=PrL

Maps

Principles of Functional Programming

Map

Another fundamental collection type is the map.

A map of type Map[Key, Value] is a data structure that associates keys of
type Key with values of type Value.

Examples:

val romanNumerals = Map(”I” -> 1, ”V” => 5, ”X” -> 10)
val capitalOfCountry = Map(”US” -> ”Washington”, ”Switzerland” -> ”Bern”)

Maps are lterables

Class Map[Key, Value] extends the collection type
Iterable[(Key, Value)].

Therefore, maps support the same collection operations as other iterables
do. Example:

val countryOfCapital = capitalOfCountry.map((x, y) => (y, X))
// Map(”Washington” -> ”US”, ”Bern” -> ”Switzerland”)

Note that maps extend iterables of key/value pairs.

In fact, the syntax key -> value is just an alternative way to write the pair
(key, value). (-> implemented as an extension method in Predef).

Maps are Functions

Class Map[Key, Value] also extends the function type Key => Value, so
maps can be used everywhere functions can.

In particular, maps can be applied to key arguments:

capitalOfCountry(”US”) // ”Washington”

Querying Map

Applying a map to a non-existing key gives an error:

capitalOfCountry(”Andorra”)
// java.util.NoSuchElementException: key not found: Andorra

To query a map without knowing beforehand whether it contains a given
key, you can use the get operation:

capitalOfCountry.get(”US”) // Some(”Washington”)
capitalOfCountry.get(”Andorra”) // None

The result of a get operation is an Option value.

The Option Type

The Option type is defined as:

trait Option[+A]

case class Some[+A](value: A) extends Option[A]
object None extends Option[Nothing]

The expression map.get(key) returns

P> None if map does not contain the given key,
> sSome(x) if map associates the given key with the value x.

Decomposing Option

Since options are defined as case classes, they can be decomposed using
pattern matching:

def showCapital(country: String) = capitalOfCountry.get(country) match
case Some(capital) => capital
case None => ”"missing data”

showCapital (”US”) // ”Washington”
showCapital (”Andorra”) // ”missing data”

Options also support quite a few operations of the other collections.

| invite you to try them out!

Updating Maps

Functional updates of a map are done with the + and ++ operations:

m+ (k -=> v) The map that takes key ‘k' to value ‘v’
and is otherwise equal to ‘m'
m ++ kvs The map ‘'m' updated via ‘+' with all key/value
pairs in ‘kvs’
These operations are purely functional. For instance,

val m1 = Map("red” -> 1, "blue" -> 2) > mi1 = Map(red -> 1, blue -> 2)
val m2 = ml 4 ("blue” -> 3) > m2 = Map(red -> 1, blue -> 3)
m1l > Map(red -> 1, blue -> 2)

Sorted and GroupBy

Two useful operations known from SQL queries are groupBy and orderBy.
orderBy on a collection can be expressed using sortWith and sorted.
val fruit = List(”apple”, ”pear”, ”orange”, ”pineapple”)

fruit.sortWith(_.length < _.length) // List(”pear”, ”apple”, ”orange”, ”pineap
fruit.sorted // List(”apple”, ”orange”, ”pear”, ”pineaf

groupBy is available on Scala collections. It partitions a collection into a
map of collections according to a discriminator function f.

Example:
fruit.groupBy(_.head) //> Map(p -> List(pear, pineapple),

a a -> List(apple),
a o —> List(orange))

Map Example

A polynomial can be seen as a map from exponents to coefficients.

For instance, x> — 2x + 5 can be represented with the map.
Map(@ -> 5, 1 -> -2, 3 => 1)

Based on this observation, let's design a class Polynom that represents
polynomials as maps.

Default Values

So far, maps were partial functions: Applying a map to a key value in
map(key) could lead to an exception, if the key was not stored in the map.

There is an operation withDefaultValue that turns a map into a total
function:

val capl = capitalOfCountry.withDefaultValue(”<unknown>")
cap1(”Andorra”) // ”<unknown>”

Variable Length Argument Lists

It's quite inconvenient to have to write
Polynom(Map(1 -> 2.0, 3 -> 4.0, 5 -> 6.2))

Can one do without the Map(...)?

Problem: The number of key -> value pairs passed to Map can vary.

Variable Length Argument Lists

It's quite inconvenient to have to write
Polynom(Map(1 -> 2.0, 3 -> 4.0, 5 -> 6.2))
Can one do without the Map(...)?

Problem: The number of key -> value pairs passed to Map can vary.

We can accommodate this pattern using a repeated parameter.

def Polynom(bindings: (Int, Double)*) =
Polynom(bindings. toMap.withDefaultValue(@))

Polynom(1 -> 2.0, 3 -> 4.0, 5 -> 6.2)

Inside the Polynom function, bindings is seen as a Seq[(Int, Double)l.

Final Implementation of Polynom

class Polynom(nonZeroTerms: Map[Int, Doublel):
def this(bindings: (Int, Double)*) = this(bindings.toMap)

def terms = nonZeroTerms.withDefaultValue(0.0)
def + (other: Polynom) =

Polynom(terms ++ other.terms.map((exp, coeff) => (exp, terms(exp) + coeff)))

override def toString =
val termStrings =
for (exp, coeff) <- terms.tolList.sorted.reverse
yield
val exponent = if exp == @ then ”” else s”x"$exp”
s”$coeff$exponent”
if terms.isEmpty then ”0” else termStrings.mkString(” + 7)

Exercise
The + operation on Polynom used map concatenation with ++. Design
another version of + in terms of foldLeft:

def + (other: Polynom) =
Polynom(other.terms.foldLeft(???)(addTerm))

def addTerm(terms: Map[Int, Double], term: (Int, Double)) =
m?

Which of the two versions do you believe is more efficient?

0 The version using ++
0 The version using foldLeft

Exercise
The + operation on Polynom used map concatenation with ++. Design
another version of + in terms of foldLeft:

def + (other: Polynom) =
Polynom(other.terms.foldLeft(???)(addTerm))

def addTerm(terms: Map[Int, Double], term: (Int, Double)) =
m?

Which of the two versions do you believe is more efficient?

0 The version using ++
0 The version using foldLeft

Exercise
The + operation on Polynom used map concatenation with ++. Design
another version of + in terms of foldLeft:

def + (other: Polynom) =
Polynom(other.terms.foldLeft(terms) (addTerm))

def addTerm(terms: Map[Int, Double], term: (Int, Double)) =
val (exp, coeff) = term
terms + (exp, coeff + terms(exp))

Which of the two versions do you believe is more efficient?

0 The version using ++
X The version using foldLeft

Exercise
The + operation on Polynom used map concatenation with ++. Design
another version of + in terms of foldLeft:

def + (other: Polynom) =
Polynom(other.terms.foldLeft(terms) (addTerm))

def addTerm(terms: Map[Int, Double], term: (Int, Double)) =
val (exp, coeff) = term
terms + (exp, coeff + terms(exp))

Which of the two versions do you believe is more efficient?

0 The version using ++
X The version using foldLeft

