
Case Study

Principles of Functional Programming



The Water Pouring Problem

▶ You are given some glasses of different sizes.
▶ Your task is to produce a glass with a given amount of water in it.
▶ You don’t have a measure or balance.
▶ All you can do is:

▶ fill a glass (completely)
▶ empty a glass
▶ pour from one glass to another until the first glass is empty or the

second glass is full.

Example task:
You have two glasses. One holds 7 units of water, the other 4. Produce a
glass filled with 6 units of water.



Strategy



States and Moves

Representations:
Glass: Int (glasses are numbered 0, 1, 2)
State: Vector[Int] (one entry per glass)

I.e. Vector(2, 3) would be a state where we have two glasses that have 2
and 3 units of water in it.
Moves:

Empty(glass)

Fill(glass)

Pour(from, to)



Variants

In a program of the complexity of the pouring program, there are many
choices to be made.
Choice of representations.

▶ Specific classes for moves and paths, or some encoding?
▶ Object-oriented methods, or naked data structures with functions?

The present elaboration is just one solution, and not necessarily the
shortest one.



Guiding Principles for Good Design

▶ Name everything you can.
▶ Put operations into natural scopes.
▶ Keep degrees of freedom for future refinements.


