
Evaluation and Operators

Principles of Functional Programming



Classes and Substitutions

We previously defined the meaning of a function application using a
computation model based on substitution. Now we extend this model to
classes and objects.
Question: How is an instantiation of the class C(e1, ..., em) evaluted?
Answer: The expression arguments e1, ..., em are evaluated like the
arguments of a normal function. That’s it.
The resulting expression, say, C(v1, ..., vm), is already a value.



Classes and Substitutions

Now suppose that we have a class definition,

class C(x1, ..., xm){ ... def f(y1, ..., yn) = b ... }

where

▶ The formal parameters of the class are x1, ..., xm.
▶ The class defines a method f with formal parameters y1, ..., yn.

(The list of function parameters can be absent. For simplicity, we have
omitted the parameter types.)
Question: How is the following expression evaluated?

C(v1, ..., vm).f(w1, ..., wn)



Classes and Substitutions (2)

Answer: The expression C(v1, ..., vm).f(w1, ..., wn) is rewritten to:

[w1/y1, ..., wn/yn][v1/x1, ..., vm/xm][C(v1, ..., vm)/this] b

There are three substitutions at work here:

▶ the substitution of the formal parameters y1, ..., yn of the function f

by the arguments w1, ..., wn,
▶ the substitution of the formal parameters x1, ..., xm of the class C by

the class arguments v1, ..., vm,
▶ the substitution of the self reference this by the value of the object

C(v1, ..., vn).



Object Rewriting Examples

Rational(1, 2).numer



Object Rewriting Examples

Rational(1, 2).numer

→ [1/x, 2/y] [] [Rational(1, 2)/this] x



Object Rewriting Examples

Rational(1, 2).numer

→ [1/x, 2/y] [] [Rational(1, 2)/this] x

= 1



Object Rewriting Examples

Rational(1, 2).numer

→ [1/x, 2/y] [] [Rational(1, 2)/this] x

= 1

Rational(1, 2).less(Rational(2, 3))



Object Rewriting Examples

Rational(1, 2).numer

→ [1/x, 2/y] [] [Rational(1, 2)/this] x

= 1

Rational(1, 2).less(Rational(2, 3))

→ [1/x, 2/y] [Rational(2, 3)/that] [Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom



Object Rewriting Examples

Rational(1, 2).numer

→ [1/x, 2/y] [] [Rational(1, 2)/this] x

= 1

Rational(1, 2).less(Rational(2, 3))

→ [1/x, 2/y] [Rational(2, 3)/that] [Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <

Rational(2, 3).numer * Rational(1, 2).denom



Object Rewriting Examples

Rational(1, 2).numer

→ [1/x, 2/y] [] [Rational(1, 2)/this] x

= 1

Rational(1, 2).less(Rational(2, 3))

→ [1/x, 2/y] [Rational(2, 3)/that] [Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <

Rational(2, 3).numer * Rational(1, 2).denom

→→ 1 * 3 < 2 * 2

→→ true



Extension Methods

Having to define all methods that belong to a class inside the class itself
can lead to very large classes, and is not very modular.
Methods that do not need to access the internals of a class can
alternatively be defined as extension methods.
For instance, we can add min and abs methods to class Rational like this:

extension (r: Rational):

def min(s: Rational): Boolean = if s.less(r) then s else r

def abs: Rational = Rational(r.numer.abs, r.denom)



Using Extension Methods

Extensions of a class are visible if they are listed in the companion object
of a class (as in the code above) or if they defined or imported in the
current scope.
Members of a visible extensions of class C can be called as if they were
members of C. E.g.

Rational(1/2).min(Rational(2/3))

Caveats:

▶ Extensions can only add new members, not override existing ones.
▶ Extensions cannot refer to other class members via this



Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

▶ instead of this it’s the extension parameter that gets substituted,
▶ class parameters are not visible, so do not need to be substituted at

all.

Rational(1, 2).min(Rational(2, 3))



Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

▶ instead of this it’s the extension parameter that gets substituted,
▶ class parameters are not visible, so do not need to be substituted at

all.

Rational(1, 2).min(Rational(2, 3))

→ [Rational(1, 2)/r] [Rational(2, 3)/s] if x.less(r) then s else r



Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

▶ instead of this it’s the extension parameter that gets substituted,
▶ class parameters are not visible, so do not need to be substituted at

all.

Rational(1, 2).min(Rational(2, 3))

→ [Rational(1, 2)/r] [Rational(2, 3)/s] if x.less(r) then s else r

=

if Rational(2, 3).less(Rational(1, 2)

then Rational(2, 3)

else Rational(1, 2)



Operators

In principle, the rational numbers defined by Rational are as natural as
integers.
But for the user of these abstractions, there is a noticeable difference:

▶ We write x + y, if x and y are integers, but
▶ We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We proceed in two steps.



Step 1: Relaxed Identifiers

Operators such as + or < count as identifiers in Scala.
Thus, an identifier can be:

▶ Alphanumeric: starting with a letter, followed by a sequence of letters
or numbers

▶ Symbolic: starting with an operator symbol, followed by other
operator symbols.

▶ The underscore character ’_’ counts as a letter.
▶ Alphanumeric identifiers can also end in an underscore, followed by

some operator symbols.

Examples of identifiers:

x1 * +?%& vector_++ counter_=



Step 1: Relaxed Identifiers

Since operators are identifiers, it is possible to use them as method names.
E.g.

extension (x: Rational):

def + (y: Rational): Rational = x.add(y)

def * (y: Rational): Rational = x.mul(y)

...

This allows rational numbers to be used like Int or Double:

val x = Rational(1, 2)

val y = Rational(1, 3)

x * x + y * y



Step 2: Infix Notation

An operator method with a single parameter can be used as an infix
operator.
An alphanumeric method with a single parameter can also be used as an
infix operator if it is declared with an @infix annotation. E.g.

extension (x: Rational):

@infix def min(that Rational): Rational = ...

It is therefore possible to write

r + s r.+(s)

r < s /* in place of */ r.<(s)

r min s r.min(s)



Precedence Rules

The precedence of an operator is determined by its first character.
The following table lists the characters in increasing order of priority
precedence:

(all letters)

|

^

&

< >

= !

:

+ -

* / %

(all other special characters)



Exercise

Provide a fully parenthesized version of

a + b ^? c ?^ d less a ==> b | c

Every binary operation needs to be put into parentheses, but the structure
of the expression should not change.


