=PrL

A Closer Look At Lists

Principles of Functional Programming



Lists Recap

Lists are the core data structure we will work with over the next weeks.
Type: List[Fruit]

Construction:

val fruits = List(”Apple”, ”Orange”, ”Banana”)

val nums =1 :: 2 :: Nil
Decomposition:

fruits.head // ”Apple”

nums. tail // 2 :: Nil

nums.isEmpty // false

nums match

case X :: y :: =x+y //3



List Methods (1)

Sublists and element access:

xs.length
xs.last
Xs.init

xs.take(n)

xs.drop(n)
xs(n)

The number of elements of xs.

The list's last element, exception if xs is empty.
A list consisting of all elements of xs except the
last one, exception if xs is empty.

A list consisting of the first n elements of xs, or xs
itself if it is shorter than n.

The rest of the collection after taking n elements.
(or, written out, xs.apply(n)). The element of xs
at index n.



List Methods (2)

Creating new lists:

XS ++ ys The list consisting of all elements of xs followed
by all elements of ys.

Xs.reverse The list containing the elements of xs in reversed
order.

xs.updated(n, x) The list containing the same elements as xs, except
at index n where it contains x.

Finding elements:

xs.index0f (x) The index of the first element in xs equal to x, or
-1 if x does not appear in xs.
xs.contains(x) same as xs.index0f(x) >= @



Implementation of last

The complexity of head is (small) constant time.
What is the complexity of last?

To find out, let's write a possible implementation of last as a stand-alone
function.

def last[T](xs: List[T]): T = xs match
case List() => throw Error(”last of empty list”)
case List(x) =>
case y :: ys =>



Implementation of last

The complexity of head is (small) constant time.
What is the complexity of last?

To find out, let's write a possible implementation of last as a stand-alone
function.

def last[T](xs: List[T]): T = xs match
case List() => throw Error(”last of empty list”)
case List(x) => x
case y :: ys =>



Implementation of last

The complexity of head is (small) constant time.
What is the complexity of last?

To find out, let's write a possible implementation of last as a stand-alone
function.

def last[T](xs: List[T]): T = xs match
case List() => throw Error(”last of empty list”)
case List(x) => x
case y :: ys => last(ys)



Implementation of last

The complexity of head is (small) constant time.
What is the complexity of last?

To find out, let's write a possible implementation of last as a stand-alone
function.

def last[T](xs: List[T]): T = xs match
case List() => throw Error(”last of empty list”)
case List(x) => x
case y :: ys => last(ys)

So, last takes steps proportional to the length of the list xs.



Exercise

Implement init as an external function, analogous to last.

def init[TI(xs: List[T]): List[T] = xs match
case List() => throw Error(”init of empty list”)
case List(x) => ?7?

case y :: ys => 7



Exercise

Implement init as an external function, analogous to last.

def init[TI(xs: List[T]): List[T] = xs match
case List() => throw Error(”init of empty list”)
case List(x) =>
case y :: ys =>



Exercise

Implement init as an external function, analogous to last.

def init[TI(xs: List[T]): List[T] = xs match
case List() => throw Error(”init of empty list”)
case List(x) => List()
case y :: ys =>



Exercise

Implement init as an external function, analogous to last.

def init[TI(xs: List[T]): List[T] = xs match
case List() => throw Error(”init of empty list”)
case List(x) => List()
case y :: ys =>y :: init(ys)



Implementation of Concatenation

How can concatenation be implemented?

Let’s try by writing an extension method for ++:

extension [T](xs: List[T])
def ++ (ys: List[T]): List[T] =



Implementation of Concatenation

How can concatenation be implemented?

Let’s try by writing an extension method for ++:

extension [T](xs: List[T])
def ++ (ys: List[T]): List[T] = xs match
case Nil =>
case X :: xs1 =>



Implementation of Concatenation

How can concatenation be implemented?

Let’s try by writing an extension method for ++:

extension [T](xs: List[T])
def ++ (ys: List[T]): List[T] = xs match
case Nil => ys
case X :: xs1 =>



Implementation of Concatenation

How can concatenation be implemented?

Let's try by writing an extension method for ++:

extension [T](xs: List[T])
def ++ (ys: List[T]): List[T] = xs match
case Nil => ys
case X :: xs1 => x :: (xs1 ++ ys)



Implementation of Concatenation

How can concatenation be implemented?

Let's try by writing an extension method for ++:

extension [T](xs: List[T])
def ++ (ys: List[T]): List[T] = xs match
case Nil => ys
case X :: xs1 => x :: (xs1 ++ ys)

What is the complexity of concat?



Implementation of Concatenation

How can concatenation be implemented?

Let's try by writing an extension method for ++:

extension [T](xs: List[T])
def ++ (ys: List[T]): List[T] = xs match
case Nil => ys
case X :: xs1 => x :: (xs1 ++ ys)

What is the complexity of concat?

Answer: 0(xs.length)



Implementation of reverse

How can reverse be implemented?

Let's try by writing an extension method:

extension [T](xs: List[T])
def reverse: List[T] = xs match
case Nil =>
case y :: ys =>



Implementation of reverse

How can reverse be implemented?

Let's try by writing an extension method:

extension [T](xs: List[T])
def reverse: List[T] = xs match
case Nil => Nil
case y :: ys =>



Implementation of reverse

How can reverse be implemented?

Let's try by writing an extension method:

extension [T](xs: List[T])
def reverse: List[T] = xs match
case Nil => Nil
case y :: ys => ys.reverse ++ List(y)



Implementation of reverse

How can reverse be implemented?

Let's try by writing an extension method:

extension [T](xs: List[T])
def reverse: List[T] = xs match
case Nil => Nil
case y :: ys => ys.reverse ++ List(y)

What is the complexity of reverse?



Implementation of reverse

How can reverse be implemented?

Let's try by writing an extension method:

extension [T](xs: List[T])
def reverse: List[T] = xs match
case Nil => Nil
case y :: ys => ys.reverse ++ List(y)
What is the complexity of reverse?

Answer: 0(xs.length * xs.length)

Can we do better? (to be solved later).



Exercise

Remove the n'th element of a list xs. If n is out of bounds, return xs itself.
def removeAt[T]1(n: Int, xs: List[T]) = ???

Usage example:

removeAt(1, List(’a’, ’b’, ’c’, ’d’)) > List(a, ¢, d)



Exercise (Harder, Optional)
Flatten a list structure:
def flatten(xs: List[Any]): List[Any] = ???

flatten(List(List(1, 1), 2, List(3, List(5, 8))))
> res@: List[Any] = List(1, 1, 2, 3, 5, 8)



