=PrL

Conditionals and Value Definitions

Principles of Functional Programming

Conditional Expressions

To express choosing between two alternatives, Scala has a conditional
expression if-then-else.

It resembles an if-else in Java, but is used for expressions, not
statements.

Example:
def abs(x: Int) = if x >= @ then x else -x

x >= 0 is a predicate, of type Boolean.

Boolean Expressions

Boolean expressions b can be composed of

true false // Constants
'b // Negation
b && b // Conjunction
b || b // Disjunction

and of the usual comparison operations:

e<=e,e>e,e<e, e>e, e==e¢g,

Rewrite rules for Booleans

Here are reduction rules for Boolean expressions (e is an arbitrary
expression):

Itrue --> false
Ifalse --> true
true & e --> e
false & e --> false
true || e --> true
false || e --> e

Note that && and || do not always need their right operand to be
evaluated.

We say, these expressions use “short-circuit evaluation”.

Exercise: Formulate rewrite rules for if-then-else

Value Definitions

We have seen that function parameters can be passed by value or be
passed by name.

The same distinction applies to definitions.
The def form is “by-name”, its right hand side is evaluated on each use.

There is also a val form, which is “by-value”. Example:

val x = 2

val y = square(x)

The right-hand side of a val definition is evaluated at the point of the
definition itself.

Afterwards, the name refers to the value.

For instance, y above refers to 4, not square(2).

Value Definitions and Termination
The difference between val and def becomes apparent when the right
hand side does not terminate. Given
def loop: Boolean = loop
A definition
def x = loop
is OK, but a definition
val x = loop

will lead to an infinite loop.

Exercise

Write functions and and or such that for all argument expressions x and y:

and(x, y) == X && 'y
or(x, y) == x |y

(do not use || and && in your implementation)

What are good operands to test that the equalities hold?

