Functional Programming

Midterm Solution
Friday, November 8 2019

Exercise 1: For-comprehensions (10 points)
Question la. (5 points)

def lists(n: Int): Generator[List[Int]] =
if (n <= 0)
single(Nil)
else
for {
head <- integers
tail <- lists(n - 1)
} yield head :: tail

Question 1b. (2 points)

def listsUpTo(limit: Int): Generator[List[Int]] =
for {
n <- atMost(limit)
list <- lists(n)
} yield list

Question 1c. (3 points)

def sortedLists(n: Int, minimum: Int): Generator[List[Int]] =
if (n <= 0)
single(Nil)
else
for {
head <- atLeast(minimum)
tail <- sortedlLists(n - 1, head)
} yield head :: tail

Exercise 2: Structural Induction (10 points)

Question 2a.

(xs ++ (x :: Nil)).map(f) === xs.map(f) ++ (f(x) :: Nil)
By structural induction on xs.

When xs === Nil:

(Nil ++ (x :: Nil)).map(f)
=== (x :: Nil).map(f) (by ++ (1))
=== f(x) :: Nil.map(f) (by map (4))
=== f(x) :: Nil (by map (3))
=== Nil ++ (f(x) :: Nil) (by ++ (1))
=== Nil.map(f) ++ (f(x) :: Nil) (by map (3))

When xs ===y :: ys:

(Inductive hypothesis: (ys ++ (x :: Nil)).map(f) === ys.map(f) ++ (f(x) ::

)
.map(f) (by ++ (2))

.map(f) (by map (4))

) :: Nil)) (by inductive hypothesis)
x) :: Nil) (by ++ (2))

1 Nil) (by map (4))

((y :: ys) ++ (x :: Nil)).map(
=== (y :: (ys ++ (x :: Nil))
=== f(1 Nil
++ (f
) ++ (

+ (f(x

y) i (ys ++ (
=== f(y) :: (ys.map(
(y) :: ys.map(

X
f
f f
=== (y :: ys).map(f)

)
X
(

— —h~—— —h

)
)
+

Question 2b.

xs.map(f).reverse === xs.reverse.map(f)
By structural induction on xs.

When xs === Nil:

Nil.reverse.map(f)
=== Nil.map(f) (by reverse (5))
=== Nil (by map (3))
=== Nil.reverse (by reverse (5))
=== Nil.map(f).reverse (by map (3))

When xs ===y :: ys:

(Inductive hypothesis: ys.map(f).reverse === ys.reverse.map(f))

(y :: ys).reverse.map(f)
=== (ys.reverse ++ (y :: Nil)).map(f) (by reverse (6))
=== ys.reverse.map(f) ++ (f(y) :: Nil) (by lemma)
=== ys.map(f).reverse ++ (f(y) :: Nil) (by hypothesis)
=== (f(y) :: ys.map(f)).reverse (by reverse (6))
=== (y :: ys).map(f).reverse (by map (4))

Nil))

Grading scheme

Grading scheme for both questions:

e 1 point for base case

4 points for the inductive case

a small error (missing parenthesis) in the inductive case is -1 point
e a small error in the base case is -0.5 points

e misusing IH, badly misusing an axiom or inventing own axioms is -3 or -2 points, depending on how
complete the rest of the solution is

e partial solutions are worth 0.5 and up to 2 points for the base and inductive case.

Incorrectly specifying the inductive hypothesis did not subtract from the grade, although correctly doing so
added to points for the partial solution.

Comments

The most common error was missing parenthesis in the inductive part of the second question. By axiom
4, (y :: ys).map(f) ++ (f(x) :: Nil) is equivalent to (f(y) :: ys.map(f)) ++ (f(x) :: Nil) and not to
f(y) :: (ys.map(f) ++ (f(x) :: Nil)). The parenthesis here are crucial for determining which expression
we are dealing with.

Read the inductive hypothesis for both exercises closely. For example, take a look at the TH for the second

case: when xs ===y :: ys, the IH is ys.map(f).reverse === ys.reverse.map(f). Note that the ITH only
works for ys, not for xs. If IH could be applied to xs, the resulting proof would be circular: we would be
assuming that xs.map(f).reverse === xs.reverse.map(f), which is the precise thing we are trying to prove.

Additionally: structural induction is inherently tied to the structure (of List-s in this case). A List is defined

to be either Nil or y :: ys for some y and ys, and therefore the inductive case must start by assuming that
xs ===y :: ys. While it seems reasonable to instead assume that xs === ys ++ (y :: Nil), this does not
directly follow from the definition of List. What one could do is prove that y :: ys === zs ++ (z :: Nil)

for some zs and z, and only then use that to prove the inductive case.

Exercise 3: Variance (10 points)

F[A] <: F[B]
G[B] >: G[C]
H[B] X H[A]
FIA] <: F[C]
B=>B<: A=>C
A=>C> C=A

C=BXA=>A

F[A] == B >: F[B] => A

G[A] => F[A] <: G[B] => F[B]

(A =>C) => (C => A) <:

(B =>B) => (A => ()

Exercise 4: Pattern matching and recursion (10 points)

Question 4a.

def size: Int =
this match {
case Empty() => 0
case Layer(_, next) => 1 + 2 x next.size

}

Question 4b.

def map[B](f: A => B): Perfect[B] =
this match {
case Empty() => Empty()
case Layer(elem, next) => Layer(f(elem), next.map { case (a, b) => (f(a), f(b)) })

}

Question 4c.

def tolList: List[A] =
this match {
case Empty() => Nil
case Layer(elem, next) => elem :: next.toList.flatMap { case (a, b) =>a :: b :: Nil }

}

	Question 1a. (5 points)
	Question 1b. (2 points)
	Question 1c. (3 points)
	Question 2a.
	Question 2b.
	Grading scheme
	Comments
	Question 4a.
	Question 4b.
	Question 4c.

