=PrL

Functional Programming Principles in
Scala

Principles of Functional Programming

Martin Odersky



Programming Paradigms

Paradigm: In science, a paradigm describes distinct concepts or thought
patterns in some scientific discipline.

Main programming paradigms:

» imperative programming
> functional programming
» logic programming

Orthogonal to it:

P object-oriented programming



Review: Imperative programming

Imperative programming is about

» modifying mutable variables,

P using assignments

» and control structures such as if-then-else, loops, break, continue,
return.

The most common informal way to understand imperative programs is as
instruction sequences for a Von Neumann computer.



Imperative Programs and Computers

There's a strong correspondence between

memory cells
load instructions
store instructions
jumps

Mutable variables
Variable dereferences
Variable assignments
Control structures

Qe

Problem: Scaling up. How can we avoid conceptualizing programs word
by word?

Reference: John Backus, Can Programming Be Liberated from ‘
the von. Neumann Style?, Turing Award Lecture 1978.



Scaling Up

In the end, pure imperative programming is limited by the “Von

Neumann” bottleneck:
One tends to conceptualize data structures word-by-word.

We need other techniques for defining high-level abstractions such as
collections, polynomials, geometric shapes, strings, documents.

Ideally: Develop theories of collections, shapes, strings, ..



What is a Theory?

A theory consists of

»> one or more data types
P operations on these types
P /aws that describe the relationships between values and operations

Normally, a theory does not describe mutations!



Theories without Mutation
For instance the theory of polynomials defines the sum of two polynomials
by laws such as:
(axx + b) + (c*xx +d) = (@a + c)*x + (b + d)

But it does not define an operator to change a coefficient while keeping
the polynomial the same!



Theories without Mutation

For instance the theory of polynomials defines the sum of two polynomials
by laws such as:

(axx + b) + (c*xx +d) = (@a + c)*x + (b + d)

But it does not define an operator to change a coefficient while keeping
the polynomial the same!

Whereas in an imperative program one can write:

class Polynomial { double[] coefficient; }
Polynomial p = ...;
p.coefficient[@] = 42;



Theories without Mutation

Other example:

The theory of strings defines a concatenation operator ++ which is
associative:

(a++b) ++c = a++ (b ++ )

But it does not define an operator to change a sequence element while
keeping the sequence the same!

(This one, some languages do get right; e.g. Java's strings are immutable)



Consequences for Programming
If we want to implement high-level concepts following their mathematical
theories, there's no place for mutation.

» The theories do not admit it.
> Mutation can destroy useful laws in the theories.

Therefore, let's

> concentrate on defining theories for operators expressed as functions,
» avoid mutations,
» have powerful ways to abstract and compose functions.



Functional Programming

» In a restricted sense, functional programming (FP) means
programming without mutable variables, assignments, loops, and
other imperative control structures.

» In a wider sense, functional programming means focusing on the
functions and immutable data.

» In particular, functions can be values that are produced, consumed,
and composed.

» All this becomes easier in a functional language.



Functional Programming Languages

» In a restricted sense, a functional programming language is one which
does not have mutable variables, assignments, or imperative control
structures.

» In a wider sense, a functional programming language enables the
construction of elegant programs that focus on functions and
immutable data structures.

» In particular, functions in a FP language are first-class citizens. This
means

» they can be defined anywhere, including inside other functions

» like any other value, they can be passed as parameters to functions and
returned as results

P as for other values, there exists a set of operators to compose functions



Some functional programming languages

» Lisp, Scheme, Racket, Clojure
» SML, Ocaml, F#

» Haskell

» Scala

By now, concepts and constructs from functional languages are also found
in many traditional languages.



History of FP languages

1959
1975-77
1978
1986
1990
2000

(Lisp)

ML, FP, Scheme
(Smalltalk)
Standard ML
Haskell, Erlang
OCaml

2003
2005
2007
2017
2020

Scala 3 is the language we will use in this course.

Scala
F#
Clojure
Idris
Scala 3



Origins of FP

“{

TR
1930s: Lambda Calculus (Alonzo Church) ‘

» Shown to be equivalent to Turning Machines
> Stays relevant today as one of the theoretical foundations of FP

1959: Lisp
» Functions and recursive data tools for artifical intelligence research
1980/90s: ML, Haskell, ..

> New type systems with a strong connection to mathematical logic



Why Functional Programming?

» Reduce errors

» Improve modularity

» Higher-level abstractions

» Shorter code

P Increased developer productivity



Why Functional Programming Now?

1. It's an effective tool to handle concurrency and parallelism, on every
scale.
2. Our computers are not Van-Neuman machines anymore. They have

» parallel cores
» clusters of servers
» distribution in the cloud

This causes new programming challenges such as

P cache coherency
» non-determinism



Recommended Book (1)

Structure and Interpretation of Computer Programs. Harold Abelson and
Gerald J. Sussman. 2nd edition. MIT Press 1996.

A classic. Many parts of the course and quizzes are based on it, but we
change the language from Scheme to Scala.

The full text can be downloaded here.


http://mitpress.mit.edu/sicp/

Recommended Book (2)

Programming in Scala. Martin Odersky, Lex Spoon, and Bill Venners. 4th
edition. Artima 2019.

Programming in

Scala

artima Bill Venners

The standard language introduction and reference.



Other Recommended Books

There areb many other good introductions to Scala. Among them:

HANDS-ON SCALA

LI HAOYI

OREILLY




