
Type Classes

Principles of Functional Programming
Martin Odersky and Julien Richard-Foy



Type Classes

In the previous lectures we have seen a particular pattern of code:

trait Ordering[A]:

def compare(x: A, y: A): Int

object Ordering:

given Ordering[Int] with

def compare(x: Int, y: Int) =

if x < y then -1 else if x > y then 1 else 0

given Ordering[String] with

def compare(s: String, t: String) = s.compareTo(t)



Type Classes

We say that Ordering is a type class.
In Scala, a type class is a generic trait that comes with given instances for
type instances of that trait.
E.g., in the Ordering example, we have given instances for Ordering[Int]

and Ordering[String]



Type Classes

We say that Ordering is a type class.
In Scala, a type class is a generic trait that comes with given instances for
type instances of that trait.
E.g., in the Ordering example, we have given instances for Ordering[Int]

and Ordering[String]

Type classes provide yet another form of polymorphism:
The sort method can be called with lists containing elements of any type
A for which there is a given instance of type Ordering[A].

def sort[A: Ordering](xs: List[A]): List[A] = ...

At compilation-time, the compiler resolves the specific Ordering

implementation that matches the type of the list elements.



Exercise

Implement an instance of the Ordering typeclass for the Rational type.

case class Rational(num: Int, denom: Int)

Reminder:
let q =

numq
denomq

, r = numr
denomr

,

q < r ⇔ numq
denomq

< numr
denomr

⇔ numq × denomr < numr × denomq



Digression: Retroactive Extension

It is worth noting that we were able to implement the Ordering[Rational]

instance without changing the Rational class definition.
Type classes support retroactive extension: the ability to extend a data
type with new operations without changing the original definition of the
data type.
In this example, we have added the capability of comparing Rational

numbers.



Conditional Instances

Question: How do we define an Ordering instance for lists?
Observation: This can be done only if the list elements have an ordering.

given listOrdering[A](using ord: Ordering[A]): Ordering[List[A]] with



Conditional Instances

Question: How do we define an Ordering instance for lists?
Observation: This can be done only if the list elements have an ordering.

given listOrdering[A](using ord: Ordering[A]): Ordering[List[A]] with

def compare(xs: List[A], ys: List[A]) = (xs, ys) match

case (Nil, Nil) => 0

case (Nil, _) => -1

case (_, Nil) => 1

case (x :: xs1, y :: ys1) =>

val c = ord.compare(x, y)

if c != 0 then c else compare(xs1, ys1)

The given instance listOrdering takes type parameters and implicit
parameters.



Conditional Instances

Given instances such as listOrdering that take implicit parameters are
conditional:

▶ An ordering for lists with elements of type T exists only if there is an
ordering for T.

This sort of conditional behavior is best implemented with type classes.

▶ Normal subtyping and inheritance cannot express this: a class either
inherits a trait or doesn’t.



Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:
A given instance for the outer type is constructed first and then its implicit
parameters are filled in in turn.
Example:

def sort[A](xs: List[A])(using Ordering[A]): List[A] = ...

val xss: List[List[Int]] = ...

sort(xss)



Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:
A given instance for the outer type is constructed first and then its implicit
parameters are filled in in turn.
Example:

def sort[A](xs: List[A])(using Ordering[A]): List[A] = ...

val xss: List[List[Int]] = ...

sort[List[Int]](xss)



Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:
A given instance for the outer type is constructed first and then its implicit
parameters are filled in in turn.
Example:

def sort[A](xs: List[A])(using Ordering[A]): List[A] = ...

val xss: List[List[Int]] = ...

sort[List[Int]](xss)(using listOrdering)



Recursive Implicit Resolution

Given instances with implicit parameters are resolved recursively:
A given instance for the outer type is constructed first and then its implicit
parameters are filled in in turn.
Example:

def sort[A](xs: List[A])(using Ordering[A]): List[A] = ...

val xss: List[List[Int]] = ...

sort[List[Int]](xss)(using listOrdering(using Ordering.Int))



Exercise

Implement an instance of the Ordering typeclass for pairs of type (A, B),
where A, B have Ordering instances defined on them.
Example use case: Consider a program for managing an address book. We
would like to sort the addresses by zip codes first and then by street name.
Two addresses with different zip codes are ordered according to their zip
code, otherwise (when the zip codes are the same) the addresses are
sorted by street name. E.g.

type Address = (Int, String) // Zipcode, Street Name

val xs: List[Address] = ...

sort(xs)



Exercise

Implement an instance of the Ordering typeclass for pairs of type (A, B),
where A, B have Ordering instances defined on them.

given pairOrdering[A, B](using orda: Ordering[A], ordb: Ordering[B])

: Ordering[(A, B)] with

def compare(x: (A, B), y: (A, B)) =

val c = orda.compare(x._1, y._1)

if c != 0 then c else ordb.compare(x._2, y._2)



Type Classes and Extension Methods

Like any trait, a type class trait may define extension methods.
For, instance, the Ordering trait would usually contain comparison
methods like this:

trait Ordering[A]:

def compare(x: A, y: A): Int

extension (x: A)

def < (y: A): Boolean = compare(x, y) < 0

def <= (y: A): Boolean = compare(x, y) <= 0

def > (y: A): Boolean = compare(x, y) > 0

def >= (y: A): Boolean = compare(x, y) >= 0



Visibility of Extension Methods

Extension methods on a type class trait are visible whenever a given
instance for the trait is available.
For instance one can write:

def merge[T: Ordering](xs: List[T], ys: List[T]): Boolean = (xs, ys) match

case (Nil, _) => ys

case (_, Nil) => xs

case (x :: xs1, y :: ys1) =>

if x < y then x :: merge(xs1, ys)

else y :: merge(xs, ys1)

▶ There’s no need to name and import the Ordering instance to get
access to the extension method < on operands of type T.

▶ We have an Ordering[T] instance in scope, that’s where the extension
method comes from.



Summary

Type classes provide a way to turn types into values.
Unlike class extension, type classes

▶ can be defined at any time without changing existing code,
▶ can be conditional.

In Scala, type classes are constructed from parameterized traits and given
instances.
Type classes give rise to a new kind of polymorphism, which is sometimes
called ad-hoc polymorphism.
This means that the a type TC[A] has different implementations for
different types A.


