=PrL

Class Hierarchies

Principles of Functional Programming

Abstract Classes

Consider the task of writing a class for sets of integers with the following
operations.

abstract class IntSet:
def incl(x: Int): IntSet
def contains(x: Int): Boolean

IntSet is an abstract class.

Abstract classes can contain members which are missing an
implementation (in our case, both incl and contains); these are called
abstract members.

Consequently, no direct instances of an abstract class can be created, for
instance an IntSet() call would be illegal.

Class Extensions

Let's consider implementing sets as binary trees.

There are two types of possible trees: a tree for the empty set, and a tree
consisting of an integer and two sub-trees.

Here are their implementations:

class Empty() extends IntSet:
def contains(x: Int): Boolean = false
def incl(x: Int): IntSet = NonEmpty(x, Empty(), Empty())

Class Extensions (2)

class NonEmpty(elem: Int, left: IntSet, right: IntSet) extends IntSet:

def contains(x: Int): Boolean =
if x < elem then left.contains(x)
else if x > elem then right.contains(x)

else true

def incl(x: Int): IntSet =
if x < elem then NonEmpty(elem, left.incl(x), right)
else if x > elem then NonEmpty(elem, left, right.incl(x))

else this

end NonEmpty

Terminology

Empty and NonEmpty both extend the class IntSet.

This implies that the types Empty and NonEmpty conform to the type
IntSet, i.e.

P an object of type Empty or NonEmpty can be used wherever an object of
type IntSet is required.

Base Classes and Subclasses

IntSet is called the superclass of Empty and NonEmpty.
Empty and NonEmpty are subclasses of IntSet.
In Scala, any user-defined class extends another class.

If no superclass is given, the standard class Object in the Java package
java.lang is assumed.

The direct or indirect superclasses of a class C are called base classes of C.

So, the base classes of NonEmpty include IntSet and Object.

Implementation and Overriding

The definitions of contains and incl in the classes Empty and NonEmpty
implement the abstract functions in the base trait IntSet.

It is also possible to redefine an existing, non-abstract definition in a
subclass by using override.

Example
abstract class Base: class Sub extends Base:
def foo =1 override def foo = 2

def bar: Int def bar = 3

Object Definitions

In the IntSet example, one could argue that there is really only a single
empty IntSet.

So it seems overkill to have the user create many instances of it.

We can express this case better with an object definition:

object Empty extends IntSet:

def contains(x: Int): Boolean = false

def incl(x: Int): IntSet = NonEmpty(x, Empty, Empty)
end Empty

This defines a singleton object named Empty.
No other Empty instance can be (or needs to be) created.

Singleton objects are values, so Empty evaluates to itself.

Companion Objects

An object and a class can have the same name. This is possible since
Scala has two global namespaces: one for types and one for values.

Classes live in the type namespace, whereas objects live in the term
namespace.

If a class and object with the same name are given in the same sourcefile,
we call them companions. Example:

class IntSet ...
object IntSet:
def singleton(x: Int) = NonEmpty(x, Empty, Empty)

This defines a method to build sets with one element, which can be called
as IntSet.singleton(elem).

A companion object of a class plays a role similar to static class definitions
in Java (which are absent in Scala).

Programs

So far we have executed all Scala code from the REPL or the worksheet.
But it is also possible to create standalone applications in Scala.
Each such application contains an object with a main method.

For instance, here is the "Hello World!" program in Scala.

object Hello:
def main(args: Array[String]): Unit = println(”’hello world!”)

Once this program is compiled, you can start it from the command line
with

> scala Hello

Programs (2)

Writing main methods is similar to what Java does for programs.
Scala also has a more convenient way to do it.

A stand-alone application is alternatively a function that's annotated with
@main, and that can take command line arguments as parameters:

@main def birthday(name: String, age: Int) =
println(s”Happy birthday, $name! $age years old already!”)

Once this function is compiled, you can start it from the command line
with

> scala birthday Peter 11
Happy Birthday, Peter! 11 years old already!

Exercise

Write a method union for forming the union of two sets. You should
implement the following abstract class.

abstract class IntSet:
def incl(x: Int): IntSet
def contains(x: Int): Boolean
def union(other: IntSet): IntSet
end IntSet

Dynamic Binding

Object-oriented languages (including Scala) implement dynamic method
dispatch.

This means that the code invoked by a method call depends on the
runtime type of the object that contains the method.

Example

Empty.contains(1)

Dynamic Binding

Object-oriented languages (including Scala) implement dynamic method
dispatch.

This means that the code invoked by a method call depends on the
runtime type of the object that contains the method.

Example
Empty.contains(1)

— [1/x| [Empty/this| false

Dynamic Binding

Object-oriented languages (including Scala) implement dynamic method
dispatch.

This means that the code invoked by a method call depends on the
runtime type of the object that contains the method.

Example
Empty.contains(1)
— [1/x| [Empty/this| false

= false

Dynamic Binding (2)

Another evaluation using NonEmpty:

(NonEmpty (7, Empty, Empty)).contains(7)

Dynamic Binding (2)

Another evaluation using NonEmpty:
(NonEmpty (7, Empty, Empty)).contains(7)

— [7/elem]| [7/x] [new NonEmpty(7,Empty, Empty)/this]
if x < elem then this.left.contains(x)
else if x > elem then this.right.contains(x) else true

Dynamic Binding (2)

Another evaluation using NonEmpty:
(NonEmpty (7, Empty, Empty)).contains(7)

— [7/elem] [7/x] [new NonEmpty(7,Empty, Empty)/this]
if x < elem then this.left.contains(x)
else if x > elem then this.right.contains(x) else true

= if 7 < 7 then NonEmpty(7, Empty, Empty).left.contains(7)
else if 7 > 7 then NonEmpty(7, Empty, Empty).right
.contains(7) else true

Dynamic Binding (2)

Another evaluation using NonEmpty:
(NonEmpty (7, Empty, Empty)).contains(7)

— [7/elem] [7/x] [new NonEmpty(7,Empty, Empty)/this]
if x < elem then this.left.contains(x)
else if x > elem then this.right.contains(x) else true

= if 7 < 7 then NonEmpty(7, Empty, Empty).left.contains(7)
else if 7 > 7 then NonEmpty(7, Empty, Empty).right
.contains(7) else true

— true

Something to Ponder

Dynamic dispatch of methods is analogous to calls to higher-order
functions.

Question:

Can we implement one concept in terms of the other?

» Objects in terms of higher-order functions?
» Higher-order functions in terms of objects?

