
Implicit Function Types

Principles of Functional Programming



Repetitive Using Clauses

In last version of the conference management system of the last session we
got rid of explicit Viewers arguments.
But we still need explicit using parameter clauses.

def score(paper: Paper)(using Viewers): Int = ...

def rankings(using Viewers): List[Paper] = ...

def delegateTo(p: Person, query: Viewers => T)(using Viewers): T = ...

Can we get rid of these as well?



Lambdas With Using Clauses

Let’s massage the definition of rankings a bit:

def rankings = (viewers: Viewers) =>

papers.sortBy(score(_, viewers)).reverse



Lambdas With Using Clauses

Let’s massage the definition of rankings a bit:

def rankings = (viewers: Viewers) ?=>

papers.sortBy(score(_, viewers)).reverse

The ? signifies that we want the parameter viewers be implicit so that its
arguments can be inferred.
What is its type?



Lambdas With Using Clauses

Let’s massage the definition of rankings a bit:

def rankings = (viewers: Viewers) ?=>

papers.sortBy(score(_, viewers)).reverse

The ? signifies that we want the parameter viewers be implicit so that its
arguments can be inferred.
What is its type?

▶ For a normal anonymous function it would be:
Viewers => List[Paper]

▶ For an anonymous functions with a using clause it is:
Viewers ?=> List[Paper]



Implicit Function Types

Viewers ?=> List[Paper] is called an implicit function type.
There are two typing rules involving such types.

1. Implicit functions get their arguments inferred just like methods with
using clauses. In

val f: A ?=> B

given a: A

f

the expression f expands to f(using a).



Implicit Function Types

Viewers ?=> List[Paper] is called an implicit function type.
There are two typing rules involving such types.

1. Implicit functions get their arguments inferred just like methods with
using clauses. In

val f: A ?=> B

given a: A

f

the expression f expands to f(using a).
2. Implicit functions get created on demand.

If the expected type of an expression b is A ?=> B, then b expands to
the anonymous function (_: A) ?=> b.



Example Application

Let’s use implicit function types in our conference management system.
First, introduce a type alias

type Viewed[T] = Viewers ?=> T

This is just for conciseness; Viewed[T] is easier to read than Viewers ?=> T

and it expresses the point we want to make.



Example Application (2)

Now, perform the apply two changes:

1. Replace every method signature ending in
(using Viewers): SomeType

with
: Viewed[SomeType]



Example Application (2)

Now, perform the apply two changes:

1. Replace every method signature ending in
(using Viewers): SomeType

with
: Viewed[SomeType]

2. Replace function type parameter
query: Viewers => SomeType

with
query: Viewed[SomeType]



Trade Types for Type Parameters

Implicit Parameters in using clauses trade types for terms:

▶ The developer writes down the required type of the parameter.
The compiler infers an expression (i.e. a term) for it.



Trade Types for Type Parameters

Implicit Parameters in using clauses trade types for terms:

▶ The developer writes down the required type of the parameter.
The compiler infers an expression (i.e. a term) for it.

Implicit Function Types go one step further. They trade types for
parameters.

▶ The developer writes down the return type of the method.
The compiler infers one or more method parameters that match the
type.



Abstracting over Context Abstractions

Another way to look at it is to see implicit function types, as second
degree context abstractions.

▶ Implicit parameters in using clauses abstract over the context at the
call site.
They are first-degree context abstractions.

▶ Implicit function types allow to abstract over using clauses (in the
original sense: they allow to introduce a name such as Viewed that
can be used instead of writing explicit parameter clauses).

▶ So, together with type aliases, they enable abstractions of context
abstractions.


