
Other Collections

Principles of Functional Programming

Other Sequences

We have seen that lists are linear: Access to the first element is much
faster than access to the middle or end of a list.
The Scala library also defines an alternative sequence implementation,
Vector.
This one has more evenly balanced access patterns than List.

Operations on Vectors

Vectors are created analogously to lists:

val nums = Vector(1, 2, 3, -88)

val people = Vector(”Bob”, ”James”, ”Peter”)

They support the same operations as lists, with the exception of ::

Instead of x :: xs, there is
x +: xs Create a new vector with leading element x, followed

by all elements of xs.
xs :+ x Create a new vector with trailing element x, preceded

by all elements of xs.
(Note that the : always points to the sequence.)

Collection Hierarchy

A common base class of List and Vector is Seq, the class of all sequences.
Seq itself is a subclass of Iterable.

Iterable

/ | \

/ | \

............Seq Set Map

. / \

. / \

Array List Vector

Arrays and Strings

Arrays and Strings support the same operations as Seq and can implicitly
be converted to sequences where needed.
(They cannot be subclasses of Seq because they come from Java)

val xs: Array[Int] = Array(1, 2, 3)

xs.map(x => 2 * x)

val ys: String = ”Hello world!”

ys.filter(_.isUpper)

Ranges

Another simple kind of sequence is the range.
It represents a sequence of evenly spaced integers.
Three operators:
to (inclusive), until (exclusive), by (to determine step value):

val r: Range = 1 until 5

val s: Range = 1 to 5

1 to 10 by 3

6 to 1 by -2

A Range is represented as a single object with three fields: lower bound,
upper bound, step value.

Some more Sequence Operations:

xs.exists(p) true if there is an element x of xs such that p(x) holds,
false otherwise.

xs.forall(p) true if p(x) holds for all elements x of xs, false other-
wise.

xs.zip(ys) A sequence of pairs drawn from corresponding elements
of sequences xs and ys.

xs.unzip Splits a sequence of pairs xs into two sequences consist-
ing of the first, respectively second halves of all pairs.

xs.flatMap(f) Applies collection-valued function f to all elements of
xs and concatenates the results

xs.sum The sum of all elements of this numeric collection.
xs.product The product of all elements of this numeric collection
xs.max The maximum of all elements of this collection (an

Ordering must exist)
xs.min The minimum of all elements of this collection

Example: Combinations

To list all combinations of numbers x and y where x is drawn from 1..M

and y is drawn from 1..N:

(1 to M).flatMap(x =>

Example: Combinations

To list all combinations of numbers x and y where x is drawn from 1..M

and y is drawn from 1..N:

(1 to M).flatMap(x => (1 to N).map(y => (x, y)))

Example: Scalar Product

To compute the scalar product of two vectors:

def scalarProduct(xs: Vector[Double], ys: Vector[Double]): Double =

xs.zip(ys).map((x, y) => x * y).sum

Example: Scalar Product

To compute the scalar product of two vectors:

def scalarProduct(xs: Vector[Double], ys: Vector[Double]): Double =

xs.zip(ys).map((x, y) => x * y).sum

Note that there is some automatic decomposition going on here.
Each pair of elements from xs and ys is split into its halves which are then
passed as the x and y parameters to the lambda.

Example: Scalar Product

If we wanted to be more explicit, we could also write scalar product like
this:

def scalarProduct(xs: Vector[Double], ys: Vector[Double]): Double =

xs.zip(ys).map(xy => xy._1 * xy._2).sum

Example: Scalar Product

On the other hand, if we wanted to be more even more concise, we could
also write it like this:

def scalarProduct(xs: Vector[Double], ys: Vector[Double]): Double =

xs.zip(ys).map(_ * _).sum

Exercise:

A number n is prime if the only divisors of n are 1 and n itself.
What is a high-level way to write a test for primality of numbers? For
once, value conciseness over efficiency.

def isPrime(n: Int): Boolean = ???

Exercise:

A number n is prime if the only divisors of n are 1 and n itself.
What is a high-level way to write a test for primality of numbers? For
once, value conciseness over efficiency.

def isPrime(n: Int): Boolean =

(2 to n - 1).forall(d => n % d == 0)

