
Asynchronous Programming with Future

Principles of Functional Programming
Julien Richard-Foy, Martin Odersky



StarBlocks



StarBlocks Scaled



ScalaBucks



ScalaBucks Scaled



Asynchronous Execution

▶ Execution of a computation on another computing unit, without
waiting for its termination ;

▶ Better resource efficiency.



Concurrency Control of Asynchronous Programs

What if a program A depends on the result of an asynchronously executed
program B?

def coffeeBreak(): Unit =

val coffee = makeCoffee()

drink(coffee)

chatWithColleagues()



Callback

def makeCoffee(coffeeDone: Coffee => Unit): Unit =

// work hard ...

// ... and eventually

val coffee = ...

coffeeDone(coffee)

def coffeeBreak(): Unit =

makeCoffee { coffee =>

drink(coffee)

}

chatWithColleagues()



From Synchronous to Asynchronous Type Signatures

A synchronous type signature can be turned into an asynchronous type
signature by:

▶ returning Unit
▶ and taking as parameter a continuation defining what to do after

the return value has been computed

def program(a: A): B

def program(a: A, k: B => Unit): Unit



Combining Asynchronous Programs (1)

def makeCoffee(coffeeDone: Coffee => Unit): Unit = ...

def makeTwoCoffees(coffeesDone: (Coffee, Coffee) => Unit): Unit = ???



Combining Asynchronous Programs (2)

def makeCoffee(coffeeDone: Coffee => Unit): Unit = ...

def makeTwoCoffees(coffeesDone: (Coffee, Coffee) => Unit): Unit =

var firstCoffee: Option[Coffee] = None

val k = { coffee: Coffee =>

firstCoffee match

case None => firstCoffee = Some(coffee)

case Some(coffee2) => coffeesDone(coffee, coffee2)

}

makeCoffee(k)

makeCoffee(k)



Callbacks All the Way Down (1)

What if another program depends on the coffee break to be done?

def coffeeBreak(): Unit = ...

▶ We need to make coffeeBreak take a callback too!



Callbacks all the Way Down (2)

def coffeeBreak(breakDone: Unit => Unit): Unit = ...

def workRoutine(workDone: Work => Unit): Unit =

work { work1 =>

coffeeBreak { _ =>

work { work2 =>

workDone(work1 + work2)

}

}

}



Callbacks all the Way Down (2)

def coffeeBreak(breakDone: Unit => Unit): Unit = ...

def workRoutine(workDone: Work => Unit): Unit =

work { work1 =>

coffeeBreak { _ =>

work { work2 =>

workDone(work1 + work2)

}

}

}

▶ Order of execution follows the indentation level!



Handling Failures

▶ In synchronous programs, failures are handled with exceptions ;
▶ What happens if an asynchronous call fails?

▶ We need a way to propagate the failure to the call site



Handling Failures

▶ In synchronous programs, failures are handled with exceptions ;
▶ What happens if an asynchronous call fails?

▶ We need a way to propagate the failure to the call site

def makeCoffee(coffeeDone: Try[Coffee] => Unit): Unit = ...



Summary

What we have seen so far:

▶ How to sequence asynchronous computations using callbacks
▶ Callbacks introduce complex type signatures
▶ The continuation passing style is tedious to use



From Synchronous to Asynchronous Type Signatures (using Future)

Remember the transformation we applied to a synchronous type signature
to make it asynchronous:

def program(a: A): B

def program(a: A, k: B => Unit): Unit



From Synchronous to Asynchronous Type Signatures (using Future)

Remember the transformation we applied to a synchronous type signature
to make it asynchronous:

def program(a: A): B

def program(a: A, k: B => Unit): Unit

What if we could model an asynchronous result of type T as a return type
Future[T]?

def program(a: A): Future[B]



From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…



From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…

// by currying the continuation parameter

def program(a: A): (B => Unit) => Unit



From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…

// by currying the continuation parameter

def program(a: A): (B => Unit) => Unit

// by introducing a type alias

type Future[+T] = (T => Unit) => Unit

def program(a: A): Future[B]



From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…

// by currying the continuation parameter

def program(a: A): (B => Unit) => Unit

// by introducing a type alias

type Future[+T] = (T => Unit) => Unit

def program(a: A): Future[B]

// bonus: adding failure handling

type Future[+T] = (Try[T] => Unit) => Unit



Towards a Brighter Future

type Future[+T] = (Try[T] => Unit) => Unit



Towards a Brighter Future

type Future[+T] = (Try[T] => Unit) => Unit

// by reifying the alias into a proper trait

trait Future[+T] extends ((Try[T] => Unit) => Unit):

def apply(k: Try[T] => Unit): Unit



Towards a Brighter Future

type Future[+T] = (Try[T] => Unit) => Unit

// by reifying the alias into a proper trait

trait Future[+T] extends ((Try[T] => Unit) => Unit):

def apply(k: Try[T] => Unit): Unit

// by renaming ‘apply‘ to ‘onComplete‘

trait Future[+T]:

def onComplete(k: Try[T] => Unit): Unit



coffeeBreak Revisited With Future

def makeCoffee(): Future[Coffee] = ...

def coffeeBreak(): Unit =

val eventuallyCoffee = makeCoffee()

eventuallyCoffee.onComplete { tryCoffee =>

tryCoffee.foreach(drink)

}

chatWithColleagues()



Handling Failures

def makeCoffee(): Future[Coffee] = ...

def coffeeBreak(): Unit =

makeCoffee().onComplete {

case Success(coffee) => drink(coffee)

case Failure(reason) => ...

}

chatWithColleagues()



Handling Failures

def makeCoffee(): Future[Coffee] = ...

def coffeeBreak(): Unit =

makeCoffee().onComplete {

case Success(coffee) => drink(coffee)

case Failure(reason) => ...

}

chatWithColleagues()

▶ However, most of the time you want to transform a successful result
and delay failure handling to a later point in the program



Transformation Operations

▶ onComplete suffers from the same composability issues as callbacks
▶ Future provides convenient high-level transformation operations

(Simplified) API of Future:

trait Future[+A]:

def onComplete(k: Try[A] => Unit): Unit

// transform successful results

def map[B](f: A => B): Future[B]

def flatMap[B](f: A => Future[B]): Future[B]

def zip[B](fb: Future[B]): Future[(A, B)]

// transform failures

def recover(f: Exception => A): Future[A]

def recoverWith(f: Exception => Future[A]): Future[A]



map Operation on Future

trait Future[+A]:

...

def map[B](f: A => B): Future[B]

▶ Transforms a successful Future[A] into a Future[B] by applying a
function f: A => B after the Future[A] has completed

▶ Automatically propagates the failure of the former Future[A] (if any),
to the resulting Future[B]

def grindBeans(): Future[GroundCoffee]

def brew(groundCoffee: GroundCoffee): Coffee

def makeCoffee(): Future[Coffee] =

grindBeans().map(groundCoffee => brew(groundCoffee))



flatMap Operation on Future

trait Future[+A]:

...

def flatMap[B](f: A => Future[B]): Future[B]

▶ Transforms a successful Future[A] into a Future[B] by applying a
function f: A => Future[B] after the Future[A] has completed

▶ Returns a failed Future[B] if the former Future[A] failed or if the
Future[B] resulting from the application of the function f failed.

def grindBeans(): Future[GroundCoffee]

def brew(groundCoffee: GroundCoffee): Future[Coffee]

def makeCoffee(): Future[Coffee] =

grindBeans().flatMap(groundCoffee => brew(groundCoffee))



zip Operation on Future

trait Future[+A]:

...

def zip[B](other: Future[B]): Future[(A, B)]

▶ Joins two successful Future[A] and Future[B] values into a single
successful Future[(A, B)] value

▶ Returns a failure if any of the two Future values failed
▶ Does not create any dependency between the two Future values!

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee().zip(makeCoffee())



zip vs flatMap

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee().zip(makeCoffee())

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee().flatMap { coffee1 =>

makeCoffee().map(coffee2 => (coffee1, coffee2))

}



zip vs flatMap (2)

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee().zip(makeCoffee())

def makeTwoCoffees(): Future[(Coffee, Coffee)] = {

val eventuallyCoffee1 = makeCoffee()

val eventuallyCoffee2 = makeCoffee()

eventuallyCoffee1.flatMap { coffee1 =>

eventuallyCoffee2.map(coffee2 => (coffee1, coffee2))

}

}



Sequencing Futures (1)

def work(): Future[Work] = ...

def coffeeBreak(): Future[Unit] = ...

def workRoutine(): Future[Work] =

work().flatMap { work1 =>

coffeeBreak().flatMap { _ =>

work().map { work2 =>

work1 + work2

}

}

}



Sequencing Futures (2)

def work(): Future[Work] = ...

def coffeeBreak(): Future[Unit] = ...

def workRoutine(): Future[Work] =

for

work1 <- work()

_ <- coffeeBreak()

work2 <- work()

yield work1 + work2

▶ Back to a familiar layout to sequence computations!



coffeeBreak, Again

def coffeeBreak(): Future[Unit] =

val eventuallyCoffeeDrunk = makeCoffee().flatMap(drink)

val eventuallyChatted = chatWithColleagues()

eventuallyCoffeeDrunk.zip(eventuallyChatted)

.map(_ => ())



recover and recoverWith Operations on Future

Turn a failed Future into a successful one

trait Future[+A]:

...

def recover[B >: A](pf: PartialFunction[Throwable, B]): Future[B]

def recoverWith[B >: A](pf: PartialFunction[Throwable, Future[B]]): Future[B]

grindBeans()

.recoverWith { case BeansBucketEmpty =>

refillBeans().flatMap(_ => grindBeans())

}

.flatMap(coffeePowder => brew(coffeePowder))



Execution Context

▶ So far, we haven’t said anything about where continuations are
executed, physically

▶ How do we control that?
▶ Single thread? Fixed size thread pool?



Execution Context

▶ So far, we haven’t said anything about where continuations are
executed, physically

▶ How do we control that?
▶ Single thread? Fixed size thread pool?

trait Future[+A]:

def onComplete(k: Try[A] => Unit)(using ExecutionContext): Unit

import scala.concurrent.ExecutionContext.Implicits.global



Lift a Callback-Based API to Future (1)

def makeCoffee(

coffeeDone: Coffee => Unit,

onFailure: Exception => Unit

): Unit

def makeCoffee2(): Future[Coffee] = ...



Lift a Callback-Based API to Future (2)

def makeCoffee(

coffeeDone: Coffee => Unit,

onFailure: Exception => Unit

): Unit

def makeCoffee2(): Future[Coffee] =

val p = Promise[Coffee]()

makeCoffee(

coffee => p.trySuccess(coffee),

reason => p.tryFailure(reason)

)

p.future



Making it Run in Parallel

def makeCoffee(

coffeeDone: Coffee => Unit,

onFailure: Exception => Unit

): Unit

def makeCoffee2(): Future[Coffee] =

val p = Promise[Coffee]()

execute { // run in parallel

makeCoffee(

coffee => p.trySuccess(coffee),

reason => p.tryFailure(reason)

)

}

p.future



Summary

In this video, we have seen:

▶ The Future[T] type is an equivalent alternative to continuation
passing

▶ Offers convenient transformation and failure recovering operations
▶ map and flatMap operations introduce sequentiality


