
Reasoning About Lists

Principles of Functional Programming



Laws of Concat

Recall the concatenation operation ++ on lists.
We would like to verify that concatenation is associative, and that it
admits the empty list Nil as neutral element to the left and to the right:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

xs ++ Nil = xs

Nil ++ xs = xs

Q: How can we prove properties like these?



Laws of Concat

Recall the concatenation operation ++ on lists.
We would like to verify that concatenation is associative, and that it
admits the empty list Nil as neutral element to the left and to the right:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

xs ++ Nil = xs

Nil ++ xs = xs

Q: How can we prove properties like these?
A: By structural induction on lists.



Reminder: Natural Induction

Recall the principle of proof by natural induction:
To show a property P(n) for all the integers n ≥ b,

▶ Show that we have P(b) (base case),
▶ for all integers n ≥ b show the induction step:

if one has P(n), then one also has P(n+ 1).



Example

Given:

def factorial(n: Int): Int =

if n == 0 then 1 // 1st clause

else n * factorial(n-1) // 2nd clause

Show that, for all n >= 4

factorial(n) >= power(2, n)



Base Case

Base case: 4

This case is established by simple calculations:

factorial(4) = 24 >= 16 = power(2, 4)



Induction Step

Induction step: n+1

We have for n >= 4:

factorial(n + 1)



Induction Step

Induction step: n+1

We have for n >= 4:

factorial(n + 1)

>= (n + 1) * factorial(n) // by 2nd clause in factorial



Induction Step

Induction step: n+1

We have for n >= 4:

factorial(n + 1)

>= (n + 1) * factorial(n) // by 2nd clause in factorial

> 2 * factorial(n) // by calculating



Induction Step

Induction step: n+1

We have for n >= 4:

factorial(n + 1)

>= (n + 1) * factorial(n) // by 2nd clause in factorial

> 2 * factorial(n) // by calculating

>= 2 * power(2, n) // by induction hypothesis



Induction Step

Induction step: n+1

We have for n >= 4:

factorial(n + 1)

>= (n + 1) * factorial(n) // by 2nd clause in factorial

> 2 * factorial(n) // by calculating

>= 2 * power(2, n) // by induction hypothesis

= power(2, n + 1) // by definition of power



Referential Transparency

Note that a proof can freely apply reduction steps as equalities to some
part of a term.
That works because pure functional programs don’t have side effects; so
that a term is equivalent to the term to which it reduces.
This principle is called referential transparency.



Structural Induction

The principle of structural induction is analogous to natural induction:
To prove a property P(xs) for all lists xs,

▶ show that P(Nil) holds (base case),
▶ for a list xs and some element x, show the induction step:

if P(xs) holds, then P(x :: xs) also holds.



Example

Let’s show that, for lists xs, ys, zs:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

To do this, use structural induction on xs. From the previous
implementation of ++,

extension [T](xs: List[T]

def ++ (ys: List[T]) = xs match

case Nil => ys

case x :: xs1 => x :: (xs1 ++ ys)

distill two defining clauses of ++:

Nil ++ ys = ys // 1st clause

(x :: xs1) ++ ys = x :: (xs1 ++ ys) // 2nd clause



Base Case

Base case: Nil

For the left-hand side we have:

(Nil ++ ys) ++ zs



Base Case

Base case: Nil

For the left-hand side we have:

(Nil ++ ys) ++ zs

= ys ++ zs // by 1st clause of ++



Base Case

Base case: Nil

For the left-hand side we have:

(Nil ++ ys) ++ zs

= ys ++ zs // by 1st clause of ++

For the right-hand side, we have:

Nil ++ (ys ++ zs)



Base Case

Base case: Nil

For the left-hand side we have:

(Nil ++ ys) ++ zs

= ys ++ zs // by 1st clause of ++

For the right-hand side, we have:

Nil ++ (ys ++ zs)

= ys ++ zs // by 1st clause of ++

This case is therefore established.



Induction Step: LHS

Induction step: x :: xs

For the left-hand side, we have:

((x :: xs) ++ ys) ++ zs



Induction Step: LHS

Induction step: x :: xs

For the left-hand side, we have:

((x :: xs) ++ ys) ++ zs

= (x :: (xs ++ ys)) ++ zs // by 2nd clause of ++



Induction Step: LHS

Induction step: x :: xs

For the left-hand side, we have:

((x :: xs) ++ ys) ++ zs

= (x :: (xs ++ ys)) ++ zs // by 2nd clause of ++

= x :: ((xs ++ ys) ++ zs) // by 2nd clause of ++



Induction Step: LHS

Induction step: x :: xs

For the left-hand side, we have:

((x :: xs) ++ ys) ++ zs

= (x :: (xs ++ ys)) ++ zs // by 2nd clause of ++

= x :: ((xs ++ ys) ++ zs) // by 2nd clause of ++

= x :: (xs ++ (ys ++ zs)) // by induction hypothesis



Induction Step: RHS

For the right hand side we have:

(x :: xs) ++ (ys ++ zs)



Induction Step: RHS

For the right hand side we have:

(x :: xs) ++ (ys ++ zs)

= x :: (xs ++ (ys ++ zs)) // by 2nd clause of ++

So this case (and with it, the property) is established.



Exercise

Show by induction on xs that xs ++ Nil = xs.
How many equations do you need for the inductive step?

O 2

O 3

O 4



Exercise

Show by induction on xs that xs ++ Nil = xs.
How many equations do you need for the inductive step?

X 2

O 3

O 4


