a combination of 
groupByKey and reduce-ing on all the values per key. It's more efficient 
though, than using each separately. (We'll see why later.) 

def reduceByKey(func: (V, V) => V): RDD[(K, V)J 

Example: Let's use eventsRdd from the previous example to calculate the 
total budget per organizer of all of their organized events. 

case class Event(organizer: String, name: String, budget: Int) 

val eventsRdd = sc.parallelize( ... ) 
.map(event => (event.organizer, event.budget)) 

val budgetsRdd = ... 



Pair ROD Transformation: reduceByKey 

Example: Let's use eventsRdd from the previous example to calculate the 
total budget per organizer of all of their organized events. 

case class Event(organizer: String, name: String, budget: Int) 

val eventsRdd = sc.parallelize( ... ) 
.map(event => (event.organizer, event.budget)) 

val budgetsRdd = eventsRdd.reduceByKey(_+_) 

reducedRdd.collect().foreach(println) 
// (Prime Sound, 42000) 
// (Sportorg, 36400) 
// (Innotech, 320000) 
// (Association Bal€lec, 50000) 



Pair ROD Transformation: mapValues and Action: countByKey 

mapValues ( def mapValues [UJ ( f: V => U) : RDD [ (K, U) J) can be thought of 
as a short-hand for: 

rdd.map { case (x, y): (x, func(y))} 

That is, it sim ply applies a function to only the values in a Pair RDD. 

countByKey ( def countByKey(): Map[K, Long]) sim ply counts the num ber 
of elem ents per key in a Pair RDD, returning a normal Scala Map 
(rem em ber, it's an action!) mapping from keys to counts. 



Pair ROD Transformation: mapValues and Action: countByKey 

Example: we can use each of these operations to compute the average budget 

per event organizer, if possible. 

// Calculate a pair (as a key's value) containing (budget, #events) 

val intermediate =???// Can we use countByKey? 



Pair ROD Transformation: mapValues and Action: countByKey 

Example: we can use each of these operations to compute the average budget 

per event organizer, if possible. 

// Calculate a pair (as a key's value) 

val intermediate = 

eventsRdd.mapValues (b => (b, 1) ) 
. rt JM c. <.,6i Ke d (_ 
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J 
-t�:ij � ()ru�ieJ 



Pair ROD Transformation: mapValues and Action: countByKey 

Example: we can use each of these operations to compute the average budget 

per event organizer, if possible. 

// Calculate a pair (as a key's 

val intermediate = 

eventsRdd.mapValues (b => (b, 

.reduceByKey ( (v1, v2) => 

// intermediate: RDD[(String, (Int, 

containing (budget, #events) 

(v1 ._1 + v2._1, 
'- -

,,,,,. 

Int))]/ 

blAJ,t:1-1 

v1 ._2 + v2._2) ) 



Pair ROD Transformation: mapValues and Action: countByKey 

Example: we can use each of these operations to compute the average budget 

per event organizer, if possible. 

// Calculate a pair (as a key's value) containing (budget, #events) 

val intermediate = 

eventsRdd.mapValues (b => (b, 1) ) 

.reduceByKey ( (vl, v2) => (vl ._1 + v2._1, vl ._2 + v2._2) ) 

// intermediate: RDD[(String, (Int, Int) ) ]  

val avgBudgets = ??? 



Pair ROD Transformation: mapValues and Action: countByKey 

Example: we can use each of these operations to compute the average budget 

per event organizer, if possible. 

II Calculate a pair (as a key ' s value) containing (budget, #events) 

val intermediate = 

eventsRdd.mapValues(b => (b, 1)) 

.reduceByKey((vl, v2) => (vl ._1 + v2._1, vl ._2 + v2._2)) 

II intermediate: RDD[(String, (Int, Int))] 

val avgBudgets = intermediate.mapValues { 

case (budget, numberOfEvents) => budget I numberOfEvents 

} 
avgBudgets.collect().foreach(println) 

II (Prime Sound,42000) 

II (Sportorg,12133) 

II (Innotech,106666) 

II (Association Balelec,50000) 
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Pair RDD Transformation: keys 

keys ( def keys: RDD[KJ) Return an RDD with the keys of each tuple. 

Note: this method is a transformation and thus returns an ROD because 

the number of keys in a Pair ROD may be unbounded. It's possible for 

every value to have a unique key, and thus is may not be possible to 

collect all keys at one node. 



Pair ROD Transformation: keys 

keys (def keys: RDD[KJ) Return an ROD with the keys of each tuple. 

Note: this method is a transformation and thus returns an ROD because 

the number of keys in a Pair ROD may be unbounded. It's possible for 

every value to have a unique key, and thus is may not be possible to 

collect all keys at one node. 

Example: we can count the num ber of unique visitors to a website using 
the keys transform at ion. 

case class Visitor(ip: String, timestamp: String, duration: String) 

val visits: RDD[Visitor] = sc.textfile( ... ) "\\ · MOf t V ;:-)( V. if 
1 

"·d,ut'�i Or'\jJ 

val numUniqueVisits = ??? 



Pair ROD Transformation: keys 

keys (def keys: RDD[KJ) Return an ROD with the keys of each tuple. 

Note: this method is a transformation and thus returns an ROD because 

the number of keys in a Pair ROD may be unbounded. It's possible for 

every value to have a unique key, and thus is may not be possible to 

collect all keys at one node. 

Example: we can count the number of unique visitors to a website using 
the keys transform at ion. 

case class Visitor(ip: String, timestamp: String, duration: String) 

val visits: RDD[Visitor] = sc.textfile ... ) 
. Th°"' ( " � "· 'Y , V. � ,Ji Ofl )) 

val numUniqueVisits = visits.keys.distinct().count() 
// numUniqueVisits: Long= 3391 



PairRDDFunctions 

For a list of all available specialized Pair RDD operations, see the Spark 
API page for PairRDDFunctions (ScalaDoc): 
http://spark.apache.org/ docs/latest/ api / sea la /index. htm l#org. apache.spark. rdd. PairRD D Functions 

I class PairRDDFunctions[K, V] extends Logging with Serializable 

Extra functions available on RDDs of (key, value) pairs through an implicit conversion. 

Source PairRDDFunctions.scala 

111- Linear Supertypes 

Ordering Alphabetic By Inheritance 

Inherited PairRDDFunctions Serializable Serializable Logging AnyRef Any 

Hide All Show All 

Visibility Public All 

Instance Constructors 

new PairRDDFunctions(self: RDD[(K, V)])(irnplicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null) 

0 

---------------------------------------------------------------

Va I u e Members 

def aggregateByKey[U] (zeroValue: U) (seqOp: (U, V) => u, combOp: (U, U) => U) (implicit arg0: ClassTag[U] )i: ROD[ (K, U)] 

Aggregate the values of each key, using ,given combine functions and a neutral "zero value". 

def aggregateByKey [ U] ( zeroValue: U, numParti tions: Int) ( seqOp: ( U, V) => U, combOp: ( U, U) => U) (implicit arg0: 

ClassTa,g [ U] ) : ROD [ ( K, U) ] 

Aggregate the values of each key, using ,given combine functions and a neutral "zero value". 
, - TT -, -- .-. _ TT - .L. .! ...! \. I - _,.-._ _ IT ,_ - - T\ -------1 ,  I .! ___,,.-, _� -�..L... 
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Joins 

Joins are another sort of transformation on Pair RDDs. They're used to 
combine multiple datasets They are one of the most commonly-used 
operations on Pair RDDs! 

There are two kinds of joins: 

..,. Inner joins (join) 

..,. Outer joins (left0uterJoin/right0uterJoin) 

rJ..,1. I 
The key difference between the two is what happens to the keys w en 
both RDDs don't contain the same key. 

For example, if I were to join two RDDs containing different customerIDs 
(the key), the difference between inner/outer joins is what happens to 
customers whose IDs don't exist in both RDDs. 



Example Dataset ... 

Example: Let's pretend the Swiss Rail company, CFF, has two datasets. 
One RDD representing customers and their subscriptions (abos ), and 
another representing customers and cities they frequently travel to 
(locations). **(E.g., gathered from CFF smartphone app.) 

Let's assume the following concrete data: 

val as= List((101, ("Ruetli", AG)), (102, ("Brelaz", DemiTarif)), 
( 103, ("Gress", Demi Tari fVi sa)), ( 104, ( "Sc hat ten", Demi Tari f))) 

val abos = sc.parallelize(as) 

val ls= List((101, "Bern"), (101, "Thun"), (102, "Lausanne"), (102, "Geneve"), 
(102, "Nyon"), (103, "Zurich"), (103, "St-Gallen"), (103, "Chur")) 

vals locations = sc.parallelize(ls) 



Example Dataset ... (2) 

Example: Let's pretend the C F F  has two datasets. One RDD representing 
customers and their subscriptions ( abos), and another representing 
customers and cities they frequently travel to (locations). ( E.g., gathered 
from C F F  smartphone app.) 

Let's assume the following concrete data: (visualized) 

abos 

(101, ("Ruetli", AG)), 

(102, ("Brelaz", Demi Tari f)), 

(103, ("Gress", Demi Tari fVisa)), 

(104, ("Schatten", DemiTarif)) 

customer# lastName kindOfAbo 

locations 

(101, "Bern"), 

(101, "Thun"), 

(102, "Lausanne"), 

( 102, "Geneve") , 

( 102, "Nyon") , 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 

j l j I 

customer# frequentCity 



Example Dataset ... (3) 

Example: Let's pretend the C F F  has two datasets. One RDD representing 
customers and their subscriptions ( abos), and another representing 
customers and cities they frequently travel to (locations). ( E.g., gathered 
from C F F  smartphone app.) 

Let's assume the following concrete data: (visualized) 

abos 

(101, ("Ruetli", AG)), 

(102, ("Brelaz", DemiTarif)), 

(103, ("Gress", Demi Tari fVisa)), 

(104, ("Schatten", DemiTarif)) 

j l 

This kind of data comes from 

CFF's databse of subscriptions 

This kind of data comes from individual 

purchases from the app (i.e., to use the 

app, you don't need an AG) 

locations 

( 101 , "Bern"), 

( 101 , "Thun"), 

(102, "Lausanne"), 

(102, "Geneve"), 

(102, "Nyon"), 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 



Inner Joins (join) 

Inner joins return a new RDD containing combined pairs whose keys are 
present in both input RDDs. 

def join[WJ(other: RDD[(K, W)J): RDD[(K, (V, W))J 

Example: Let's pretend the C F F  has two datasets. One RDD representing 
customers and their subscriptions (abos), and another representing 
customers and cities they frequently travel to (locations). (E.g., gathered 
from C F F  smartphone app.) 

How do we combine only customers that have a subscription and where 
there is location info? 

val abos = ... // RDD[(Int, (String, Abonnement))J 
val locations= ... // RDD[(Int, String)] 

val trackedCustomers = ??? 



Inner Joins (join) 

Example: Let's pretend the C F F  has two datasets. One RDD representing 
customers and their subscriptions ( abos), and another representing 
customers and cities they frequently travel to (locations). ( E.g., gathered 
from C F F  smartphone app.) 

How do we combine only customers that have a subscription and where 
there is location info? 

val abos = ... // RDD[(Int, (String, Abonnement))J 
val locations= ... // RDD[(Int, String)] 



Inner Joins (join) 

Example continued with concrete data: 

abos locations 

( 101 , ("Ruetli", AG)), ( 101 , "Bern"), 

(102, ("Brelaz", DemiTarif)), ( 101 , "Thun"), 

(103, ("Gress", DemiTarifVisa)), (102, "Lausanne"), 
(104, ("Schatten", DemiTarif)) (102, "Geneve"), 

(102, "Nyon"), 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 

val trackedCustomers = abos.join(locations) 

// trackedCustomers: RDD[(Int, ((String, Abonnement) , String) ) ]  



Inner Joins (join) 

Example continued with concrete data: 

abos 

(101, ("Ruetli", AG)), 

(102, ("Brelaz", DemiTarif)), 

(103, ("Gress", Demi Tari fVisa)), 

(104, ("Schatten", DemiTarif)) 

We want to combine both RDDs into one: 

How do we combine only customers that 

have a subscription and where there is 

location info? 

locations 

( 101 , "Bern"), 

( 101 , "Thun"), 

(102, "Lausanne"), 

(102, "Geneve"), 

(102, "Nyon"), 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 



Inner Joins (join) 

Example continued with concrete data: 

abos 

(101, ("Ruetli", AG)), 

(102, ("Brelaz", DemiTarif)), 

(103, ("Gress", Demi Tari fVisa)), 

(104, ("Schatten", DemiTarif)) 

We want to make a new RDD with only these! 

locations 

(101, "Bern"), 

(101, "Thun"), 

(102, "Lausanne"), 

(102, "Geneve"), 

( 102, "Nyon") , 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 



Inner Joins (join) 

Example continued with concrete data: 

trackedCustomers 

(101, ( (Ruetli, AG), Bern)) 

(101, ( (Ruetli, AG), Thun)) 

(102, ( (Brelaz, DemiTarif), Nyon)) 

(102, ( (Brelaz, DemiTarif), Lausanne)) 

(102, ( (Brelaz, DemiTarif), Geneve)) 

(103, ( (Gress, DemiTarifVisa), St-Gallen)) 

(103, ( (Gress, DemiTarifVisa), Chur)) 

(103, ( (Gress, DemiTarifVisa), Zurich)) 

�t-t--t--t--
customer# lastName kindOfAbo frequentCity 

val trackedCustomers = abos.join(locations) 

// trackedCustomers: RDD[(Int, ((String, Abonnement) , String) ) ]  



Inner Joins (join) 

Example continued with concrete data: 

trackedCustomers.collect() .foreach(println) 

// (101, ((Ruetli, AG) , Bern) ) 

// (101, ((Ruetli, AG) , Thun) ) 

// (102, ((Brelaz, DemiTarif) , Nyon) ) 

// (102, ((Brelaz, DemiTarif) , Lausanne) ) 

// (102, ((Brelaz, DemiTarif) , Geneve) ) 

// (103, ((Gress, DemiTarifVisa) , St-Gallen) ) 

// (103, ((Gress, DemiTarifVisa) , Chur) ) 

// (103, ((Gress, DemiTarifVisa) , Zurich) ) 

What happened to customer 104? 



Inner Joins (join) 

Example continued with concrete data: 

trackedCustomers.collect() .foreach(println) 

// (101, ((Ruetli, AG) , Bern) ) 

// (101, ((Ruetli, AG) , Thun) ) 

// (102, ((Brelaz, DemiTarif) , Nyon) ) 

// (102, ((Brelaz, DemiTarif) , Lausanne) ) 

// (102, ((Brelaz, DemiTarif) , Geneve) ) 

// (103, ((Gress, DemiTarifVisa) , St-Gallen) ) 

// (103, ((Gress, DemiTarifVisa) , Chur) ) 

// (103, ((Gress, DemiTarifVisa) , Zurich) ) 

What happened to customer 104? 

Customer 104 does not occur in the result, because there is no location 
data for this customer Remember, inner joins require keys to occur in both 

source RDDs (i.e. , we must have location info). 



Outer Joins (leftOuterJoin, rightOuterJoin) 

Outer joins return a new RDD containing combined pairs whose keys don't have 
to be present in both input RD Ds. 

Outer joins are particularly useful for customizing how the resulting joined RDD 
deals with missing keys. With outer joins, we can decide which RDD's keys are 
most essential to keep-the left, or the right RDD in the join expression. 

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))J 

def rightOuterJoin[WJ(other: RDD[(K, W)]): RDD[(K, (Option[V], W))J 

(Notice the insertion and position of the Option!) 

Example: Let's assume the CFF wants to know for which subscribers the CFF 
has managed to collect location information. E.g., it's possible that someone has 
a demi-tarif, but doesn't use the CFF app and only pays cash for tickets. 

Which join do we use? 



Outer Joins (leftOuterJoin, rightOuterJoin) 

Example continued with concrete data: 

abos 

(101, ("Ruetli", AG)), 

(102, ("Brelaz", DemiTarif)), 

(103, ("Gress", DemiTarifVisa)), 

(104, ("Schatten", DemiTarif)) 

We want to combine both RDDs into one: 

The CFF wants to know for which subscribers 
the CFF has managed to collect location 
information. E.g., it's possible that someone 
has a demi-tarif, but doesn't use the CFF app 
and only pays cash for tickets. 

val abosWithOptionallocations = ??? 
• • • 

locations 

( 101 , "Bern"), 

( 101 , "Thun"), 

(102, "Lausanne"), 

(102, "Geneve"), 

(102, "Nyon"), 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 



Outer Joins (leftOuterJoin, rightOuterJoin) 

Example: Let's assume the C F F  wants to know for which subscribers the 
C F F  has managed to collect location information. E.g. , it's possible that 
someone has a demi-tarif, but doesn't use the C F F  app and only pays cash 
for tickets. 

Which join do we use? 

val abosWithOptionalLocations = ??? 



Outer Joins (leftOuterJoin, rightOuterJoin) 

Example continued with concrete data: 

abos 

( 101 , ("Ruetli", AG)), 

(102, ("Brelaz", DemiTarif)), 

(103, ("Gress", DemiTarifVisa)), 

(104, ("Schatten", DemiTarif)) 

We want to make a new RDD with these! 

val abosWithOptionallocations = ??? 
• • • 

locations 

( 101 , "Bern"), 

( 101 , "Thun"), 

(102, "Lausanne"), 

(102, "Geneve"), 

(102, "Nyon"), 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 



Outer Joins (leftOuterJoin, rightOuterJoin) 

Example: Let's assume the C F F  wants to know for which subscribers the 
C F F  has managed to collect location information. E.g. , it's possible that 
someone has a demi-tarif, but doesn't use the C F F  app and only pays cash 
for tickets. 

Which join do we use? 

val abosWithOptionalLocations = abos.leftOuterJoin(locations) 

// abosWithOptionallocations: RDD[(Int, ((String, Abonnement) , Option[String] ) ) J  



Outer Joins (leftOuterJoin, rightOuterJoin) 

Example continued with concrete data: 

abosWithOptionallocations 
------� 

(101 , ( (Ruetli, AG), Some (Thun))) 

(101 , ( (Ruetli, AG), Some (Bern))) 

(102, ( (Brelaz, DemiTarif), Some(Geneve))) 

(102, ( (Brelaz, DemiTarif), Some (Nyon))) 

(102, ( (Brelaz, DemiTarif), Some (Lausanne))) 

(103, ( (Gress, DemiTarifVisa), Some (Zurich))) 

(103, ( (Gress, DemiTarifVisa), Some (St-Gallen))) 

(103, ( (Gress, DemiTarifVisa), Some (Chur))) 

(104, ( (Schatten, DemiTarif), None)) 

t t t t 
customer# lastName kindOfAbo Option[frequentCity] 

val abosWithOptionallocations = abos.leftOuterJoin(locations) 

// abosWithOptionallocations: RDD[(Int, ((String, Abonnement) , Option[String] ) ) J  



Outer Joins (leftOuterJoin, rightOuterJoin) 

Example continued with concrete data: 

val abosWithOptionallocations = abos.leftOuterJoin(locations) 

abosWithOptionallocations.collect().foreach(println) 

II (101,((Ruetli,AG),Some(Thun))) 

II (101,((Ruetli,AG),Some(Bern))) 

II (102,((Brelaz,DemiTarif),Some(Geneve))) 

II (102,((Brelaz,DemiTarif),Some(Nyon))) 

II (102,((Brelaz,DemiTarif),Some(Lausanne))) 

II (103,((Gress,DemiTarifVisa),Some(Zurich))) 

II (103,((Gress,DemiTarifVisa),Some(St-Gallen))) 

II (103,((Gress,DemiTarifVisa),Some(Chur))) 

II (104,((Schatten,DemiTarif),None)) 

Since we use a leftOuterJoin, keys are guaranteed to occur in the left source 
ROD. Therefore, in this case, we see customer 104 because that customer has a 
demi-tarif (the left ROD in the join) . 



Outer Joins (leftOuterJoin, rightOuterJoin) 

We can do the converse using a rightOuter Join. 

abos 

(101, ("Ruetli", AG)), 

(102, ("Brelaz", DemiTarif)), 

(103, ("Gress", DemiTarifVisa)), 

(104, ("Schatten", DemiTarif)) 

We want to combine both RDDs into one: 

The CFF wants to know for which customers 
(smartphone app users) it has subscriptions for. 
E.g., it's possible that someone uses the mobile 
app, but has no demi-tarif. 

( 101 , 

( 101 , 

(102, 

(102, 

(102, 

(103, 

(103, 

(103, 

locations 

"Bern"), 

"Thun"), 

"Lausanne"), 

"Geneve"), 

"Nyon"), 

"Zurich"), 

"St-Gallen"), 

"Chur") 

val customersWithlocationDataAndOptionalAbos = ??? 
• • • 



Outer Joins (leftOuterJoin, rightOuterJoin) 

We can do the converse using a rightOuter Join. 

abos 

(101, ("Ruetli", AG)), 

(102, ("Brelaz", DemiTarif)), 

(103, ("Gress", DemiTarifVisa)), 

(104, ("Schatten", DemiTarif)) 

We want to make a new RDD with only these! 

locations 

( 1 01 , "Bern") , 

( 101 , "Thun"), 

(102, "Lausanne"), 

(102, "Geneve"), 

( 102, "Nyon") , 

(103, "Zurich"), 

(103, "St-Gallen"), 

(103, "Chur") 

val customersWithlocationDataAndOptionalAbos = ??? 
• • • 



Outer Joins (leftOuterJoin, rightOuterJoin) 

We can do the converse using a rightOuter Join. 

Example: Let's assume in this case, the C F F  wants to know for which 
customers (smartphone app users) it has subscriptions for. E.g. , it's 
possible that someone uses the mobile app, but has no demi-tarif. 

val customersWithLocationDataAndOptionalAbos = 
abos.rightOuterJoin(locations) 

// RDD[(Int, (Option[(String, Abonnement)J, String))] 



Outer Joins (leftOuterJoin, rightOuterJoin) 

Example continued with concrete data: 

customersWithlocationDataAndOptionalAbos 

(101, (Some ( (Ruetli, AG)), Bern)) 

(101 , (Some ( (Ruetli, AG)), Thun)) 

(102, (Some ( (Brelaz, DemiTarif)), Lausanne)) 

(102, (Some ( (Brelaz, DemiTarif)), Geneve)) 

(102, (Some ( (Brelaz, DemiTarif)), Nyon)) 

(103, (Some ( (Gress, DemiTarifVisa)), Zurich)) 

(103, (Some ( (Gress, DemiTarifVisa)), St-Gallen)) 

(103, (Some ( (Gress, DemiTarifVisa)), Chur)) 

t t t t 
customer# Option[(lastName, kindOfAbo)J frequentCity 

val customersWithlocationDataAndOptionalAbos = 

abos.rightOuterJoin(locations) 

// RDD[(Int, (Option[(String, Abonnement) J ,  String) ) ]  



• 

Outer Joins (leftOuterJoin, rightOuterJoin) 

Example continued with concrete data: 

val customersWithlocationDataAndOptionalAbos = 

abos.rightOuterJoin(locations) 

II RDD[(Int, (Option[(String, Abonnement)J, String))] 

customersWithlocationDataAndOptionalAbos.collect().foreach(println) 

II (101 ,(Some((Ruetli,AG)),Bern)) 

II (101 ,(Some((Ruetli,AG)),Thun)) 

II (102,(Some((Brelaz,DemiTarif)),Lausanne)) 

II (102,(Some((Brelaz,DemiTarif)),Geneve)) 

II (102,(Some((Brelaz,DemiTarif)),Nyon)) 

II (103,(Some((Gress,DemiTarifVisa)),Zurich)) 

II (103,(Some((Gress,DemiTarifVisa)),St-Gallen)) 

II (103,(Some((Gress,DemiTarifVisa)),Chur)) 

Note that, here, customer 104 disappears again because that customer doesn't have 
location info stored with the CFF {the right ROD in the join). 



?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ?? 

Think again what happens when you have to do a groupBy or a 

groupByKey. Remember our data is distributed! 



?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ?? 

Think again what happens when you have to do a groupBy or a 
groupByKey. Remember our data is distributed! 

We typically have to move data from one node to another to be "grouped 
with" its key. Doing this is called ''shuffling". 



?? org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[366] ?? 

Think again what happens when you have to do a groupBy or a 
groupByKey. Remember our data is distributed! 

We typically have to move data from one node to another to be "grouped 
with" its key. Doing this is called ''shuffling". 

Shuffles Happen 

Shuffles can be an enormous hit to because it means that Spark must send 
data from one node to another. Why? Latency! 

We'll talk more about these in the next lecture. 


