=PrL

Polymorphism

Principles of Functional Programming

Cons-Lists

A fundamental data structure in many functional languages is the
immutable linked list.

It is constructed from two building blocks:

Nil the empty list
Cons a cell containing an element and the remainder of the list.

Examples for Cons-Lists

List(1, 2, 3)

List(List(true, false), List(3))

Cons-Lists in Scala

Here's an outline of a class hierarchy that represents lists of integers in
this fashion:

package week3

trait IntList ...
class Cons(val head: Int, val tail: IntList) extends IntList ...
class Nil() extends IntList ...

A list is either

> an empty list Nil(), or
P a list Cons(x, xs) consisting of a head element x and a tail list xs.

Value Parameters

Note the abbreviation (val head: Int, val tail: IntList) in the
definition of Cons.

This defines at the same time parameters and fields of a class.
It is equivalent to:

class Cons(_head: Int, _tail: IntlList) extends IntList:
val head = _head
val tail = _tail

where _head and _tail are otherwise unused names.

Type Parameters

It seems too narrow to define only lists with Int elements.

We'd need another class hierarchy for Double lists, and so on, one for each
possible element type.

We can generalize the definition using a type parameter:

package week3

trait List[T]
class Cons[T](val head: T, val tail: List[T]) extends List[T]

class Nil[T] extends List[T]

Type parameters are written in square brackets, e.g. [T].

Complete

trait
def
def
def

class
def

class
def
def
def

Definition of List

List[T]:
isEmpty: Boolean
head: T

tail: List[T]

Cons[TJ](val head: T, val tail: List[T]) extends List[T]:
isEmpty = false

Nil[T] extends List[T]:

isEmpty = true

head = throw new NoSuchElementException(”Nil.head”)
tail = throw new NoSuchElementException(”Nil.tail”)

Generic Functions

Like classes, functions can have type parameters.

For instance, here is a function that creates a list consisting of a single
element.

def singleton[T](elem: T) = Cons[T](elem, Nil[T])
We can then write:

singleton[Int](1)
singleton[Boolean](true)

Type Inference

In fact, the Scala compiler can usually deduce the correct type parameters
from the value arguments of a function call.

So, in most cases, type parameters can be left out. You could also write:

singleton(1)
singleton(true)

Types and Evaluation

Type parameters do not affect evaluation in Scala.

We can assume that all type parameters and type arguments are removed
before evaluating the program.

This is also called type erasure.
Languages that use type erasure include Java, Scala, Haskell, ML, OCaml.

Some other languages keep the type parameters around at run time, these
include C++, C#, F#.

Polymorphism

Polymorphism means that a function type comes “in many forms".

In programming it means that

> the function can be applied to arguments of many types, or
P the type can have instances of many types.

Polymorphism

Polymorphism means that a function type comes “in many forms".

In programming it means that

> the function can be applied to arguments of many types, or
P the type can have instances of many types.

We have seen two principal forms of polymorphism:

» subtyping: instances of a subclass can be passed to a base class
P generics: instances of a function or class are created by type
parameterization.

Exercise
Werite a function nth that takes a list and an integer n and selects the n’th
element of the list.
def nth[T](xs: List[T], n: Int): Int = 2??
Elements are numbered from 0.

If index is outside the range from @ up the the length of the list minus one,
a IndexOutOfBoundsException should be thrown.

