=PrL

Combinatorial Search and For-Expressions

Principles of Functional Programming



Handling Nested Sequences

We can extend the usage of higher order functions on sequences to many
calculations which are usually expressed using nested loops.

Example: Given a positive integer n, find all pairs of positive integers i
and j, with 1 <= j < i < nsuchthati + jis prime.

For example, if n = 7, the sought pairs are




Algorithm

A natural way to do this is to:

P> Generate the sequence of all pairs of integers (i, j) such that 1 <= j
<1i<n.

» Filter the pairs for which i + j is prime.
One natural way to generate the sequence of pairs is to:

» Generate all the integers i between 1 and n (excluded).
» For each integer i, generate the list of pairs (i, 1), ..., (i, i-1).

This can be achieved by combining until and map:

(1 until n).map(i =>
(1 until i).map(j => (i, 1))



Generate Pairs

The previous step gave a sequence of sequences, let's call it xss.

We can combine all the sub-sequences using foldrRight with ++:
xss.foldRight(Seq[Int]())(_ ++ _)

Or, equivalently, we use the built-in method flatten
xss.flatten

This gives:

((1 until n).map(i =>
(1 until i).map(j => (i, j)))).flatten



Generate Pairs (2)

Here's a useful law:
xs.flatMap(f) = xs.map(f).flatten
Hence, the above expression can be simplified to

(1 until n).flatMap(i =>
(1 until i).map(j => (i, 3)))



Assembling the pieces

By reassembling the pieces, we obtain the following expression:

(1 until n)
.flatMap(i => (1 until i).map(j => (i, J)))
filter((x, y) => isPrime(x + y))

This works, but makes most people's head hurt.

Is there a simpler way?



For-Expressions

Higher-order functions such as map, flatMap or filter provide powerful
constructs for manipulating lists.

But sometimes the level of abstraction required by these function make
the program difficult to understand.

In this case, Scala’s for expression notation can help.



For-Expression Example

Let persons be a list of elements of class Person, with fields name and age.
case class Person(name: String, age: Int)

To obtain the names of persons over 20 years old, you can write:
for p <- persons if p.age > 20 yield p.name

which is equivalent to:

persons
.filter(p => p.age > 20)
.map(p => p.name)

The for-expression is similar to loops in imperative languages, except that
it builds a list of the results of all iterations.



Syntax of For

A for-expression is of the form
for s yield e

where s is a sequence of generators and filters, and e is an expression
whose value is returned by an iteration.

> A generator is of the form p <- e, where p is a pattern and e an
expression whose value is a collection.

> A filter is of the form if f where f is a boolean expression.

P> The sequence must start with a generator.

> If there are several generators in the sequence, the last generators
vary faster than the first.



Use of For

Here are two examples which were previously solved with higher-order
functions:

Given a positive integer n, find all the pairs of positive integers (i, j)
such that 1 <= j <i < n,and i + jis prime.

for
i <=1 until n
j <= 1 until i
if isPrime(i + j)
yield (i, j)



Exercise

Write a version of scalarProduct (see last session) that makes use of a for:

def scalarProduct(xs: List[Double], ys: List[Double]) : Double =



Exercise

Write a version of scalarProduct (see last session) that makes use of a for:

def scalarProduct(xs: List[Double], ys: List[Double]) : Double =

(for (x, y) <- xs.zip(ys) yield x * y).sum



Exercise

Write a version of scalarProduct (see last session) that makes use of a for:

def scalarProduct(xs: List[Double], ys: List[Double]) : Double =

(for (x, y) <- xs.zip(ys) yield x * y).sum
Question: What will the following produce?

(for x <= xs; y <- ys yield x * y).sum



Exercise

Write a version of scalarProduct (see last session) that makes use of a for:

def scalarProduct(xs: List[Double], ys: List[Double]) : Double =

(for (x, y) <- xs.zip(ys) yield x * y).sum
Question: What will the following produce?
(for x <= xs; y <- ys yield x * y).sum

Answer: It would multiply every element of xs with every element of ys
and sum up the results.



