=PrL

Example: Square roots with Newton's
method

Principles of Functional Programming

Task

We will define in this session a function

/** Calculates the square root of parameter x */
def sqrt(x: Double): Double = ...

The classical way to achieve this is by successive approximations using
Newton's method.

Method

To compute sqgrt(x):

» Start with an initial estimate y (let's pick y = 1).
» Repeatedly improve the estimate by taking the mean of y and x/y.

Example:

Estimation Quotient Mean

1 2/ 1=2 1.5
1.5 2/ 1.5 =1.333 1.4167
1.4167 2/ 1.4167 = 1.4118 1.4142

1.4142

Implementation in Scala (1)

First, define a function which computes one iteration step

def sqrtlter(guess: Double, x: Double): Double =
if isGoodEnough(guess, x) then guess
else sqrtlter(improve(guess, Xx), X)

Note that sqrtlter is recursive, its right-hand side calls itself.

Recursive functions need an explicit return type in Scala.

For non-recursive functions, the return type is optional

Implementation in Scala (2)
Second, define a function improve to improve an estimate and a test to
check for termination:

def improve(guess: Double, x: Double) =
(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =
abs(guess * guess - x) < 0.001

Implementation in Scala (3)

Third, define the sqrt function:

def sqrt(x: Double) = sqrtlIter(1.0, x)

Exercise

1. The isGoodEnough test is not very precise for small numbers and can
lead to non-termination for very large numbers. Explain why.

2. Design a different version of isGoodEnough that does not have these
problems.

3. Test your version with some very very small and large numbers, e.g.

0.001
0.1e-20
1.0e20
1.0e50

