P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Data-Parallel to Distributed Data-Parallel

Big Data Analysis with Scala and Spark
Heather Miller

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

. ?‘.I . M
\=
|}

" Collection

\ //

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

val res =
jar.map(jellyBean => doSomething(jellyBean))

" Collection

- "',
-]
- " . \
4 N
|

_

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

val res =
jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

» Split the data.

» Workers/threads independently
operate on the data shards in parallel.

» Combine when done (if necessary).

jar

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

val res =
jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

» Split the data.

» Workers/threads independently
operate on the data shards in parallel.

» Combine when done (if necessary).

jar

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

val res =
jar.map(jellyBean => doSomething(jellyBean))

Shared memory data parallelism:

» Split the data.

» Workers/threads independently
operate on the data shards in parallel.

» Combine when done (if necessary).

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

val res =
jar.map(jellyBean => doSomething(jellyBean))

Processing... .
doSomething(...) Shared memory data parallelism:

» Split the data.

Processing... :
‘ol dosomething(.) » Workers/threads independently
s I L operate on the data shards in parallel.
Processing... » Combine when done (if necessary).

doSomething(...)

_ jar

Compute Node
(Shared Memory)

Visualizing Shared Memory Data Parallelism

What does data-parallel look like?

val res =
jar.map(jellyBean => doSomething(jellyBean))

Processing... -
doSomething(...) Shared memory data parallelism:

» Split the data.

Processing... :

dosomething(.) » Workers/threads independently

[operate on the data shards in parallel.
Processing... » Combine when done (if necessary).

doSomething(...)

jar

Scala’s Parallel Collections is a
collections abstraction over shared
memory data-parallel execution.

Compute Node
(Shared Memory)

Visualizing Distributed Data-Parallelism

What does distributed data-parallel look like?

Shared memory data parallelism:

» Split the data.

» Workers/threads independently
operate on the data shards in parallel.

» Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed _
Shared-memery-data parallelism:

» Split the data over several nodes.

» Nodes independently operate on the
data shards in parallel.

» Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed data parallelism:

» Split the data over several nodes.

» Nodes independently operate on the
data shards in parallel.

» Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed data parallelism:

» Split the data over several nodes.

» Nodes independently operate on the
data shards in parallel.

» Combine when done (if necessary).

Visualizing Distributed Data-Parallelism

What does distributed data-parallel
look like?

Distributed data parallelism:

» Split the data over several nodes.

» Nodes independently operate on the
data shards in parallel.

» Combine when done (if necessary).

New concern:

Now we have to worry about

network latency between workers.

Visualizing Distributed Data-Parallelism

What does distributed data-parallel

look like? val res =
jar.map(jellyBean => doSomething(jellyBean))

Distributed data parallelism:

» Split the data over several nodes.

» Nodes independently operate on the
data shards in parallel.

» Combine when done (if necessary).

However, like parallel collections, we
can keep collections abstraction over
distributed data-parallel execution.

Data-Parallel to Distributed Data-Parallel

Shared memory: Distributed:

Processing...
doSomething(..)

Processing...
doSomething(..)

E = = - |l BN I B == = = = =

Processing...
doSomething(...)

Shared memory case: Data-parallel programming model. Data
partitioned in memory and operated upon in parallel.

Distributed case: Data-parallel programming model. Data partitioned
between machines, network in between, operated upon in parallel.

Data-Parallel to Distributed Data-Parallel

Shared memory: Distributed:

Processing...
doSomething(..)

| E L
Yy e %
Il I - . s N ‘---------l

e
-

d
, W / @
N -4 Qi;"-g-m

Processing...
doSomething(..)

Processing...
doSomething(...)

Overall, most all properties we learned about related to shared memory

data-parallel collections can be applied to their distributed counterparts.
E.g., watch out for non-associative reduction operations! e Au\ce(—"‘-)

However, must now consider latency when using our model.

Apache Spark

Throughout this part of the course we will use the Spork

Apache Spark framework for distributed data-parallel
programming.

Spark implements a distributed data parallel model called
Resilient Distributed Datasets (RDDs)

Distributed Data-Parallel: High Level lllustration

wikipedia
reduced, 48.4GB

Given some large dataset that can’t fit into memory on a single node...

Distributed Data-Parallel: High Level lllustration

-
4 o

Chunk up the data...

Distributed Data-Parallel: High Level lllustration

b/ A

Chunk up the data...

Distributed Data-Parallel: High Level lllustration

3¥r§

ZI :I :I EI Distribute it over your cluster of machines.

Distributed Data-Parallel: High Level lllustration

EI :I zl zl Distribute it over your cluster of machines.

Distributed Data-Parallel: High Level lllustration

From there, think of your distributed data like a single collection...

Example:

val wiki: RDD[WikiArticle] = ... Transform the text (not titles) of
all wiki articles to lowercase.

wiki.map {
article => article.text.toLowerCase

wiki

(P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Latency

Big Data Analysis with Scala and Spark
Heather Miller

Data-Parallel Programming

In the Parallel Programming course, we learned:

» Data parallelism on a single multicore/multi-processor machine.
> Parallel collections as an implementation of this paradigm.

Data-Parallel Programming

In the Parallel Programming course, we learned:

» Data parallelism on a single multicore/multi-processor machine.
> Parallel collections as an implementation of this paradigm.

Today:

» Data parallelism in a distributed setting.

» Distributed collections abstraction from Apache Spark as an
implementation of this paradigm.

Distribution

Distribution introduces important concerns beyond what we had to worry
about when dealing with parallelism in the shared memory case:

» Partial failure: crash failures of a subset of the machines involved in a
distributed computation.

» [atency: certain operations have a much higher latency than other
operations due to network communication.

Distribution

Distribution introduces important concerns beyond what we had to worry
about when dealing with parallelism in the shared memory case:

» Partial failure: crash failures of a subset of the machines involved in a
distributed computation.

» [atency: certain operations have a much higher latency than other
operations due to network communication.

Latency cannot be masked completely; it will be an important

aspect that also impacts the programming model.

Important Latency Numbers

L1 cache reference 0.5ns

Branch mispredict 5ns

L2 cache reference 7ns

Mutex lock /unlock 25ns

Main memory reference 100ns
Compress 1K bytes with Zippy 3,000ns = 3us
Send 2K bytes over 1Gbps network 20,000ns = 20us
SSD random read 150,000ns = 150pus
Read 1 MB sequentially from 250.000ns = 250pus
Roundtrip within same datacenter 500,000ns = 0.5ms
Read 1MB sequentially from SSD 1,000,000ns = 1ms
Disk seek 10,000,000ns = 10ms
Read 1MB sequentially from disk 20,000,000ns = 20ms

150ms

Send packet US — Europe — US 150,000,000ns

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy
Send 2K bytes over 1Gbps network
SSD random read

0.5ns

5ns

ns

25ns
100ns
3,000ns
20,000ns
150,000ns

Read 1 MB sequentially from me,mor)l 250,000ns

Roundtrip within same datacenter
Read 1MB sequentially from SSD
Disk seek

Read 1MB sequentially from disk
Send packet US — Europe — US

500,000ns
1,000,000ns
10,000,000ns
20,000,000ns
150,000,000ns

= 3US

= 20us
= 150us
= 250us l

= 0.bms \DD)(

= 1ms

= 10ms

= 20ms P

= 150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Important Latency Numbers

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock /unlock

Main memory reference

Compress 1K bytes with Zippy
Send 2K bytes over 1Gbps network
SSD random read

Read 1 MB sequentially from

Roundtrip within same datacenter
Read 1MB sequentially from SSD
Disk seek

Read 1MB sequentially from disk
Send packet US — Europe — US

0.5ns
5ns

ns

25ns
100ns
3,000ns
20,000ns

150,000ns = 150us
250,000ns = 250us

500,000ns
1,000,000ns
10,000,000ns
20,000,000ns
150,000.000ns

3Us
20us

="

| 000, 00D % SLOWER

-
Ry

0.5ms |

1ms
10ms
20ms

150ms

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

W\U“W

ish

no_"fwb

/

\

Important Latency Numbers

L1 cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy
Send 2K bytes over 1Gbps network
SSD random read
Read 1 MB sequentially from M emon)

Roundtrip within same datacenter

Read 1MB sequentially from SSD

Disk seek
Read 1MB sequentially from disk

= ~—> Send packet US — Europe — US

0.5ns

5ns

ns

25ns
100ns
3,000ns
20,000ns
150,000ns
250,000ns
500,000ns

1,000,000ns
10,000,000ns
20,000,000ns
150,000,000ns

3US
20Ms
150us
250us
0.5ms
Ims
10ms
20ms
150ms

Wewory Lustest

MSK : glow
nedwork * Slowest

Original compilation by Jeff Dean & Peter Norvig, w/ contributions by Joe Hellerstein & Erik Meijer

Latency Numbers Intuitively

To get a better intuition about the orders-of-magnitude differences ot
these numbers, let's humanize these durations.

Method: multiply all these durations by a billion.

Then, we can map each latency number to a human activity.

Humanized Latency Numbers

Humanized durations grouped by magnitude:

Minute:

L1 cache reference 0.5 s One heart beat (0.5 s)
Branch mispredict 5's Yawn

L2 cache reference] S Long yawn

Mutex lock/unlock 25 s Making a coffee

Hour:

Main memory reference 100 s Brushing your teeth

Compress 1K bytes with Zippy 50 min One episode of a TV show

Humanized Latency Numbers

Day:

Send 2K bytes over 1 Gbps network 5.5 hr From lunch to end of work day
Week:

SSD random read 1.7 days A normal weekend

Read 1 MB sequentially from memory 2.9 days A long weekend

Round trip within same datacenter 5.8 days A medium vacation

Read 1 MB sequentially from SSD 11.6 days Waiting for almost 2

weeks for a delivery

More Humanized Latency Numbers

Year:

Disk seek 16.5 wee

Read 1 MB sequentially from disk 7.8 mont

The above 2 together 1 year

Decade:

KS

NS

Send packet CA->Netherlands->CA 4.8 years

A semester 1n university
Almost producing a new
human being

Average time 1t takes to
complete a bachelor’s degree

Latency and System Design

Memory

L1 cache
reference

Main memory
reference

100 s

Read 1MB

sequentially from
days
memory

seconds/days

Disk seek

Read 1MB

sequentially
from disk

7.8
months

weeks/months

Network

Round trip
within same
datacenter

5.8
days

Send packet 4.8
US—Eur—US vyears

weeks /years

Big Data Processing and Latency?

With some intuition now about how expensive network communication
and disk operations can be, one may ask:

How do these latency numbers relate to big data processing?

To answer this question, let's first start with Spark’s predecessor, Hadoop.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. |t's
an open source implementation of Google's MapReduce.

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. |t's
an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

> a simple API (simple map and reduce steps)
» xx fault tolerance xx

Hadoop/MapReduce

Hadoop is a widely-used large-scale batch data processing framework. |t's
an open source implementation of Google's MapReduce.

MapReduce was ground-breaking because it provided:

> a simple API (simple map and reduce steps)
» xx fault tolerance xx

Fault tolerance is what made it possible for Hadoop/MapReduce to scale
to 100s or 1000s of nodes at all.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway through a job.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway through a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

» computations on unthinkably large data sets to succeed to
completion.

Hadoop/MapReduce + Fault Tolerance

Why is this important?

For 100s or 1000s of old commodity machines, likelihood of at least one
node failing is very high midway through a job.

Thus, Hadoop/MapReduce's ability to recover from node failure enabled:

» computations on unthinkably large data sets to succeed to
completion.

Fault tolerance + simple APl =

At Google, MapReduce made it possible for an average Google software
engineer to craft a complex pipeline of map/reduce stages on extremely

large data sets.

Why Spark?

Why Spark?

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in orc

failures, Hadoop/MapReduce shuffles its ¢
to disk.

er to recover from potential
ata and write intermediate data

Why Spark?

Fault-tolerance in Hadoop/MapReduce comes at a cost.

Between each map and reduce step, in order to recover from potential
failures, Hadoop/MapReduce shuffles its data and write intermediate data
to disk.

Remember:

Reading/writing to disk: 1008x slower than in-memory

Network communication: 1,000,000x slower than in-memory

Why Spark?

Spark...

» Retains fault-tolerance
» Different strategy for handling latency (latency significantly reduced!)

Why Spark?

Spark...

» Retains fault-tolerance
» Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Why Spark?

Spark...

» Retains fault-tolerance
» Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data immutable and in-memory. All operations on data

are just functional transformations, like regular Scala collections. Fault
tolerance is achieved by replaying functional transformations over original

dataset.

Why Spark?

Spark...

» Retains fault-tolerance
» Different strategy for handling latency (latency significantly reduced!)

Achieves this using ideas from functional programming!

Idea: Keep all data immutable and in-memory. All operations on data

are just functional transformations, like regular Scala collections. Fault
tolerance is achieved by replaying functional transformations over original

dataset.

Result: Spark has been shown to be 100x more performant than Hadoop,
while adding even more expressive APls.

Memory

L1 cache
reference

Main memory 100 s

reference

Read 1IMB
sequentially from

days
memory

seconrlc /d aYs

=17

Latency and System Design U—\uw\o,n'@e&>

Disk seek

Read 1MB

sequentially
from disk

7.8
months

weeks/months

Round trip
within same
datacenter

5.8
days

Send packet 4.8
US—Eur—US years

weeks/years

Spark versus Hadoop Performance?

B Hadoop
M Spark

Logistic Regression In
Hadoop and Spark

Source: spark.apache.org

Time per lteration (s)

Logistic Regression

Spark versus Hadoop Performance?

Logistic Regression In
Hadoop and Spark,
more iterations!

Source: https://databricks.com/

blog/2014/03/20/apache-spark-a-

delight-for-developers.html

4000

3500
2 3000

Q
€ 2500 -

= .
o 2000

€ 1500 -
-

3 1000
500
0

110 s/ iteration

/

W Hadoop
i Spark

\

first iteration 8o s
further iterations 1 s

1 5 10 20 30

Number of Iterations

Hadoop vs Spark Performance, More Intuitively

Day-to-day, these perforamnce improvements can mean the difference

between:
Hadoop/MapReduce Spark
1. start Jojo ; Start
2. eak luaeh _Z 2_(' . c:,om;‘ld&_s
3. get o ffee U 3"
y. PicK UP Kids

5. JOb MyWP[{}.cS

Spark versus Hadoop Popularity?

According to Google Trends, Spark has surpassed Hadoop in popularity.

B Apache Spark

ooqgle Trends:
Goog B Apache Hadoop

Apache Hadoop vs Apache Spark
February 2007 - February 2017

A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Resilient Distributed Datasets(RDDs),
Spark’s Distributed Collections

Big Data Analysis with Scala and Spark
Heather Miller

Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

abstract class RDD[LT] {
def map[U]J(f: T => U): RDD[U] = ...
def flatMap[U](f: T => TraversableOncel[U]): RDD[U] = ...
def filter(f: T => Boolean): RDD[T] = ...
def reduce(f: (T, T) =>T): T = ...
J

Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

abstract class RDDLT] {
def map[UJ(f: T => U): RDD[U] = ...
def flatMap[U]J(f: T => TraversableOnce[U]): RDD[U] = ...
def filter(f: T => Boolean): RDD[T] = ...
def reduce(f: (T, T) =>T): T = ...
J

Most operations on RDDs, like Scala’s immutable List, and Scala’s
parallel collections, are higher-order functions.

That is, methods that work on RDDs, taking a function as an argument,
and which typically return RDD:s.

Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

Resilient Distributed Datasets (RDDs)

RDDs seem a lot like immutable sequential or parallel Scala collections.

Combinators on Scala Combinators on RDDs:
parallel /sequential collections:

map map

flatMap flatMap

filter filter

reduce reduce

fold fold

aggregate aggregate

Resilient Distributed Datasets (RDDs)

While their signatures differ a bit, their semantics (macroscopically) are
the same:

Bl1(f: A => B): List[B] // Scala List
B1(f: A => B): RDD[B] // Spark RDD

map

map

flatMap
flatMap

(f: A => TraversableOnce
(f: A => TraversableOnce

): List[B] // Scala List
): RDD[B] // Spark RDD

filter(pred: A => Boolean): List[A] // Scala List
filter(pred: A => Boolean): RDD[A] // Spark RDD

Resilient Distributed Datasets (RDDs)

While their signatures differ a bit, their semantics (macroscopically) are

the same:

reduce(op: (A, A) => A): A // Scala List
reduce(op: (A, A) => A): A // Spark RDD

fold(z: A)(o
fold(z: A)(o

aggregate
aggregate

0: (A, A) => A): A // Scala List

o: (A, A) => A): A // Spark RDD

Bl1(z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B // Scala
Bl1(z: B)(seqop: (B, A) => B, combop: (B, B) => B): B // Spark RDD

Resilient Distributed Datasets (RDDs)

Using RDDs in Spark feels a lot like normal Scala sequential/parallel
collections, with the added knowledge that your data is distributed across

several machines.

Example:

Given, val encyclopedia: RDD[String], say we want to search all of
encyclopedia for mentions of EPFL, and count the number of pages that

mention EPFL.

Resilient Distributed Datasets (RDDs)

Using RDDs in Spark feels a lot like normal Scala sequential /parallel
collections, with the added knowledge that your data is distributed across

several machines.

Example:

Given, val encyclopedia: RDD[String], say we want to search all of
encyclopedia for mentions of EPFL, and count the number of pages that

mention EPFL.

val result = encyclopedia.filter(page => page.contains(”EPFL”))
.count ()

Example: Word Count

The “Hello, World!" of programming with large-scale data.

// c:reaW RDD (String]

val rdd = spark.textFile(”hdfs://...”)

val count = 77?7

Example: Word Count

The “Hello, World!" of programming with large-scale data.

// Create an RDD
val rdd = spark.textFile(”hdfs://...”) RDDCS'hN‘d] e/words

val count = rdd.flatMap(line => line.split(” ”)) // separate lines into words

Example: Word Count

The “Hello, World!" of programming with large-scale data.

// Create an RDD
val rdd = spark.textFile(”hdfs://...”)

val count = rdd.flatMap(line => line.split(” ”)) // separate lines into words
.map(word => (word, 1)) // 1include something to count

Gap ===

Example: Word Count

The “Hello, World!" of programming with large-scale data.

// Create an RDD
val rdd = spark.textFile(”hdfs://...”)

val count = rdd.flatMap(line => line.split(” ”)) // separate lines into words
.map(word => (word, 1)) // include something to count
.reduceByKey(_ + _) // sum up the 1s in the pairs

That's it.

How to Create an RDD?

RDDs can be created in two ways:

How to Create an RDD?

RDDs can be created in two ways:

» Transforming an existing RDD.
> From a SparkContext (or SparkSession) object.

o —

How to Create an RDD?

RDDs can be created in two ways:

» Transforming an existing RDD.
» From a SparkContext (or SparkSession) object.

Transforming an existing RDD.
Just like a call to map on a List returns a new List, many higher-order
functions defined on RDD return a new RDD.

How to Create an RDD?

RDDs can be created in two ways:

» Transforming an existing RDD.
» From a SparkContext (or SparkSession) object.

\\/ ///

a
o
s ! ¢

' From a SparkContext (or SparkSession) object.
The SparkContext object (renamed SparkSession) can be thought of as
your handle to the Spark cluster. It represents the connection between the
Spark cluster and your running application. It defines a handful of
methods which can be used to create and populate a new RDD:

> parallelize: convert a local Scala collection to an RDD.

> textFile: read a text file from HDFS or a local file system and return
an RDD of String

_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Transformations and Actions\{

Wm_?c

Big Data Analysis with Scala and Spark RTDs .
Heather Miller

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformers. Return new collections as results. (Not single values.)
Examples: map, filter, flatMap, groupBy

map(f: A => B): Traversable[B]

Transformations and Actions

Recall transformers and accessors from Scala sequential and parallel
collections.

Transformers. Return new collections as results. (Not single values.)
Examples: map, filter, flatMap, groupBy

map(f: A => B): Traversable[B]

Accessors: Return single values as results. (Not collections.)
Examples: reduce, fold, aggregate.

reduce(op: (A, A) => A): A

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and aeeessors, but there are some
important differences.

Transformations. Return new celeetisns RDD; as results.

Actions. Compute a result based on an RDD, and either returned or
saved to an external storage system (e.g., HDFS).

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and aeeessors, but there are some
important differences.

'\\] gTransformations. Return new eeHeetions RDDs as results.

They are Iaz;, their result RDD is not immediately computed.

\\/ Actions. Compute a result based on an RDD, and either returned or
gsaved to an external storage system (e.g., HDFS).

They are eager, their result is immediately computed.
=—_—

\ Laziness/eagerness is how we can limit network
' communication using the programming model.

Transformations and Actions

Similarly, Spark defines transformations and actions on RDDs.

They seem similar to transformers and aeeessors, but there are some
important differences.

Transformations. Return new eeHeetions RDDs as results.

They are lazy, their result RDD is not immediately computed.

Actions. Compute a result based on an RDD, and either returned or
saved to an external storage system (e.g., HDFS).

They are eager, their result is immediately computed.

1/

Example
sC = pwKbatexrt

Consider the following simple example:

val largelList: List[String]l = ...
val wordsRdd = sc.parallelize(largelist) RDD[S:[TMS]
val lengthsRdd = wordsRdd.map(_.length) RDD(lnt]

What has happened on the cluster at this point?

Example

Consider the following simple example:

val largelList: List[String]l = ...
val wordsRdd = sc.parallelize(largelList)
val lengthsRdd = wordsRdd.map(_.length)

What has happened on the cluster at this point?

Nothing. Execution of map (a transformation) is deferred.

To kick off the computation and wait for its result...

Example

Consider the following simple example:

val largelList: List[String]l = ...

val wordsRdd = sc.parallelize(largelList)
val lengthsRdd = wordsRdd.map(_.length)
val totalChars = lengthsRdd.reduce(_ + _)

...we can add an action

Common Transformations in the Wild

map

flatMap

filter

distinct

LAY

map[B](f: A => B): RDD[B] &
Apply function to each element in the RDD and
retrun an RDD of the result.

flatMap[B](f: A => TraversableOnce[B]): RDD[B] <
Apply a function to each element in the RDD and return
an RDD of the contents of the iterators returned.

filter(pred: A => Boolean): RDD[A]<—
Apply predicate function to each element in the RDD and

return an RDD of elements that have passed the predicate
condition, pred.

_—

distinct(): RDD[B]<
Return RDD with duplicates removed.

Common Actions in the Wild

EpGe!
=
collect collect(): Array[T] ¢
Return all elements from RDD.
count count(): Long &—
Return the number of elements in the RDD.
take take(num: Int): Array[T] €—
Return the first num elements of the RDD.
reduce reduce(op: (A, A) => A): A &—
Combine the elements in the RDD together using op
function and return result.
foreach foreach(f: T => Unit): Unit €—

Apply function to each element in the RDD.

Another Example

Let's assume that we have an RDD[String] which contains gigabytes of

logs collected over the previous year. Each element of this RDD represents
one line of logging.

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors
are logged with a prefix that includes the word “error ...

How would you determine the number of errors that were logged in
December 20167

val lastYearslLogs: RDD[String] = ...

Another Example

Let's assume that we have an RDD[String] which contains gigabytes of

logs collected over the previous year. Each element of this RDD represents
one line of logging.

Assuming that dates come in the form, YYYY-MM-DD:HH:MM:SS, and errors
are logged with a prefix that includes the word “error ...

How would you determine the number of errors that were logged in
December 20167

val lastYearslLogs: RDD[String] = ...
val numDecErrorLogs

= lastYearslLogs.filter(lg => lg.contains(”2016-12”) && lg.contains(”error”))
.count ()

Benefits of Laziness for Large-Scale Data

Spark computes RDDs the first time they are used in an action.
—@((A

b
Example: +
ae

This helps when processing large amounts of data.

val lastYearslLogs: RDD[String] = ...
val firstLogsWithErrors = lastYearsLogs.filter(_.contains(”ERROR”)).take(10)

The execution of filter is deferred until the take action is applied.

————rammmm

T —

Spark leverages this by analyzing and optimizing the chain of operations before
executing it.

Spark will not compute intermediate RDDs. Instead, as soon as 10 elements of the
filtered RDD have been computed, firstLogsWithErrors is done. At this point Spark
stops working, saving time and space computing elements of the unused result of filter.

Transformations on Two RDDs rdd.) rdd L

LAY

VL rdd3 = rddl. wnion (vdd2)

RDDs also support set-like operations, like union and intersection.

Two-RDD transformations combine two RDDs are combined into one.

union

intersection

subtract

cartesian

union(other: RDD[T]): RDD[T] &
Return an RDD containing elements from both RDDs.

intersection(other: RDD[T]): RDD[T] &—
Return an RDD containing elements only found in
both RDDs.

subtract(other: RDD[LT]): RDD[T] &
Return an RDD with the contents of the other RDD
removed.

cartesian[U](other: RDD[U]l): RDD[(T, U)] <—
Cartesian product with the other RDD.

Other Useful RDD Actions

ENGER! &

RDDs also contain other important actions unrelated to regular Scala
collections, but which are useful when dealing with distributed data.

takeSample

takeOrdered

saveAsTextFile

saveAsSequenceFile

takeSample(withRepl: Boolean, num: Int): Array[T] &—
Return an array with a random sample of num elements of
the dataset, with or without replacement.

takeOrdered(num: Int)(implicit

ord: Ordering[T]1): Array[T] &—

Return the first n elements of the RDD using either
their natural order or a custom comparator.

saveAsTextFile(path: String): Unit £—
Write the elements of the dataset as a text file in
the local filesystem or HDFS.

saveAsSequenceFile(path: String): Unit <—
Write the elements of the dataset as a Hadoop Se-
quenceFile in the local filesystem or HDFS.

_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Evaluation in Spark: Unlike Scala
Collections!

Big Data Analysis with Scala and Spark
Heather Miller

Why is Spark Good for Data Science?

Why is Spark Good for Data Science?

Let’s start by recapping some major themes from previous sessions:

» \We learned the difference between transformations and actions.

» Transformations: Deferred/lazy
» Actions: Eager, kick off staged transformations.

» We learned that latency makes a big difference; too much latency
wastes the time of the data analyst.

> In-memory computation: Significantly lower latencies (several orders
of magnitude!)

Why is Spark Good for Data Science?

Let’s start by recapping some major themes from previous sessions:

» \We learned the difference between transformations and actions.

» Transformations: Deferred/lazy
» Actions: Eager, kick off staged transformations.

» We learned that latency makes a big difference; too much latency
wastes the time of the data analyst.

> In-memory computation: Significantly lower latencies (several orders
of magnitude!)

Why do you think Spark is good for data science?

Why is Spark Good for Data Science?

Let’s start by recapping some major themes from previous sessions:

» \We learned the difference between transformations and actions.

» Transformations: Deferred/lazy
» Actions: Eager, kick off staged transformations.

» We learned that latency makes a big difference; too much latency
wastes the time of the data analyst.

> In-memory computation: Significantly lower latencies (several orders
of magnitude!)

Why do you think Spark is good for data science?

Hint: Most data science problems involve iteration.

lteration and Big Data Processing

Iteration in Hadoop:

iteration 2
MapReduce program

iteration 1

WAE I —>
MapReduce program

MapReduce program

In put Read/write Read/write Read/write
(e.g., from HDFS) intermediate data intermediate data intermediate data

lteration and Big Data Processing

Iteration in Hadoop:

iteration 2
MapReduce program

iteration 1

i > [

MapReduce program MapReduce program

In put Read/write Read/write Read/write
(e.g., from HDFS) intermediate data intermediate data intermediate data

>090% of time in 10 that Spark can avoid.

lteration and Big Data Processing

Iteration in Hadoop:

WAE I —>
MapReduce program

iteration 2
MapReduce program

iteration 1
MapReduce program

In put Read/write Read/write Read/write
(e.g., from HDFS) intermediate data intermediate data intermediate data

Iteration in Spark:
temb
f\\es

ItEration 3 Besr diLL

Input l In-memory computations, no need to read/write to disk. l

(e.g., from HDFS)

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

e w—a-d gwixy)
=1

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

e w—a-3 gwixy)
=1

Logistic regression can be implemented in Spark in a straightforward way:

val points = sc.textFile(...).map(parsePoint) Cale C[MS ’\DD;“'L (X;D’"Lk/ YDD%LK)
var w = Vector.zeros(d)
for (1 <- 1 to numlterations) {
val gradient = points.map { p =>
(1 /7 (0 + exp(-p.y * w.dot(p.x)))- 1) *x p.y * p.y
}.reduce(_ + _)
w -= alpha * gradient

}

What'’s going on in this code snippet?

lteration, Example: Logistic Regression

Logistic regression is an iterative algorithm typically used for classification. Like other
classification algorithms, the classifier's weights are iteratively updated based on a
training dataset.

val points = sc.textFile(...).map(parsePoint)
var w = Vector.zeros(d) T
for (1 <= 1 to numlterations) {
val gradient = points.@ig { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)))- 1) * p.y * p.y
y.reduce(_ + _)
w -= alpha * gradient

}

points is being re-evaluated upon every iteration!
That’s unnecessary! What can we do about this?

Caching and Persistence

By default, RDDs are recomputed each time you run an action on them.

This can be expensive (in time) if you need to use a dataset more than
once.

Spark allows you to control what is cached in memory.

Caching and Persistence

By default, RDDs are recomputed each time you run an action on them.
This can be expensive (in time) if you need to use a dataset more than
once.

Spark allows you to control what is cached in memory.

To tell Spark to cache an RDD in memory, simply call

persist() or cache() on it.

Caching and Persistence

By default, RDDs are recomputed each time you run an action on them.

This can be expensive (in time) if you need to use a dataset more than
once.

Spark allows you to control what is cached in memory.

val lastYearsLogs: RDD[String]l = ...

val logsWithErrors = lastYearsLogs.filter(_.contains(”ERROR”)).persist()
val firstLogsWithErrors = logsWithErrors.take(19)

Here, we cache logsWithErrors in memory.

After firstLogsWithErrors is computed, Spark will store the contents of

logsWithErrors for faster access in future operations if we would like to
reuse It.

Caching and Persistence

By default, RDDs are recomputed each time you run an action on them.
This can be expensive (in time) if you need to use a dataset more than
once.

Spark allows you to control what is cached in memory.

val lastYearsLogs: RDD[String]l = ...

val logsWithErrors = lastYearslLogs.filter(_.contains(”ERROR”)).persist()
val firstLogsWithErrors = logsWithErrors.take(10)

val numErrors = 1ogsWithErrors.gpunt() // faster

Now, computing the count on logsWithErrors is much faster.

Back to Our Logistic Regression Example

Logistic regression is an iterative algorithm typically used for classification.
Like other classification algorithms, the classifier's weights are iteratively

updated based on a training dataset.

val points = sc.textFile(...).map(parsePointﬂfpersist(z)
var w = Vector.zeros(d)
for (1 <- 1 to numlterations) {
val gradient = points.mgp { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)))- 1) * p.y * p.y
t.reduce(_ + _)
w —-= alpha * gradient

¥

Now, points is evaluated once and and is cached in memory. It is
then re-used on each iteration.

Caching and Persistence

There are many ways to configure how your data is persisted.

Possible to persist data set:

in memory as regular Java objects

on disk as regular Java objects

in memory as serialized Java objects (more compact)
on disk as serialized Java objects (more compact)

vvyyvyyvyy

both in memory and on disk (spill over to disk to avoid re-computation)

cache()
Shorthand for using the default storage level, which is in memory only as
regular Java objects.

persist
Persistence can be customized with this method. Pass the storage level
you d like as a parameter to persist.

Caching and Persistence

Storage levels. Other ways to control how Spark stores objects.

Space used CPU time In memory On disk

MEMORY_ONLY High Low Y N
MEMORY_ONLY_SER Low High Y A\
MEMORY_AND_DISK* High Medium Some Some
MEMORY_AND_DISK_SERT Low High Some Some
DISK_ONLY Low High N Y

* Spills to disk if there is too much data to fit in memory
" Spills to disk if there is too much data to fit in memory. Stores serialized
representation in memory.

Caching and Persistence

Storage levels. Other ways to control how Spark stores objects.

Space used CPU time In memory On disk

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y A\

MEMORY_AND_DISK* High Medium Some Some

MEMORY_AND_DISK_SERT Low High Some Some

DISK_ONLY Low High N Y
Default

* Spills to disk if there is too much data to fit in memory
" Spills to disk if there is too much data to fit in memory. Stores serialized
representation in memory.

RDDs Look Like Collections, But Behave Totally Differently

Key takeaway:

Despite similar-looking APl to Scala Collections,

the deferred semantics of Spark's RDDs are very unlike Scala Collections.

RDDs Look Like Collections, But Behave Totally Differently

Key takeaway:

Despite similar-looking APl to Scala Collections,

the deferred semantics of Spark's RDDs are very unlike Scala Collections.

Due to:
> the lazy semantics of RDD transformation operations (map, flatMap,
filter),
» and users’ implicit reflex to assume collections are eagerly evaluated..

...0One of the most common performance bottlenecks of newcomers
to Spark arises from unknowingly re-evaluating several
transformations when caching could be used.

RDDs Look Like Collections, But Behave Totally Differently

Key takeaway:

Despite similar-looking APl to Scala Collections,

the deferred semantics of Spark's RDDs are very unlike Scala Collections.

Due to:

> the lazy semantics of RDD transformation operations (map, flatMap,
filter),

» and users’ implicit reflex to assume collections are eagerly evaluated..

...0One of the most common performance bottlenecks of newcomers
to Spark arises from unknowingly re-evaluating several
transformations when caching could be used.

Don’t make this mistake in your programming assignments.

Restating the Benefits of Laziness for Large-Scale Data

While many users struggle with the lazy semantics of RDDs at first, it's
helpful to remember the ways in which these semantics are helpful in the
face of large-scale distributed computing.

Example #1:

val lastYearsLogs: RDD[String]l = ...
val firstLogsWithErrors = lastYearsLogs.filter(_.contains(”ERROR”)).take(10)

Restating the Benefits of Laziness for Large-Scale Data

While many users struggle with the lazy semantics of RDDs at first, it's
helpful to remember the ways in which these semantics are helpful in the
face of large-scale distributed computing.

Example #1:

val lastYearsLogs: RDD[String]l = ...
val firstLogsWithErrors = lastYearsLogs.filter(_.contains(”ERROR”)).take(10)

The execution of filter is deferred until the take action is applied.

Spark leverages this by analyzing and optimizing the chain of operations before
executing It.

Spark will not compute intermediate RDDs. Instead, as soon as 10 elements of the
filtered RDD have been computed, firstLogsWithErrors is done. At this point Spark
stops working, saving time and space computing elements of the unused result of filter.

Restating the Benefits of Laziness for Large-Scale Data

While many users struggle with the lazy semantics of RDDs at first, it's
helpful to remember the ways in which these semantics are helpful in the
face of large-scale distributed computing.

Example #2:

val lastYearsLogs: RDD[String]l = ...

val numErrors = lastYearsLogs.map(_.lowercase)
filter(_.contains(”error”))
.count ()

Restating the Benefits of Laziness for Large-Scale Data

While many users struggle with the lazy semantics of RDDs at first, it's
helpful to remember the ways in which these semantics are helpful in the

face of large-scale distributed computing.

Example #2:

val lastYearsLogs: RDD[String] = ...
val numErrors = lastYearsLogs.map(_.lowercase)
.filter(_.contains(”error”))

.count ()

Lazy evaluation of these transformations allows Spark to stage computations. That is,
Spark can make important optimizations to the the chain of operations before

execution.
For example, after calling map and filter, Spark knows that it can avoid doing multiple

passes through the data. That is, Spark can traverse through the RDD once, computing
the result of map and filter in this single pass, before returning the resulting count.

_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Cluster Toplogy Matters!

Big Data Analysis with Scala and Spark
Heather Miller

Example 1: A Simple println

Let's start with an example. Assume we have an RDD populated with
Person objects:

case class Person(name: String, age: Int)
What does the following code snippet do?

val people: RDD[Person] = ...
people.foreach(println)

What happens?

Example 2: A Simple take

What about here? Assume we have an RDD populated with the same
definition of Person objects:

case class Person(name: String, age: Int)
What does the following code snippet do?

val people: RDD[Person] = ...
val first10 = people.take(10)

Where will the Array[Person] representing first10 end up?

How Spark Jobs are Executed

How Spark Jobs are Executed

How Spark Jobs are Executed

How Spark Jobs are Executed

/‘>
This I1s the node you're interacting with
when you’re writing Spark programs!

How Spark Jobs are Executed

/‘>
This I1s the node you're interacting with
when you’re writing Spark programs!

These are the nodes actually
executing the jobs!

R R RS

How Spark Jobs are Executed

/‘>
This I1s the node you're interacting with
when you’re writing Spark programs!

But how do they
all communicate?

These are the nodes actually
executing the jobs!

R R RS

How Spark Jobs are Executed

. ~
via a cluster manager.

Allocates resources across

cluster, manages scheduling.
e.g., YARN/Mesos

How Spark Jobs are Executed

A Spark application is a set of processes
running on a cluster.

How Spark Jobs are Executed

A Spark application is a set of processes

< .
—\runnlng on a cluster.

All these processes are coordinated by
the driver program.

How Spark Jobs are Executed

Driver Program A Spark application is a set of processes

& .
- —\runnlng on a cluster.

A All these processes are coordinated by
the driver program.

A4 The driver is:

» the process where the main() method of your

Cluster Manager program runs.

» the process running the code that creates a
SparkContext, creates RDDs, and stages up or
sends off transformations and actions.

& \ >
Worker Node Worker Node Worker Node

How Spark Jobs are Executed

A Spark application is a set of processes
running on a cluster.

How Spark Jobs are Executed

A Spark application is a set of processes
running on a cluster.

These processes that run computations
and store data for your application are

executors.

How Spark Jobs are Executed

A Spark application is a set of processes
running on a cluster.

These processes that run computations
and store data for your application are

executors.

How Spark Jobs are Executed

A Spark application is a set of processes
running on a cluster.

These processes that run computations
and store data for your application are

executors.

How Spark Jobs are Executed

Driver Program A Spark application is a set of processes

- running on a cluster.

N These processes that run computations
and store data for your application are
executotrs.

N4

Executors:
» Run the tasks that represent the application.

Clustei Manager

» Return computed results to the driver.
» Provide in-memory storage for cached RDDs.

>

& 4
Worker Node A Worker Node

~
orker Node

How Spark Jobs are Executed

Driver Program Execution of a Spark program:

1. The driver program runs the Spark application, which
creates a SparkContext upon start-up.

N 2. The SparkContext connects to a cluster manager (e.g.,
Mesos/YARN) which allocates resources.

3. Spark acquires executors on nodes in the cluster, which
v are processes that run computations and store data for
your application.

Cluster Manager 4. Next, driver program sends your application code to the
executors.

5. Finally, SparkContext sends tasks for the executors to

run.
& \ >
Worker Node Worker Node Worker Node

Back to Example 1: A Simple println

Let's start with an example. Assume we have an RDD populated with
Person objects:

case class Person(name: String, age: Int)
What does the following code snippet do?

val people: RDD[Person] = ...
people.foreach(println)

Back to Example 1: A Simple println

Let's start with an example. Assume we have an RDD populated with
Person objects:

case class Person(name: String, age: Int)
What does the following code snippet do?

val people: RDD[Person] = ...
people.foreach(println)

On the driver: Nothing. Why?

Back to Example 1: A Simple println

Let's start with an example. Assume we have an RDD populated with
Person objects:

case class Person(name: String, age: Int)
What does the following code snippet do?

val people: RDD[Person] = ...
people.foreach(println)

On the driver: Nothing. Why?

Recall that foreach is an action, with return type Unit. Therefore, it is
eagerly executed on the executors, not the driver. Therefore, any calls to
println are happening on the stdout of worker nodes and are thus not

visible in the stdout of the driver node.

Back to Example 2: A Simple take

What about here? Assume we have an RDD populated with the same
definition of Person objects:

case class Person(name: String, age: Int)
What does the following code snippet do?

val people: RDD[Person] = ...
val first10 = people.take(10)

Where will the Array[Person] representing first10 end up?

Back to Example 2: A Simple take

What about here? Assume we have an RDD populated with the same
definition of Person objects:

case class Person(name: String, age: Int)
What does the following code snippet do?

val people: RDD[Person] = ...
val first10 = people.take(10)

Where will the Array[Person] representing first10 end up?

The driver program.

In general, executing an action involves communication between worker
nodes and the node running the driver program.

Cluster Toplogy Matters!

Moral of the story:

To make effective use of RDDs, you have to understand a little bit about
how Spark works under the hood.

Due an API which is mixed eager/lazy, it's not always immediately obvious
upon first glance on what part of the cluster a line of code might run on.
It’s on you to know where your code is executing!

Even though RDDs look like regular Scala collections upon first glance,
unlike collections, RDDs require you to have a good grasp of the
underlying infrastructure they are running on.

