
Functional Programming Principles in
Scala

Principles of Functional Programming
Martin Odersky



Programming Paradigms

Paradigm: In science, a paradigm describes distinct concepts or thought
patterns in some scientific discipline.
Main programming paradigms:

▶ imperative programming
▶ functional programming
▶ logic programming

Orthogonal to it:

▶ object-oriented programming



Review: Imperative programming

Imperative programming is about

▶ modifying mutable variables,
▶ using assignments
▶ and control structures such as if-then-else, loops, break, continue,

return.

The most common informal way to understand imperative programs is as
instruction sequences for a Von Neumann computer.



Imperative Programs and Computers

There’s a strong correspondence between
Mutable variables ≈ memory cells
Variable dereferences ≈ load instructions
Variable assignments ≈ store instructions
Control structures ≈ jumps

Problem: Scaling up. How can we avoid conceptualizing programs word
by word?

Reference: John Backus, Can Programming Be Liberated from
the von. Neumann Style?, Turing Award Lecture 1978.



Scaling Up

In the end, pure imperative programming is limited by the “Von
Neumann” bottleneck:

One tends to conceptualize data structures word-by-word.

We need other techniques for defining high-level abstractions such as
collections, polynomials, geometric shapes, strings, documents.
Ideally: Develop theories of collections, shapes, strings, …



What is a Theory?

A theory consists of

▶ one or more data types
▶ operations on these types
▶ laws that describe the relationships between values and operations

Normally, a theory does not describe mutations!



Theories without Mutation

For instance the theory of polynomials defines the sum of two polynomials
by laws such as:

(a*x + b) + (c*x + d) = (a + c)*x + (b + d)

But it does not define an operator to change a coefficient while keeping
the polynomial the same!



Theories without Mutation

For instance the theory of polynomials defines the sum of two polynomials
by laws such as:

(a*x + b) + (c*x + d) = (a + c)*x + (b + d)

But it does not define an operator to change a coefficient while keeping
the polynomial the same!
Whereas in an imperative program one can write:

class Polynomial { double [] coefficient; }

Polynomial p = ...;

p.coefficient [0] = 42;



Theories without Mutation

Other example:
The theory of strings defines a concatenation operator ++ which is
associative:

(a ++ b) ++ c = a ++ (b ++ c)

But it does not define an operator to change a sequence element while
keeping the sequence the same!
(This one, some languages do get right; e.g. Java’s strings are immutable)



Consequences for Programming

If we want to implement high-level concepts following their mathematical
theories, there’s no place for mutation.

▶ The theories do not admit it.
▶ Mutation can destroy useful laws in the theories.

Therefore, let’s

▶ concentrate on defining theories for operators expressed as functions,
▶ avoid mutations,
▶ have powerful ways to abstract and compose functions.



Functional Programming

▶ In a restricted sense, functional programming (FP) means
programming without mutable variables, assignments, loops, and
other imperative control structures.

▶ In a wider sense, functional programming means focusing on the
functions and immutable data.

▶ In particular, functions can be values that are produced, consumed,
and composed.

▶ All this becomes easier in a functional language.



Functional Programming Languages

▶ In a restricted sense, a functional programming language is one which
does not have mutable variables, assignments, or imperative control
structures.

▶ In a wider sense, a functional programming language enables the
construction of elegant programs that focus on functions and
immutable data structures.

▶ In particular, functions in a FP language are first-class citizens. This
means
▶ they can be defined anywhere, including inside other functions
▶ like any other value, they can be passed as parameters to functions and

returned as results
▶ as for other values, there exists a set of operators to compose functions



Some functional programming languages

▶ Lisp, Scheme, Racket, Clojure
▶ SML, Ocaml, F#
▶ Haskell
▶ Scala

By now, concepts and constructs from functional languages are also found
in many traditional languages.



History of FP languages

1959 (Lisp) 2003 Scala
1975-77 ML, FP, Scheme 2005 F#
1978 (Smalltalk) 2007 Clojure
1986 Standard ML 2017 Idris
1990 Haskell, Erlang 2020 Scala 3
2000 OCaml

Scala 3 is the language we will use in this course.



Origins of FP

1930s: Lambda Calculus (Alonzo Church)

▶ Shown to be equivalent to Turning Machines
▶ Stays relevant today as one of the theoretical foundations of FP

1959: Lisp

▶ Functions and recursive data tools for artifical intelligence research

1980/90s: ML, Haskell, …

▶ New type systems with a strong connection to mathematical logic



Why Functional Programming?

▶ Reduce errors
▶ Improve modularity
▶ Higher-level abstractions
▶ Shorter code
▶ Increased developer productivity



Why Functional Programming Now?

1. It’s an effective tool to handle concurrency and parallelism, on every
scale.

2. Our computers are not Van-Neuman machines anymore. They have
▶ parallel cores
▶ clusters of servers
▶ distribution in the cloud

This causes new programming challenges such as

▶ cache coherency
▶ non-determinism



Recommended Book (1)

Structure and Interpretation of Computer Programs. Harold Abelson and
Gerald J. Sussman. 2nd edition. MIT Press 1996.

A classic. Many parts of the course and quizzes are based on it, but we
change the language from Scheme to Scala.
The full text can be downloaded here.

http://mitpress.mit.edu/sicp/


Recommended Book (2)

Programming in Scala. Martin Odersky, Lex Spoon, and Bill Venners. 4th
edition. Artima 2019.

Programming in

Scala

artima

Martin Odersky
Lex Spoon

Bill Venners

A comprehensive step-by-step guide

Second Edition

Updated for Scala 2.8

The standard language introduction and reference.



Other Recommended Books

There areb many other good introductions to Scala. Among them:


