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Reduction of Lists

Another common operation on lists is to combine the elements of a list
using a given operator.

For example:

sum(List(x1, ..., xn)) 0+ x1 + ... +Xxn
product(List(x1, ..., xn)) = 1 xx1 % ... % xn

We can implement this with the usual recursive schema:

def sum(xs: List[Int]): Int = xs match
case Nil => 0

case y :: ys =>y + sum(ys)



Reduceleft

This pattern can be abstracted out using the generic method reducelLeft:

reduceleft inserts a given binary operator between adjacent elements of a
list:

List(x1, ..., xn).reduceLeft(op) = x1l.op(x2). ... .op(xn)
Using reduceLeft, we can simplify:

def sum(xs: List[Int]) = (@ :: xs).reducelLeft((x, y) => x +y)
def product(xs: List[Int]) (1 :: xs).reduceLeft((x, y) => x *x y)



A Shorter Way to Write Functions

Instead of ((x, y) => x * y)), one can also write shorter:
(c*x2)

Every _ represents a new parameter, going from left to right.

The parameters are defined at the next outer pair of parentheses (or the
whole expression if there are no enclosing parentheses).

So, sum and product can also be expressed like this:

def sum(xs: List[Int]) = (@ :: xs).reducelLeft(_ + _
def product(xs: List[Int]) (1 :: xs).reduceLeft(_ * _

)
)



FoldLeft

The function reduceLeft is defined in terms of a more general function,
foldLeft.

foldLeft is like reducelLeft but takes an accumulator, z, as an additional
parameter, which is returned when foldLeft is called on an empty list.

List(x1, ..., xn).foldLeft(z)(op) = z.op(x1).op ... .op(xn)

So, sum and product can also be defined as follows:

def sum(xs: List[Int]) xs.foldLeft(@)(_ + _)
def product(xs: List[Int]) = xs.foldLeft(1)(_ * _)



Implementations of Reduceleft and FoldLeft

foldLeft and reducelLeft can be implemented in class List as follows.

abstract class List[T]:

def reduceLeft(op: (T, T) => T): T = this match
case Nil => throw IllegalOperationException(”Nil.reducelLeft”)
case x :: xs => xs.foldLeft(x) (op)

def foldLeft[UI(z: U)(op: (U, T) => U): U = this match
case Nil =z
case x :: xs => xs.foldLeft(op(z, x))(op)



FoldRight and ReduceRight

Applications of foldLeft and reduceLeft unfold on trees that lean to the
left.

They have two dual functions, foldRight and reduceRight, which produce
trees which lean to the right, i.e.,

x1.op(x2.0p(C ... x{n=-1}.op(xn) ...
x1.op(x2.0p( ... xn.op(z) ...))

List(x1, ..., x{n=-13}, xn).reduceRight(op)
List(x1, ..., xn).foldRight(z)(op )



Implementation of FoldRight and ReduceRight

They are defined as follows

def reduceRight(op: (T, T) => T): T = this match

case Nil => throw UnsupportedOperationException(”Nil.reduceRight”)
case x :: Nil => x
case X :: xs => op(x, xs.reduceRight(op))

def foldRight[Ul(z: U)(op: (T, U) => U): U = this match
case Nil =z
case X :: xs => op(x, xs.foldRight(z) (op))



Difference between FoldLeft and FoldRight

For operators that are associative and commutative, foldLeft and
foldRight are equivalent (even though there may be a difference in

efficiency).

But sometimes, only one of the two operators is appropriate.



Exercise

Here is another formulation of concat:

def concat[T](xs: List[T], ys: List[T]): List[T] =
xs.foldRight(ys)(_ :: )

Here, it isn't possible to replace foldRight by foldLeft. Why?

0 The types would not work out
0 The resulting function would not terminate
0 The result would be reversed
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Back to Reversing Lists

We now develop a function for reversing lists which has a linear cost.

The idea is to use the operation foldLeft:
def reverse[T](xs: List[T]): List[T] = xs.foldLeft(z?)(op?)

All that remains is to replace the parts z? and op?.

Let's try to compute them from examples.



Deduction of Reverse (1)

To start computing z?, let's consider reverse(Nil).

We know reverse(Nil) == Nil, so we can compute as follows:

Nil
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Deduction of Reverse (1)

To start computing z?, let's consider reverse(Nil).

We know reverse(Nil) == Nil, so we can compute as follows:

Nil

reverse(Nil)

Nil.foldLeft(z?) (op)
= z?

Consequently, z? = Nil



Deduction of Reverse (2)

We still need to compute op?. To do that let's plug in the next simplest
list after Nil into our equation for reverse:

List(x)
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Deduction of Reverse (2)

We still need to compute op?. To do that let's plug in the next simplest
list after Nil into our equation for reverse:

List(x)

reverse(List(x))

List(x).foldLeft(Nil) (op?)

=  op?(Nil, x)

Consequently, op?(Nil, x) = List(x) = x :: Nil.

This suggests to take for op? the operator :: but with its operands
swapped.



Deduction of Reverse(3)

We thus arrive at the following implementation of reverse.

def reverse[al(xs: List[T1): List[T] =
xs.foldLeft(List[TI())((xs, x) => x :: XS)

Remark: the type parameter in List[T]() is necessary for type inference.

@: What is the complexity of this implementation of reverse ?



Deduction of Reverse(3)

We thus arrive at the following implementation of reverse.

def reverse[al(xs: List[T1): List[T] =
xs.foldLeft(List[TI())((xs, x) => x :: XS)

Remark: the type parameter in List[T]() is necessary for type inference.
@: What is the complexity of this implementation of reverse ?

A: Linear in xs



Exercise
Complete the following definitions of the basic functions map and length
on lists, such that their implementation uses foldRight:

def mapFun[T, Ul(xs: List[T1, f: T => U): List[U] =
xs.foldRight(List[UI())( ??? )

def lengthFun[T](xs: List[T]): Int =
xs.foldRight(@)( ??? )



Exercise
Complete the following definitions of the basic functions map and length
on lists, such that their implementation uses foldRight:

def mapFun[T, Ul(xs: List[T1, f: T => U): List[U] =
xs.foldRight(List[UIQ)) ((y, ys) => f(y) :: ys)

def lengthFun[T](xs: List[T]): Int =
xs.foldRight(@)((y, n) => n + 1)



