=PrL

Evaluation and Operators

Principles of Functional Programming



Classes and Substitutions

We previously defined the meaning of a function application using a
computation model based on substitution. Now we extend this model to
classes and objects.

Question: How is an instantiation of the class C(ey, ..., e;) evaluted?

Answer: The expression arguments ey, ..., e, are evaluated like the
arguments of a normal function. That's it.

The resulting expression, say, C(v, ..., vy), is already a value.



Classes and Substitutions

Now suppose that we have a class definition,

class C(xqy ooy xp){ ... def f(y1,...,yn) =b ... }

where
» The formal parameters of the class are xi, ..., xp.
P> The class defines a method f with formal parameters y, ..., y,.

(The list of function parameters can be absent. For simplicity, we have
omitted the parameter types.)

Question: How is the following expression evaluated?

C(v1, ey Vi) F (w1, ...,wn)



Classes and Substitutions (2)

Answer: The expression C(vy, ..., vy).f(wy,...,w,) is rewritten to:

Wi /Y1y eees Wa /Yn] V1 /X1, ooy Vo /X [C(Va, oy Vi) /this] b

There are three substitutions at work here:

» the substitution of the formal parameters yi, ..., y, of the function f
by the arguments wy, ..., w,,

» the substitution of the formal parameters x;, ..., x, of the class C by
the class arguments vq, ..., v,

P the substitution of the self reference this by the value of the object
C(V‘|7 ceey Vn).



Object Rewriting Examples

Rational(1, 2).numer



Object Rewriting Examples

Rational(1, 2).numer

— [1/x,2/y] [] [Rational(1,2)/this] x



Object Rewriting Examples

Rational(1, 2).numer

— [1/x,2/y] [] [Rational(1,2)/this] x
1



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <
Rational(2, 3).numer * Rational(1l, 2).denom



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <
Rational(2, 3).numer * Rational(1l, 2).denom

—» 1 % 3<2%2

—» true



Extension Methods

Having to define all methods that belong to a class inside the class itself
can lead to very large classes, and is not very modular.

Methods that do not need to access the internals of a class can
alternatively be defined as extension methods.

For instance, we can add min and abs methods to class Rational like this:
extension (r: Rational):

def min(s: Rational): Boolean = if s.less(r) then s else r
def abs: Rational = Rational(r.numer.abs, r.denom)



Using Extension Methods

Extensions of a class are visible if they are listed in the companion object
of a class (as in the code above) or if they defined or imported in the
current scope.

Members of a visible extensions of class C can be called as if they were
members of C. E.g.

Rational(1/2).min(Rational(2/3))
Caveats:

P Extensions can only add new members, not override existing ones.

» Extensions cannot refer to other class members via this



Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

P instead of this it's the extension parameter that gets substituted,
P class parameters are not visible, so do not need to be substituted at
all.

Rational(1l, 2).min(Rational(2, 3))



Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

P instead of this it's the extension parameter that gets substituted,
P class parameters are not visible, so do not need to be substituted at
all.

Rational(1l, 2).min(Rational(2, 3))

— [Rational(1,2)/r] [Rational(2,3)/s] if x.less(r) then s else r



Extension Methods and Substitutions

Extension method substitution works like normal substitution, but

P instead of this it's the extension parameter that gets substituted,

P class parameters are not visible, so do not need to be substituted at
all.

Rational(1l, 2).min(Rational(2, 3))

— [Rational(1,2)/r] [Rational(2,3)/s] if x.less(r) then s else r

if Rational(2, 3).less(Rational(l, 2)
then Rational(2, 3)
else Rational(1, 2)



Operators

In principle, the rational numbers defined by Rational are as natural as
integers.

But for the user of these abstractions, there is a noticeable difference:

> We write x + y, if x and y are integers, but
» We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We proceed in two steps.



Step 1: Relaxed Identifiers

Operators such as + or < count as identifiers in Scala.

Thus, an identifier can be:

» Alphanumeric: starting with a letter, followed by a sequence of letters
or numbers

> Symbolic: starting with an operator symbol, followed by other
operator symbols.

» The underscore character ’_’ counts as a letter.

» Alphanumeric identifiers can also end in an underscore, followed by
some operator symbols.

Examples of identifiers:

x1 * +2%& vector_++ counter_=



Step 1: Relaxed Identifiers

Since operators are identifiers, it is possible to use them as method names.
Eg.

extension (x: Rational):
def + (y: Rational): Rational = x.add(y)
def * (y: Rational): Rational = x.mul(y)

This allows rational numbers to be used like Int or Double:

val x = Rational(1, 2)
Rational(1, 3)
X * X +y*xy

val y



Step 2: Infix Notation

An operator method with a single parameter can be used as an infix
operator.

An alphanumeric method with a single parameter can also be used as an
infix operator if it is declared with an @infix annotation. E.g.

extension (x: Rational):
@infix def min(that Rational): Rational = ...

It is therefore possible to write

r+s r.+(s)
r<s /* in place of =*/ r.<(s)
r min s r.min(s)



Precedence Rules

The precedence of an operator is determined by its first character.

The following table lists the characters in increasing order of priority
precedence:

(all letters)
I

A
&
<
=1
+ -

* /%
(all other special characters)



Exercise

Provide a fully parenthesized version of
a+tb*®c?™dlessa=>b | c

Every binary operation needs to be put into parentheses, but the structure
of the expression should not change.



