
Translation of For

Principles of Functional Programming



For-Expressions and Higher-Order Functions

The syntax of for is closely related to the higher-order functions map,
flatMap and filter.
First of all, these functions can all be defined in terms of for:

def mapFun[T, U](xs: List[T], f: T => U): List[U] =

for x <- xs yield f(x)

def flatMap[T, U](xs: List[T], f: T => Iterable[U]): List[U] =

for x <- xs; y <- f(x) yield y

def filter[T](xs: List[T], p: T => Boolean): List[T] =

for x <- xs if p(x) yield x



Translation of For (1)

In reality, the Scala compiler expresses for-expressions in terms of map,
flatMap and a lazy variant of filter.
Here is the translation scheme used by the compiler (we limit ourselves
here to simple variables in generators)
1. A simple for-expression

for x <- e1 yield e2

is translated to

e1.map(x => e2)



Translation of For (2)

2. A for-expression

for x <- e1 if f; s yield e2

where f is a filter and s is a (potentially empty) sequence of generators
and filters, is translated to

for x <- e1.withFilter(x => f); s yield e2

(and the translation continues with the new expression)
You can think of withFilter as a variant of filter that does not produce
an intermediate list, but instead applies the following map or flatMap

function application only to those elements that passed the test.



Translation of For (3)

3. A for-expression

for x <- e1; y <- e2; s yield e3

where s is a (potentially empty) sequence of generators and filters, is
translated into

e1.flatMap(x => for y <- e2; s yield e3)

(and the translation continues with the new expression)



Example

Take the for-expression that computed pairs whose sum is prime:

for

i <- 1 until n

j <- 1 until i

if isPrime(i + j)

yield (i, j)

Applying the translation scheme to this expression gives:

(1 until n).flatMap(i =>

(1 until i)

.withFilter(j => isPrime(i+j))

.map(j => (i, j)))

This is almost exactly the expression which we came up with first!



Exercise

Translate

for b <- books; a <- b.authors if a.startsWith(”Bird”)

yield b.title

into higher-order functions.



Exercise

for b <- books; a <- b.authors if a.startsWith(”Bird”)

yield b.title

The expression above expands to which of the following two expressions?

O books.flatMap(b =>

b.authors.withFilter(a =>

a.startsWith(”Bird”)).map(a => b.title))

O books.map(b =>

b.authors.flatMap(a =>

if a.startsWith(”Bird”) then b.title))



Generalization of for

Interestingly, the translation of for is not limited to lists or sequences, or
even collections;
It is based solely on the presence of the methods map, flatMap and
withFilter.
This lets you use the for syntax for your own types as well – you must only
define map, flatMap and withFilter for these types.
There are many types for which this is useful: arrays, iterators, databases,
optional values, parsers, etc.



For and Databases

For example, books might not be a list, but a database stored on some
server.
As long as the client interface to the database defines the methods map,
flatMap and withFilter, we can use the for syntax for querying the
database.
This is the basis of data base connection frameworks such as Slick or
Quill, as well as big data platforms such as Spark.


