
A Larger Equational Proof on Lists

Principles of Functional Programming



A Law of Reverse

For a more difficult example, let’s consider the reverse function.
We pick its inefficient definition, because its more amenable to equational
proofs:

Nil.reverse = Nil // 1st clause

(x :: xs).reverse = xs.reverse ++ List(x) // 2nd clause

We’d like to prove the following proposition

xs.reverse.reverse = xs



Proof

By induction on xs. The base case is easy:

Nil.reverse.reverse

= Nil.reverse // by 1st clause of reverse

= Nil // by 1st clause of reverse



Proof

By induction on xs. The base case is easy:

Nil.reverse.reverse

= Nil.reverse // by 1st clause of reverse

= Nil // by 1st clause of reverse

For the induction step, let’s try:

(x :: xs).reverse.reverse

= (xs.reverse ++ List(x)).reverse // by 2nd clause of reverse



Proof

By induction on xs. The base case is easy:

Nil.reverse.reverse

= Nil.reverse // by 1st clause of reverse

= Nil // by 1st clause of reverse

For the induction step, let’s try:

(x :: xs).reverse.reverse

= (xs.reverse ++ List(x)).reverse // by 2nd clause of reverse

We can’t do anything more with this expression, therefore we turn to the
right-hand side:

x :: xs

= x :: xs.reverse.reverse // by induction hypothesis

Both sides are simplified in different expressions.



To Do

We still need to show:

(xs.reverse ++ List(x)).reverse = x :: xs.reverse.reverse

Trying to prove it directly by induction doesn’t work.
We must instead try to generalize the equation. For any list ys,

(ys ++ List(x)).reverse = x :: ys.reverse

This equation can be proved by a second induction argument on ys.



Auxiliary Equation, Base Case

(Nil ++ List(x)).reverse // to show: = x :: Nil.reverse



Auxiliary Equation, Base Case

(Nil ++ List(x)).reverse // to show: = x :: Nil.reverse

= List(x).reverse // by 1st clause of ++



Auxiliary Equation, Base Case

(Nil ++ List(x)).reverse // to show: = x :: Nil.reverse

= List(x).reverse // by 1st clause of ++

= (x :: Nil).reverse // by definition of List



Auxiliary Equation, Base Case

(Nil ++ List(x)).reverse // to show: = x :: Nil.reverse

= List(x).reverse // by 1st clause of ++

= (x :: Nil).reverse // by definition of List

= Nil ++ (x :: Nil) // by 2nd clause of reverse



Auxiliary Equation, Base Case

(Nil ++ List(x)).reverse // to show: = x :: Nil.reverse

= List(x).reverse // by 1st clause of ++

= (x :: Nil).reverse // by definition of List

= Nil ++ (x :: Nil) // by 2nd clause of reverse

= x :: Nil // by 1st clause of ++



Auxiliary Equation, Base Case

(Nil ++ List(x)).reverse // to show: = x :: Nil.reverse

= List(x).reverse // by 1st clause of ++

= (x :: Nil).reverse // by definition of List

= Nil ++ (x :: Nil) // by 2nd clause of reverse

= x :: Nil // by 1st clause of ++

= x :: Nil.reverse // by 1st clause of reverse



Auxiliary Equation, Inductive Step

((y :: ys) ++ List(x)).reverse // to show: = x :: (y :: ys).reverse



Auxiliary Equation, Inductive Step

((y :: ys) ++ List(x)).reverse // to show: = x :: (y :: ys).reverse

= (y :: (ys ++ List(x))).reverse // by 2nd clause of ++



Auxiliary Equation, Inductive Step

((y :: ys) ++ List(x)).reverse // to show: = x :: (y :: ys).reverse

= (y :: (ys ++ List(x))).reverse // by 2nd clause of ++

= (ys ++ List(x)).reverse ++ List(y) // by 2nd clause of reverse



Auxiliary Equation, Inductive Step

((y :: ys) ++ List(x)).reverse // to show: = x :: (y :: ys).reverse

= (y :: (ys ++ List(x))).reverse // by 2nd clause of ++

= (ys ++ List(x)).reverse ++ List(y) // by 2nd clause of reverse

= (x :: ys.reverse) ++ List(y) // by the induction hypothesis



Auxiliary Equation, Inductive Step

((y :: ys) ++ List(x)).reverse // to show: = x :: (y :: ys).reverse

= (y :: (ys ++ List(x))).reverse // by 2nd clause of ++

= (ys ++ List(x)).reverse ++ List(y) // by 2nd clause of reverse

= (x :: ys.reverse) ++ List(y) // by the induction hypothesis

= x :: (ys.reverse ++ List(y)) // by 1st clause of ++



Auxiliary Equation, Inductive Step

((y :: ys) ++ List(x)).reverse // to show: = x :: (y :: ys).reverse

= (y :: (ys ++ List(x))).reverse // by 2nd clause of ++

= (ys ++ List(x)).reverse ++ List(y) // by 2nd clause of reverse

= (x :: ys.reverse) ++ List(y) // by the induction hypothesis

= x :: (ys.reverse ++ List(y)) // by 1st clause of ++

= x :: (y :: ys).reverse // by 2nd clause of reverse

This establishes the auxiliary equation, and with it the main proposition.



Exercise

Prove the following distribution law for map over concatenation.
For any lists xs, ys, function f:

(xs ++ ys).map(f) = xs.map(f) ++ ys.map(f)

You will need the clauses of ++ as well as the following clauses for map:

Nil.map(f) = Nil

(x :: xs).map(f) = f(x) :: xs.map(f)


