
Asynchronous Programming

Programming Reactive Systems
Julien Richard-Foy

StarBlocks

StarBlocks Scaled

ScalaBucks

ScalaBucks Scaled

Asynchronous Execution

▶ Execution of a computation on another computing unit, without
waiting for its termination ;

▶ Better resource efficiency.

Concurrency Control of Asynchronous Programs

What if a program A depends on the result of an asynchronously executed
program B?

def coffeeBreak(): Unit = {

val coffee = makeCoffee()

drink(coffee)

chatWithColleagues()

}

Callback

def makeCoffee(coffeeDone: Coffee => Unit): Unit = {

// work hard ...

// ... and eventually

val coffee = ...

coffeeDone(coffee)

}

def coffeeBreak(): Unit = {

makeCoffee { coffee =>

drink(coffee)

}

chatWithColleagues()

}

From Synchronous to Asynchronous Type Signatures

A synchronous type signature can be turned into an asynchronous type
signature by:

▶ returning Unit
▶ and taking as parameter a continuation defining what to do after

the return value has been computed

def program(a: A): B

def program(a: A, k: B => Unit): Unit

Combining Asynchronous Programs (1)

def makeCoffee(coffeeDone: Coffee => Unit): Unit = ...

def makeTwoCoffees(coffeesDone: (Coffee, Coffee) => Unit): Unit = ???

Combining Asynchronous Programs (2)

def makeCoffee(coffeeDone: Coffee => Unit): Unit = ...

def makeTwoCoffees(coffeesDone: (Coffee, Coffee) => Unit): Unit = {

var firstCoffee: Option[Coffee] = None

val k = { coffee: Coffee =>

firstCoffee match {

case None => firstCoffee = Some(coffee)

case Some(coffee2) => coffeesDone(coffee, coffee2)

}

}

makeCoffee(k)

makeCoffee(k)

}

Callbacks All the Way Down (1)

What if another program depends on the coffee break to be done?

def coffeeBreak(): Unit = ...

▶ We need to make coffeeBreak take a callback too!

Callbacks all the Way Down (2)

def coffeeBreak(breakDone: Unit => Unit): Unit = ...

def workRoutine(workDone: Work => Unit): Unit = {

work { work1 =>

coffeeBreak { _ =>

work { work2 =>

workDone(work1 + work2)

}

}

}

}

Callbacks all the Way Down (2)

def coffeeBreak(breakDone: Unit => Unit): Unit = ...

def workRoutine(workDone: Work => Unit): Unit = {

work { work1 =>

coffeeBreak { _ =>

work { work2 =>

workDone(work1 + work2)

}

}

}

}

▶ Order of execution follows the indentation level!

Handling Failures

▶ In synchronous programs, failures are handled with exceptions ;
▶ What happens if an asynchronous call fails?

▶ We need a way to propagate the failure to the call site

Handling Failures

▶ In synchronous programs, failures are handled with exceptions ;
▶ What happens if an asynchronous call fails?

▶ We need a way to propagate the failure to the call site

def makeCoffee(coffeeDone: Try[Coffee] => Unit): Unit = ...

Summary

In this video, we have seen:

▶ How to sequence asynchronous computations using callbacks
▶ Callbacks introduce complex type signatures
▶ The continuation passing style is tedious to use

Asynchronous Programming with Future

Programming Reactive Systems
Julien Richard-Foy

From Synchronous to Asynchronous Type Signatures (using Future)

Remember the transformation we applied to a synchronous type signature
to make it asynchronous:

def program(a: A): B

def program(a: A, k: B => Unit): Unit

From Synchronous to Asynchronous Type Signatures (using Future)

Remember the transformation we applied to a synchronous type signature
to make it asynchronous:

def program(a: A): B

def program(a: A, k: B => Unit): Unit

What if we could model an asynchronous result of type T as a return type
Future[T]?

def program(a: A): Future[B]

From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…

From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…

// by currying the continuation parameter

def program(a: A): (B => Unit) => Unit

From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…

// by currying the continuation parameter

def program(a: A): (B => Unit) => Unit

// by introducing a type alias

type Future[+T] = (T => Unit) => Unit

def program(a: A): Future[B]

From Continuation Passing Style to Future

def program(a: A, k: B => Unit): Unit

Let’s massage this type signature…

// by currying the continuation parameter

def program(a: A): (B => Unit) => Unit

// by introducing a type alias

type Future[+T] = (T => Unit) => Unit

def program(a: A): Future[B]

// bonus: adding failure handling

type Future[+T] = (Try[T] => Unit) => Unit

Towards a Brighter Future

type Future[+T] = (Try[T] => Unit) => Unit

Towards a Brighter Future

type Future[+T] = (Try[T] => Unit) => Unit

// by reifying the alias into a proper trait

trait Future[+T] extends ((Try[T] => Unit) => Unit) {

def apply(k: Try[T] => Unit): Unit

}

Towards a Brighter Future

type Future[+T] = (Try[T] => Unit) => Unit

// by reifying the alias into a proper trait

trait Future[+T] extends ((Try[T] => Unit) => Unit) {

def apply(k: Try[T] => Unit): Unit

}

// by renaming ‘apply‘ to ‘onComplete‘

trait Future[+T] {

def onComplete(k: Try[T] => Unit): Unit

}

coffeeBreak Revisited With Future

def makeCoffee(): Future[Coffee] = ...

def coffeeBreak(): Unit = {

val eventuallyCoffee = makeCoffee()

eventuallyCoffee.onComplete { tryCoffee =>

tryCoffee.foreach(drink)

}

chatWithColleagues()

}

Handling Failures

def makeCoffee(): Future[Coffee] = ...

def coffeeBreak(): Unit = {

makeCoffee().onComplete {

case Success(coffee) => drink(coffee)

case Failure(reason) => ...

}

chatWithColleagues()

}

Handling Failures

def makeCoffee(): Future[Coffee] = ...

def coffeeBreak(): Unit = {

makeCoffee().onComplete {

case Success(coffee) => drink(coffee)

case Failure(reason) => ...

}

chatWithColleagues()

}

▶ However, most of the time you want to transform a successful result
and delay failure handling to a later point in the program

Transformation Operations

▶ onComplete suffers from the same composability issues as callbacks
▶ Future provides convenient high-level transformation operations

(Simplified) API of Future:

trait Future[+A] {

def onComplete(k: Try[A] => Unit): Unit

// transform successful results

def map[B](f: A => B): Future[B]

def flatMap[B](f: A => Future[B]): Future[B]

def zip[B](fb: Future[B]): Future[(A, B)]

// transform failures

def recover(f: Exception => A): Future[A]

def recoverWith(f: Exception => Future[A]): Future[A]

}

map Operation on Future

trait Future[+A] {

def map[B](f: A => B): Future[B]

}

▶ Transforms a successful Future[A] into a Future[B] by applying a
function f: A => B after the Future[A] has completed

▶ Automatically propagates the failure of the former Future[A] (if any),
to the resulting Future[B]

def grindBeans(): Future[GroundCoffee]

def brew(groundCoffee: GroundCoffee): Coffee

def makeCoffee(): Future[Coffee] =

grindBeans().map(groundCoffee => brew(groundCoffee))

flatMap Operation on Future

trait Future[+A] {

def flatMap[B](f: A => Future[B]): Future[B]

}

▶ Transforms a successful Future[A] into a Future[B] by applying a
function f: A => Future[B] after the Future[A] has completed

▶ Returns a failed Future[B] if the former Future[A] failed or if the
Future[B] resulting from the application of the function f failed.

def grindBeans(): Future[GroundCoffee]

def brew(groundCoffee: GroundCoffee): Future[Coffee]

def makeCoffee(): Future[Coffee] =

grindBeans().flatMap(groundCoffee => brew(groundCoffee))

zip Operation on Future

trait Future[+A] {

def zip[B](other: Future[B]): Future[(A, B)]

}

▶ Joins two successful Future[A] and Future[B] values into a single
successful Future[(A, B)] value

▶ Returns a failure if any of the two Future values failed
▶ Does not create any dependency between the two Future values!

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee() zip makeCoffee()

zip vs flatMap

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee() zip makeCoffee()

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee().flatMap { coffee1 =>

makeCoffee().map(coffee2 => (coffee1, coffee2))

}

zip vs flatMap (2)

def makeTwoCoffees(): Future[(Coffee, Coffee)] =

makeCoffee() zip makeCoffee()

def makeTwoCoffees(): Future[(Coffee, Coffee)] = {

val eventuallyCoffee1 = makeCoffee()

val eventuallyCoffee2 = makeCoffee()

eventuallyCoffee1.flatMap { coffee1 =>

eventuallyCoffee2.map(coffee2 => (coffee1, coffee2))

}

}

Sequencing Futures (1)

def work(): Future[Work] = ...

def coffeeBreak(): Future[Unit] = ...

def workRoutine(): Future[Work] = {

work().flatMap { work1 =>

coffeeBreak().flatMap { _ =>

work().map { work2 =>

work1 + work2

}

}

}

}

Sequencing Futures (2)

def work(): Future[Work] = ...

def coffeeBreak(): Future[Unit] = ...

def workRoutine(): Future[Work] =

for {

work1 <- work()

_ <- coffeeBreak()

work2 <- work()

} yield work1 + work2

▶ Back to a familiar layout to sequence computations!

coffeeBreak, Again

def coffeeBreak(): Future[Unit] = {

val eventuallyCoffeeDrunk = makeCoffee().flatMap(drink)

val eventuallyChatted = chatWithColleagues()

eventuallyCoffeeDrunk.zip(eventuallyChatted)

.map(_ => ())

}

recover and recoverWith Operations on Future

Turn a failed Future into a successful one

trait Future[+A] {

def recover[B >: A](pf: PartialFunction[Throwable, B]): Future[B]

def recoverWith[B >: A](pf: PartialFunction[Throwable, Future[B]]): Future[B]

}

grindBeans()

.recoverWith { case BeansBucketEmpty =>

refillBeans().flatMap(_ => grindBeans())

}

.flatMap(coffeePowder => brew(coffeePowder))

Execution Context

▶ So far, we haven’t said anything about where continuations are
executed, physically

▶ How do we control that?
▶ Single thread? Fixed size thread pool?

Execution Context

▶ So far, we haven’t said anything about where continuations are
executed, physically

▶ How do we control that?
▶ Single thread? Fixed size thread pool?

trait Future[+A] {

def onComplete(k: Try[A] => Unit)(implicit ec: ExecutionContext): Unit

}

import scala.concurrent.ExecutionContext.Implicits.global

Lift a Callback-Based API to Future (1)

def makeCoffee(

coffeeDone: Coffee => Unit,

onFailure: Exception => Unit

): Unit

def makeCoffee2(): Future[Coffee] = ...

Lift a Callback-Based API to Future (2)

def makeCoffee(

coffeeDone: Coffee => Unit,

onFailure: Exception => Unit

): Unit

def makeCoffee2(): Future[Coffee] = {

val p = Promise[Coffee]()

makeCoffee(

coffee => p.trySuccess(coffee),

reason => p.tryFailure(reason)

)

p.future

}

Summary

In this video, we have seen:

▶ The Future[T] type is an equivalent alternative to continuation
passing

▶ Offers convenient transformation and failure recovering operations
▶ map and flatMap operations introduce sequentiality

Backup Slides

Monads and Effects (1/2)

Principles of Reactive Programming

Erik Meijer

Warning

There is no type-checker for PowerPoint yet,
hence these slides might contain typos and
bugs. Hence, do not take these slides as the

gospel or ultimate source of truth.

The only artifact you can trust is actual source
code.

Warning

When we use RxScala in these lectures, we
assume version 0.23. Different versions of

RxScala might not be compatible.

The RxScala method names do not necessarily
correspond 1:1 with the underlying RxJava

method names.

Warning

When we say “monad” in these lectures we
mean a generic type with a constructor and a

flatMap operator.

In particular, we’ll be fast and loose about the
monad laws (that is, we completely ignore

them).

The Four Essential Effects In Programming

One Many
Synchronous T/Try[T] Iterable[T]
Asynchronous Future[T] Observable[

T]

The Four Essential Effects In Programming

One Many
Synchronous T/Try[T] Iterable[T]
Asynchronous Future[T] Observable[

T]

A simple adventure game

Not as rosy
as it looks!

trait Adventure {
def collectCoins(): List[Coin]
def buyTreasure(coins: List[Coin]):

Treasure
}

val adventure = Adventure()
val coins = adventure.collectCoins()
val treasure = adventure.buyTreasure(coins)

Actions may fail

def collectCoins(): List[Coin] = {
if (eatenByMonster(this))
throw new GameOverException(

“Ooops”)
List(Gold, Gold, Silver)

}

val adventure = Adventure()
val coins = adventure.collectCoins()
val treasure = adventure.buyTreasure(coins)

The return
type is

dishonest

Actions may fail

def buyTreasure(coins: List[Coin]):
Treasure = {

if (coins.sumBy(_.value) < treasureCost)
throw new GameOverException(“Nice try!”)

Diamond
}

val adventure = Adventure()
val coins = adventure.collectCoins()
val treasure = adventure.buyTreasure(coins)

Sequential composition of actions that may fail

val adventure = Adventure()

val coins = adventure.collectCoins()
// block until coins are collected
// only continue if there is no exception
val treasure = adventure.buyTreasure(coins)
// block until treasure is bought
// only continue if there is no exception

Lets make the
happy path and

the unhappy
path explicit

Expose possibility of failure in the types, honestly

T => S

T => Try[S]

We say one
thing, but we
really mean…

End of Monads and Effects (1/2)

Principles of Reactive Programming

Erik Meijer

Monads and Effects (2/2)

Principles of Reactive Programming

Erik Meijer

Making failure evident in types

abstract class Try[T]

case class Success[T](elem: T) extends Try[T]

case class Failure(t: Throwable)

extends Try[Nothing]

trait Adventure {

def collectCoins(): Try[List[Coin]]

def buyTreasure(coins: List[Coin]):

Try[Treasure]

}

Dealing with failure explicitly

val adventure = Adventure()

val coins: Try[List[Coin]] =

adventure.collectCoins()

val treasure: Try[Treasure] = coins match {

case Success(cs) =>

adventure.buyTreasure(cs)

case failure@Failure(e) => failure

}

Higher-order Functions to manipulate Try[T]

def flatMap[S](f: T=>Try[S]): Try[S]

def flatten[U <: Try[T]]: Try[U]

def map[S](f: T=>S): Try[T]

def filter(p: T=>Boolean): Try[T]

def recoverWith(f:

PartialFunction[Throwable,Try[T]]): Try[T]

Monads guide you through the happy path

A monad that handles exceptions.

Noise reduction

val adventure = Adventure()

val treasure: Try[Treasure] =

adventure.collectCoins().flatMap(

coins ⇒ {

adventure.buyTreasure(coins)

})
FlatMap is the

plumber for the
happy path!

Using comprehension syntax

val adventure = Adventure()

val treasure: Try[Treasure] = for {

coins <- adventure.collectCoins()

treasure <- buyTreasure(coins)

} yield treasure

Higher-order Function to manipulate Try[T]

def map[S](f: T=>S): Try[S] = this match{

case Success(value) => Try(f(value))

case failure@Failure(t) => failure

}

object Try {

def apply[T](r: =>T): Try[T] = {

try { Success(r) }

catch { case t => Failure(t) }

}

Materialize
exceptions

End of Monads and Effects (2/2)

Principles of Reactive Programming

Erik Meijer

Latency as an Effect (1/2)

Principles of Reactive Programming

Erik Meijer

The Four Essential Effects In Programming

One Many
Synchronous T/Try[T] Iterable[T]
Asynchronous Future[T] Observable[

T]

The Four Essential Effects In Programming

One Many
Synchronous T/Try[T] Iterable[T]
Asynchronous Future[T] Observable[

T]

trait Adventure {
def collectCoins(): List[Coin]
def buyTreasure(coins: List[Coin]):Treasure

}

val adventure = Adventure()
val coins = adventure.collectCoins()
val treasure = adventure.buyTreasure(coins)

Recall our simple adventure game ….

trait Adventure {
def collectCoins(): List[Coin]
def buyTreasure(coins: List[Coin]): Treasure

}

val adventure = Adventure()
val coins = adventure.collectCoins()
val treasure = adventure.buyTreasure(coins)

Recall our simple adventure game ….

readFromMemory(): Array[Byte]
sendToEurope(packet: Array[Byte]):
Array[Byte]

socket = Socket()
packet = socket.readFromMemory()
confirmation =
socket.sendToEurope(packet)

trait Socket {
def readFromMemory(): Array[Byte]
def sendToEurope(packet: Array[Byte]):

Array[Byte]
}

val socket = Socket()
val packet = socket.readFromMemory()
val confirmation = socket.sendToEurope(packet)

It is actually very similar to a simple network stack

Not as rosy
as it looks!

Timings for various operations on a typical PC

execute typical instruction 1/1,000,000,000 sec = 1 nanosec

fetch from L1 cache memory 0.5 nanosec

branch misprediction 5 nanosec

fetch from L2 cache memory 7 nanosec

Mutex lock/unlock 25 nanosec

fetch from main memory 100 nanosec

send 2K bytes over 1Gbps network 20,000 nanosec

read 1MB sequentially from memory 250,000 nanosec

fetch from new disk location (seek) 8,000,000 nanosec

read 1MB sequentially from disk 20,000,000 nanosec

send packet US to Europe and back 150 milliseconds = 150,000,000 nanosec

http://norvig.com/21-days.html#answers

Sequential composition of actions that take time

val socket = Socket()
val packet = socket.readFromMemory()
// block for 50,000 ns
// only continue if there is no exception
val confirmation = socket.sendToEurope(packet)
// block for 150,000,000 ns
// only continue if there is no exception

Sequential composition of actions

Lets translate this into human terms.

1 nanosecond
o
1 second (then hours/days/months/years)

Timings for various operations on a typical PC on human scale

execute typical instruction 1 second

fetch from L1 cache memory 0.5 seconds

branch misprediction 5 seconds

fetch from L2 cache memory 7 seconds

Mutex lock/unlock ½ minute

fetch from main memory 1½ minutes

send 2K bytes over 1Gbps network 5½ hours

read 1MB sequentially from memory 3 days

fetch from new disk location (seek) 13 weeks

read 1MB sequentially from disk 6½ months

send packet US to Europe and back 5 years

Sequential composition of actions

val socket = Socket()
val packet = socket.readFromMemory()
// block for 3 days
// only continue if there is no exception
val confirmation = socket.sendToEurope(packet)
// block for 5 years
// only continue if there is no exception

... ...

Sequential composition of actions

12 months to walk coast-to-coast
3 months to swim across the Atlantic
3 months to swim back
12 months to walk back

Humans are twice as fast as computers!

Sequential composition of actions that take time and fail

Isn’t there a
monad for

that??

End of Latency as an Effect (1/2)

Principles of Reactive Programming

Erik Meijer

Latency as an Effect (2/2)

Principles of Reactive Programming

Erik Meijer

Monads guide you through the happy path

A monad that handles
exceptions and latency.

Futures asynchronously notify consumers

import scala.concurrent._

import

scala.concurrent.ExecutionContext.Implicits.global

trait Future[T] {

def onComplete(callback: Try[T] ⇒ Unit)

(implicit executor: ExecutionContext): Unit

} We will totally ignore execution contexts

Futures asynchronously notify consumers

trait Future[T] {

def onComplete(callback: Try[T] => Unit)

(implicit executor: ExecutionContext): Unit

}
Ca

callback needs
to use pattern matching

ts match {

case Success(t) =>

onNext(t)

case Failure(e) =>

onError(e)

}

Futures asynchronously notify consumers

trait Future[T] {

def onComplete(callback: Try[T] => Unit)

(implicit executor: ExecutionContext): Unit

}
B boilerplate code

ts match {

case Success(t) =>

onNext(t)

case Failure(e) =>

onError(e)

}

Futures alternative designs

trait Future[T] {

def onComplete

(success: T => Unit, failed: Throwable =>

Unit): Unit

def onComplete(callback: Observer[T]): Unit

}

trait Observer[T] {

def onNext(value: T): Unit

def onError(error: Throwable): Unit

}

An object is a closure with multiple
methods. A closure is an object

with a single method.

Futures asynchronously notify consumers

trait Future[T] {

def onComplete(callback: Try[T] => Unit)

(implicit executor: ExecutionContext): Unit

}

trait Socket {

def readFromMemory(): Future[Array[Byte]]

def sendToEurope(packet: Array[Byte]):

Future[Array[Byte]]

}


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Send packets using futures I

val socket = Socket()

val packet: Future[Array[Byte]] =

socket.readFromMemory()

val confirmation: Future[Array[Byte]] =

packet.onComplete {

case Success(p) => socket.sendToEurope(p)

case Failure(t) => …

}

!!!???



val socket = Socket()

val packet: Future[Array[Byte]] =   

socket.readFromMemory()

packet.onComplete {

case Success(p) ⇒ {

val confirmation: Future[Array[Byte]] =

socket.sendToEurope(p)

}

case Failure(t) => …

}

Send packets using futures II

Meeeh..



// Starts an asynchronous computation

// and returns a future object to which you

// can subscribe to be notified when the

// future completes

object Future {

def apply(body: =>T)

(implicit context: ExecutionContext): 

Future[T]

}

Creating Futures



import scala.concurrent.ExecutionContext.Implicits.global

import akka.serializer._

val memory = Queue[EMailMessage](

EMailMessage(from = “Erik”, to = “Roland”),

EMailMessage(from = “Martin”, to = “Erik”),

EMailMessage(from = “Roland”, to = “Martin”))

def readFromMemory(): Future[Array[Byte]] = Future {

val email = queue.dequeue()

val serializer = serialization.findSerializerFor(email)

serializer.toBinary(email)

}

Creating Futures



Combinators on Futures (1/2)

Principles of Reactive Programming

Erik Meijer



Futures recap

trait Awaitable[T] extends AnyRef {

abstract def ready(atMost: Duration): Unit

abstract def result(atMost: Duration): T

}

trait Future[T] extends Awaitable[T] {

def filter(p: T=>Boolean): Future[T]

def flatMap[S](f: T=>Future[S]): Future[U]

def map[S](f: T=>S): Future[S]

def recoverWith(f: PartialFunction[Throwable, 

Future[T]]): Future[T]

}

object Future {

def apply[T](body : =>T): Future[T] 

}

All these methods 
take an implicit 

execution context



val socket = Socket()

val packet: Future[Array[Byte]] =

socket.readFromMemory()

packet onComplete {

case Success(p) => {

val confirmation: Future[Array[Byte]] =

socket.sendToEurope(p)

}

case Failure(t) ⇒ …

}

Sending packets using futures

Remember 
this mess?



val socket = Socket()

val packet: Future[Array[Byte]] =

socket.readFromMemory()

val confirmation: Future[Array[Byte]] =

packet.flatMap(p => socket.sendToEurope(p))

Flatmap to the rescue



import scala.concurrent.ExecutionContext.Implicits.global

import scala.imaginary.Http._

object Http {

def apply(url: URL, req: Request): Future[Response] =

{… runs the http request asynchronously …}

}

def sendToEurope(packet: Array[Byte]): Future[Array[Byte]] =

Http(URL(“mail.server.eu”), Request(packet))

.filter(response => response.isOK)

.map(response => response.toByteArray)

Sending packets using futures under the covers

But, this can 
still fail!



Sending packets using futures robustly (?)

def sendTo(url: URL, packet: Array[Byte]): Future[Array[Byte]] =

Http(url, Request(packet))

.filter(response => response.isOK)

.map(response => response.toByteArray)

def sendToAndBackup(packet: Array[Byte]):

Future[(Array[Byte], Array[Byte])] = {

val europeConfirm = sendTo(mailServer.europe, packet) 

val usaConfirm = sendTo(mailServer.usa, packet)

europeConfirm.zip(usaConfirm)

} Cute, but no 
cigar



Send packets using futures robustly

def recover(f: PartialFunction[Throwable,T]): Future[T]

def recoverWith(f: PartialFunction[Throwable,Future[T]])

: Future[T]

Closely 
watch those 
signatures



Send packets using futures robustly

def sendTo(url: URL, packet: Array[Byte]): 

Future[Array[Byte]] =

Http(url, Request(packet))

.filter(response => response.isOK)

.map(response => response.toByteArray)

def sendToSafe(packet: Array[Byte]):

Future[Array[Byte]] =

sendTo(mailServer.europe, packet) recoverWith {

case europeError =>

sendTo(mailServer.usa, packet) recover {

case usaError => usaError.getMessage.toByteArray

}

}



End of Combinators on Futures (1/2)

Principles of Reactive Programming

Erik Meijer



Combinators on Futures (2/2)

Principles of Reactive Programming

Erik Meijer



Better recovery with less matching

def sendToSafe(packet: Array[Byte]): Future[Array[Byte]] =

sendTo(mailServer.europe, packet) recoverWith {

case europeError =>

sendTo(mailServer.usa, packet) recover {

case usaError => usaError.getMessage.toByteArray

}

}

def fallbackTo(that: =>Future[T]): Future[T] = {

… if this future fails take the successful result

of that future …

… if that future fails too, take the error of

this future …

}



Better recovery with less matching

def sendToSafe(packet: Array[Byte]):Future[Array[Byte]]=

sendTo(mailServer.europe, packet) fallbackTo {

sendTo(mailServer.usa, packet)

} recover {

case europeError =>

europeError.getMessage.toByteArray

}

def fallbackTo(that: =>Future[T]): Future[T] = {

… if this future fails take the succcessful result

of that future …

… if that future fails too, take the error of

this future …

}



Fallback implementation

def fallbackTo(that: =>Future[T]): Future[T] = {

this recoverWith {

case _ => that recoverWith { case _ => this }

}

}



Asynchronous where possible, blocking where necessary

trait Awaitable[T] extends AnyRef {

abstract def ready(atMost: Duration): Unit

abstract def result(atMost: Duration): T

}

trait Future[T] extends Awaitable[T] {

def filter(p: T⇒Boolean): Future[T]
def flatMap[S](f: T⇒ Future[S]): Future[U]

def map[S](f: T⇒S): Future[S]
def recoverWith(f: PartialFunction[Throwable, 

Future[T]]): Future[T]

}



Asynchronous where possible, blocking where necessary

val socket = Socket()

val packet: Future[Array[Byte]] =

socket.readFromMemory()

val confirmation: Future[Array[Byte]] =

packet.flatMap(socket.sendToSafe(_))

val c = Await.result(confirmation, 2 seconds)

println(c.toText)



Duration

import scala.language.postfixOps

object Duration {

def apply(length: Long, unit: TimeUnit): 

Duration

}

val fiveYears = 1826 minutes



End of Combinators on Futures (2/2)

Principles of Reactive Programming

Erik Meijer



Composing Futures (1/2)

Principles of Reactive Programming

Erik Meijer



Flatmap …

val socket = Socket()

val packet: Future[Array[Byte]] =

socket.readFromMemory()

val confirmation: Future[Array[Byte]] =

packet.flatMap(socket.sendToSafe(_))

Hi! Looks like 
you’re trying to 

write for-
comprehensions.



Or comprehensions?

val socket = Socket()

val confirmation: Future[Array[Byte]] = for{

packet       <- socket.readFromMemory()

confirmation <- socket.sendToSafe(packet)

} yield confirmation



Retrying to send

def retry(noTimes: Int)(block: =>Future[T]): 

Future[T] = {

… retry successfully completing block 

at most noTimes

… and give up after that

}



Retrying to send

def retry(noTimes: Int)(block: ⇒Future[T]): 
Future[T] = {

if (noTimes == 0) {

Future.failed(new Exception(“Sorry”))

} else {

block fallbackTo { 

retry(noTimes–1){ block } 

}

}

}

Recusion is the 
GOTO of Functional 

Programming
(Erik Meijer)



End of Composing Futures (1/2)

Principles of Reactive Programming

Erik Meijer



End of Composing Futures (1/2)

Principles of Reactive Programming

Erik Meijer



Composing Futures (2/2)

Principles of Reactive Programming

Erik Meijer



Avoid Recursion

Let’s Geek 
out for a 

bit …

foldRight

foldLeft

And pose 
like FP 

hipsters!



Folding lists

List(a,b,c).foldRight(e)(f) 

=

f(a, f(b, f(c, e)))

List(a,b,c).foldLeft(e)(f)

=

f(f(f(e, a), b), c)

Northern wind 
comes from the 

North
(Richard Bird)



Retrying to send using foldLeft

def retry(noTimes: Int)(block: =>Future[T]): 

Future[T] = {

val ns = (1 to noTimes).toList

val attempts = ns.map(_ => ()=>block)

val failed = Future.failed(new Exception(“boom”))

val result = attempts.foldLeft(failed)

((a,block) => a recoverWith { block() })

result

} retry(3) { block }

= unfolds to

((failed recoverWith {block1()}) 

recoverWith {block2()}) 

recoverWith { block3 ()}



Retrying to send using foldLeft

def retry(noTimes: Int)(block: ⇒Future[T]): 
Future[T] = {

…

val attempts = ns.map(_=> ()=>block)

…

}

ns =      List(1, 2,         …, noTimes)



Retrying to send using foldLeft

def retry(noTimes: Int)(block: ⇒Future[T]): 
Future[T] = {

…

val attempts = ns.map(_=> ()=>block)

…

}

ns =      List(1, 2,         …, noTimes)

attemps = List(()=>block, ()=>block, …, ()=>block)



Retrying to send using foldLeft

def retry(noTimes: Int)(block: ⇒Future[T]): 
Future[T] = {

…

val result = attempts.foldLeft(failed)

((a,block) => a recoverWith { block() })

result

}

ns =      List(1, 2,         …,  

noTimes)

attemps = List(()=>block1, ()=>block2, …, 

()=>blocknoTimes)

result = (…((failed recoverWith { block1() }) 

recoverWith { block () }) …) 



Retrying to send using foldRight

def retry(noTimes: Int)(block: =>Future[T])= {

val ns = (1 to noTimes).toList

val attempts: = ns.map(_ => () => block)

val failed = Future.failed(new Exception)

val result = attempts.foldRight(() =>failed)

((block, a) => () => { block() fallbackTo { a() } })

result ()

}

retry(3) { block } ()

= unfolds to

block1 fallbackTo { block2 fallbackTo { block3 fallbackTo

{ failed }}}



Use Recursion

Often, 
straight 

recursion is 
the way to 

go

foldRight

foldLeft

And just leave the 
HO functions to 
the FP hipsters!



End of Composing Futures (2/2)

Principles of Reactive Programming

Erik Meijer


