
How Classes are Organized

Principles of Functional Programming



Packages

Classes and objects are organized in packages.
To place a class or object inside a package, use a package clause at the
top of your source file.

package progfun.examples

object Hello

...

This would place Hello in the package progfun.examples.
You can then refer it by its fully qualified name, progfun.examples.Hello.
For instance, to run the Hello program:

> scala progfun.examples.Hello



Imports

Say we have a class Rational in package week3.
You can use the class using its fully qualified name:

val r = week3.Rational(1, 2)

Alternatively, you can use an import:

import week3.Rational

val r = Rational(1, 2)



Forms of Imports

Imports come in several forms:

import week3.Rational // imports just Rational

import week3.{Rational, Hello} // imports both Rational and Hello

import week3._ // imports everything in package week3

The first two forms are called named imports.
The last form is called a wildcard import.
You can import from either a package or an object.



Automatic Imports

Some entities are automatically imported in any Scala program.
These are:

▶ All members of package scala
▶ All members of package java.lang
▶ All members of the singleton object scala.Predef.

Here are the fully qualified names of some types and functions which you
have seen so far:

Int scala.Int

Boolean scala.Boolean

Object java.lang.Object

require scala.Predef.require

assert scala.Predef.assert



Scaladoc

You can explore the standard Scala library using the scaladoc web pages.
You can start at
www.scala-lang.org/api/current

http://www.scala-lang.org/api/current


Traits

In Java, as well as in Scala, a class can only have one superclass.
But what if a class has several natural supertypes to which it conforms or
from which it wants to inherit code?
Here, you could use traits.
A trait is declared like an abstract class, just with trait instead of
abstract class.

trait Planar:

def height: Int

def width: Int

def surface = height * width



Traits (2)

Classes, objects and traits can inherit from at most one class but arbitrary
many traits.
Example:

class Square extends Shape, Planar, Movable ...

Traits resemble interfaces in Java, but are more powerful because they can
have parameters and can contain fields and concrete methods.



Scala’s Class Hierarchy

java.lang.Object



Top Types

At the top of the type hierarchy we find:
Any the base type of all types

Methods: ‘==‘, ‘!=‘, ‘equals‘, ‘hashCode, ‘toString‘

AnyRef The base type of all reference types;
Alias of ‘java.lang.Object‘

AnyVal The base type of all primitive types.



The Nothing Type

Nothing is at the bottom of Scala’s type hierarchy. It is a subtype of every
other type.
There is no value of type Nothing.
Why is that useful?

▶ To signal abnormal termination
▶ As an element type of empty collections (see next session)



Exceptions

Scala’s exception handling is similar to Java’s.
The expression

throw Exc

aborts evaluation with the exception Exc.
The type of this expression is Nothing.



Exercise

What is the type of

if true then 1 else false

O Int

O Boolean

O AnyVal

O Object

O Any


