=PrL

Computing with Infinite Sequences

Principles of Functional Programming



Infinite Lists

You saw that the elements of a lazy list are computed only when they are
needed to produce a result.

This opens up the possibility to define infinite lists!

For instance, here is the (lazy) list of all integers starting from a given
number:

def from(n: Int): LazylList[Int] = n #:: from(n+1)

The list of all natural numbers:



Infinite Lists

You saw that the elements of a lazy list are computed only when they are
needed to produce a result.

This opens up the possibility to define infinite lists!

For instance, here is the (lazy) list of all integers starting from a given
number:

def from(n: Int): LazylList[Int] = n #:: from(n+1)
The list of all natural numbers:
val nats = from(Q)

The list of all multiples of 4:



Infinite Lists

You saw that the elements of a lazy list are computed only when they are
needed to produce a result.

This opens up the possibility to define infinite lists!

For instance, here is the (lazy) list of all integers starting from a given
number:

def from(n: Int): LazylList[Int] = n #:: from(n+1)
The list of all natural numbers:

val nats = from(Q)
The list of all multiples of 4:

nats.map(_ * 4)



The Sieve of Eratosthenes

The Sieve of Eratosthenes is an ancient technique to calculate prime
numbers.

The idea is as follows:

| 2

vvyyvyy

Start with all integers from 2, the first prime number.

Eliminate all multiples of 2.

The first element of the resulting list is 3, a prime number.
Eliminate all multiples of 3.

Iterate forever. At each step, the first number in the list is a prime
number and we eliminate all its multiples.



The Sieve of Eratosthenes in Code

Here's a function that implements this principle:

def sieve(s: LazylList[Int]): LazyList[Int] =
s.head #:: sieve(s.tail.filter(_ % s.head != 0))

val primes = sieve(from(2))
To see the list of the first N prime numbers, you can write

primes.take(N).tolList



Back to Square Roots

Our previous algorithm for square roots always used a isGoodEnough test to
tell when to terminate the iteration.

With lazy lists we can now express the concept of a converging sequence
without having to worry about when to terminate it:

def sqrtSeq(x: Double): LazylList[Double] =
def improve(guess: Double) = (guess + x / guess) / 2
lazy val guesses: LazylList[Double] = 1 #:: guesses.map(improve)

guesses



Termination

We can add isGoodEnough later.

def isGoodEnough(guess: Double, x: Double) =
((guess * guess - x) / x).abs < 0.0001

sqrtSeq(2).filter(isGoodEnough(_, 2))



Exercise:

Consider two ways to express the infinite list of multiples of a given
number N:

val xs = from(1).map(_ * N)

val ys = from(1).filter(_ % N == 0)

Which of the two lazy lists generates its results faster?

0 from(1).map(_ * N)
0 from(1).filter(_ % N == @)
0 there’s no difference



Exercise:

Consider two ways to express the infinite list of multiples of a given
number N:

val xs = from(1).map(_ * N)

val ys = from(1).filter(_ % N == 0)

Which of the two lazy lists generates its results faster?

X from(1).map(_ * N)
0 from(1).filter(_ % N == @)
0 there’s no difference



