
Lists

Principles of Functional Programming



Lists

The list is a fundamental data structure in functional programming.
A list having x1, ..., xn as elements is written List(x1, ..., xn)

Example

val fruit = List(”apples”, ”oranges”, ”pears”)

val nums = List(1, 2, 3, 4)

val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))

val empty = List()

There are two important differences between lists and arrays.

▶ Lists are immutable — the elements of a list cannot be changed.
▶ Lists are recursive, while arrays are flat.



Lists

val fruit = List(”apples”, ”oranges”, ”pears”)

val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))



The List Type

Like arrays, lists are homogeneous: the elements of a list must all have the
same type.
The type of a list with elements of type T is written scala.List[T] or
shorter just List[T]

Example

val fruit: List[String] = List(”apples”, ”oranges”, ”pears”)

val nums : List[Int] = List(1, 2, 3, 4)

val diag3: List[List[Int]] = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))

val empty: List[Nothing] = List()



Constructors of Lists

All lists are constructed from:

▶ the empty list Nil, and
▶ the construction operation :: (pronounced cons):

x :: xs gives a new list with the first element x, followed by the
elements of xs.

For example:

fruit = ”apples” :: (”oranges” :: (”pears” :: Nil))

nums = 1 :: (2 :: (3 :: (4 :: Nil)))

empty = Nil



Right Associativity

Convention: Operators ending in “:” associate to the right.
A :: B :: C is interpreted as A :: (B :: C).

We can thus omit the parentheses in the definition above.
Example

val nums = 1 :: 2 :: 3 :: 4 :: Nil



Operations on Lists

All operations on lists can be expressed in terms of the following three:
head the first element of the list
tail the list composed of all the elements except the first.
isEmpty ‘true‘ if the list is empty, ‘false‘ otherwise.

These operations are defined as methods of objects of type List. For
example:

fruit.head == ”apples”

fruit.tail.head == ”oranges”

diag3.head == List(1, 0, 0)

empty.head == throw NoSuchElementException(”head of empty list”)



List Patterns

It is also possible to decompose lists with pattern matching.
Nil The Nil constant
p :: ps A pattern that matches a list with a head matching p and

a tail matching ps.
List(p1, ..., pn) same as p1 :: ... :: pn :: Nil

Example
1 :: 2 :: xs Lists of that start with 1 and then 2

x :: Nil Lists of length 1
List(x) Same as x :: Nil

List() The empty list, same as Nil

List(2 :: xs) A list that contains as only element another list that
starts with 2.



Exercise

Consider the pattern x :: y :: List(xs, ys) :: zs.
What is the condition that describes most accurately the length L of the
lists it matches?

O L == 3

O L == 4

O L == 5

O L >= 3

O L >= 4

O L >= 5



Exercise

Consider the pattern x :: y :: List(xs, ys) :: zs.
What is the condition that describes most accurately the length L of the
lists it matches?

O L == 3

O L == 4

O L == 5

X L >= 3

O L >= 4

O L >= 5



Sorting Lists

Suppose we want to sort a list of numbers in ascending order:

▶ One way to sort the list List(7, 3, 9, 2) is to sort the tail List(3,
9, 2) to obtain List(2, 3, 9).

▶ The next step is to insert the head 7 in the right place to obtain the
result List(2, 3, 7, 9).

This idea describes Insertion Sort :

def isort(xs: List[Int]): List[Int] = xs match

case List() => List()

case y :: ys => insert(y, isort(ys))



Exercise

Complete the definition insertion sort by filling in the ???s in the definition
below:

def insert(x: Int, xs: List[Int]): List[Int] = xs match

case List() => ???

case y :: ys => ???

What is the worst-case complexity of insertion sort relative to the length
of the input list N?

O the sort takes constant time

O proportional to N

O proportional to N log(N)

O proportional to N * N



Exercise

Complete the definition insertion sort by filling in the ???s in the definition
below:

def insert(x: Int, xs: List[Int]): List[Int] = xs match

case List() => List(x)

case y :: ys =>

if x < y then x :: xs else y :: insert(x, ys)

What is the worst-case complexity of insertion sort relative to the length
of the input list N?

O the sort takes constant time

X proportional to N

O proportional to N * log(N)

O proportional to N * N


