
Using Clauses and Given Instances

Principles of Functional Programming
Martin Odersky and Julien Richard-Foy



Using Clauses

An implicit parameter is introduced by a using parameter clause:

def sort[T](xs: List[T])(using ord: Ordering[T]): List[T] = ...

A matching explicit argument can be passed in a using argument clause:

sort(strings)(using Ordering.String)

But the argument can also be left out (and it usually is).
If the argument is missing, the compiler will infer one from the parameter
type.

sort(strings)



Using Clauses Syntax Reference

Multiple parameters can be in a using clause:

def f(x: Int)(using a: A, b: B) = ...

f(x)(using a, b)

Or, there can be several using clauses in a row:

def f(x: Int)(using a: A)(using b: B) = ...

using clauses can also be freely mixed with regular parameters:

def f(x: Int)(using a: A)(y: Boolean)(using b: B) = ...

f(x)(using a)(y)(using b)



Anonymous Using Clauses

Parameters of a using clause can be anonymous:

def sort[T](xs: List[T])(using Ordering[T]): List[T] =

...

... merge(sort(fst), sort(snd))

def merge[T](xs: List[T])(using Ordering[T]): List[T] = ...

This is useful if the body of sort does not mention ord at all, but simply
passes it on as an implicit argument to further methods.



Anonymous Using Clauses

Parameters of a using clause can be anonymous:

def sort[T](xs: List[T])(using ord: Ordering[T]): List[T] =

...

... merge(sort(fst), sort(snd))(using ord)

def merge[T](xs: List[T])(using ord: Ordering[T]): List[T] = ...

This is useful if the body of sort does not mention ord at all, but simply
passes it on as an implicit argument to further methods.



Context Bounds

Sometimes one can go further and replace the using clause with a context
bound for a type parameter.
Instead of:

def printSorted[T](as: List[T])(using Ordering[T]) =

println(sort(as))



Context Bounds

Sometimes one can go further and replace the using clause with a context
bound for a type parameter.
With a context bound:

def printSorted[T: Ordering](as: List[T]) =

println(sort(as))



Context Bounds

Sometimes one can go further and replace the using clause with a context
bound for a type parameter.
With a context bound:

def printSorted[T: Ordering](as: List[T]) =

println(sort(as))

More generally, a method definition such as:

def f [T : U1 . . . : Un](ps) : R = ...

is expanded to:

def f [T ](ps)(using U1[T ], . . . ,Un[T ]) : R = ...



Given Instances

For the previous example to work, the Ordering.Int definition must be a
given instance:

object Ordering:

given Int: Ordering[Int] with

def compare(x: Int, y: Int): Int =

if x < y then -1 else if x > y then 1 else 0

This code defines a given instance of type Ordering[Int], named Int.



Anonymous Given Instances

Given instances can be anonymous. Just omit the instance name:

given Ordering[Double] with

def compare(x: Int, y: Int): Int = ...

The compiler will synthesize a name for an anonymous instance:

given given_Ordering_Double: Ordering[Double] with

def compare(x: Int, y: Int): Int = ...



Summoning an Instance

One can refer to a (named or anonymous) instance by its type:

summon[Ordering[Int]]

summon[Ordering[Double]]

These expand to:

Ordering.Int

Ordering.given_Ordering_Double

summon is a predefined method. It can be defined like this:

def summon[T](using x: T) = x



Implicit Parameter Resolution

Say, a function takes an implicit parameter of type T.
The compiler will search a given instance that:

▶ has a type compatible with T,
▶ is visible at the point of the function call, or is defined in a

companion object associated with T.

If there is a single (most specific) instance, it will be taken as actual
arguments for the inferred parameter.
Otherwise it’s an error.



Given Instances Search Scope

The search for a given instance of type T includes:

▶ all the given instances that are visible (inherited, imported, or defined
in an enclosing scope),

▶ the given instances found in a companion object associated with T.

The definition of associated is quite general. Besides the companion
object of a class itself, the compiler will also consider

▶ companion objects associated with any of T’s inherited types
▶ companion objects associated with any type argument in T
▶ if T is an inner class, the outer objects in which it is embedded.



Companion Objects Associated With a Queried Type

If the compiler does not find a given instance matching the queried type T

in the lexical scope, it continues searching in the companion objects
associated with T.
Consider the following hierarchy:

trait Foo[T]

trait Bar[T] extends Foo[T]

trait Baz[T] extends Bar[T]

trait X

trait Y extends X

If a given instance of type Bar[Y] is required, the compiler will look into
the companion objects Bar, Y, Foo, and X (but not Baz).



Importing Given Instances

Since given instances can be anonymous, how can they be imported?
In fact, there are three ways to import a given instance.

1. By-name:
import scala.math.Ordering.Int

2. By-type:
import scala.math.Ordering.{given Ordering[Int]}

import scala.math.Ordering.{given Ordering[?]}

3. With a wildcard:
import scala.math.given

Since the names of givens don’t really matter, the second form of import
is preferred since it is most informative.



Exercise

val xs = List(3, 1, 2)

sort(xs)

In the above example of the sort method call, where does the compiler
find the given instance of type Ordering[Int]?
o In the enclosing scope
o Via a given import
o In a companion object associated with the type Ordering[Int]



Exercise

val xs = List(3, 1, 2)

sort(xs)

In the above example of the sort method call, where does the compiler
find the given instance of type Ordering[Int]?
o In the enclosing scope
o Via a given import
x In a companion object associated with the type Ordering[Int]

▶ The given instance is found in the Ordering companion object



No Given Instance Found

If there is no available given instance matching the queried type, an error
is reported:

scala> def f(using n: Int) = ()

scala> f

^

error: no implicit argument of type Int was found for parameter n of method f



Ambiguous Given Instances

If more than one given instance is eligible, an ambiguity is reported:

trait C:

val x: Int

given c1: C with

val x = 1

given c2: C with

val x = 2

f(using c: C) = ()

f

^

error: ambiguous implicit arguments:

both value c1 and value c2

match type C of parameter c of method f



Priorities

Actually, several given instances matching the same type don’t generate
an ambiguity if one is more specific than the other.
In essence, a definition

given a: A

is more specific than a definition

given b: B

if:
▶ a is in a closer lexical scope than b, or
▶ a is defined in a class or object which is a subclass of the class

defining b, or
▶ type A is a generic instance of type B, or
▶ type A is a subtype of type B.



Priorities: Example (1)

Which given instance is summoned here?

class A[T](x: T)

given universal[T](using x: T): A[T](x)

given specific: A[Int](2)

summon[A[Int]]



Priorities: Example (2)

Which given instance is summoned here?

trait A:

given ac: C

trait B extends A:

given bc: C

object O extends B:

val x = summon[C]



Priorities: Example (3)

Which given instance is summoned here?

given ac: C

def f() =

given b: C

def g(using c: C) = ()

g



Summary

In this lecture we have introduced a way to do type-directed programming,
with the help of a language mechanism that infers values from types.
There has to be a unique (most specific) given instance matching the
queried type for it to be used by the compiler.
Given instances are searched in the enclosing lexical scope (imports,
parameters, inherited members) as well as in the companion objects
associated with the queried type.


