
Higher-Order List Functions

Principles of Functional Programming



Recurring Patterns for Computations on Lists

The examples have shown that functions on lists often have similar
structures.
We can identify several recurring patterns, like,

▶ transforming each element in a list in a certain way,
▶ retrieving a list of all elements satisfying a criterion,
▶ combining the elements of a list using an operator.

Functional languages allow programmers to write generic functions that
implement patterns such as these using higher-order functions.



Applying a Function to Elements of a List

A common operation is to transform each element of a list and then
return the list of results.
For example, to multiply each element of a list by the same factor, you
could write:

def scaleList(xs: List[Double], factor: Double): List[Double] = xs match

case Nil => xs

case y :: ys => y * factor :: scaleList(ys, factor)



Mapping

This scheme can be generalized to the method map of the List class. A
simple way to define map is as follows:

extension [T](xs: List[T])

def map[U](f: T => U): List[U] = xs match

case Nil => xs

case x :: xs => f(x) :: xs.map(f)

(in fact, the actual definition of map is a bit more complicated, because it
is tail-recursive, and also because it works for arbitrary collections, not just
lists).
Using map, scaleList can be written more concisely.

def scaleList(xs: List[Double], factor: Double) =

xs.map(x => x * factor)



Exercise

Consider a function to square each element of a list, and return the result.
Complete the two following equivalent definitions of squareList.

def squareList(xs: List[Int]): List[Int] = xs match

case Nil => ???

case y :: ys => ???

def squareList(xs: List[Int]): List[Int] =

xs.map(???)



Exercise

Consider a function to square each element of a list, and return the result.
Complete the two following equivalent definitions of squareList.

def squareList(xs: List[Int]): List[Int] = xs match

case Nil => Nil

case y :: ys => y * y :: squareList(ys)

def squareList(xs: List[Int]): List[Int] =

xs.map(x => x * x)



Filtering

Another common operation on lists is the selection of all elements
satisfying a given condition. For example:

def posElems(xs: List[Int]): List[Int] = xs match

case Nil => xs

case y :: ys => if y > 0 then y :: posElems(ys) else posElems(ys)



Filter

This pattern is generalized by the method filter of the List class:

extension [T](xs: List[T])

def filter(p: T => Boolean): List[T] = this match

case Nil => this

case x :: xs => if p(x) then x :: xs.filter(p) else xs.filter(p)

Using filter, posElems can be written more concisely.

def posElems(xs: List[Int]): List[Int] =

xs.filter(x => x > 0)



Variations of Filter

Besides filter, there are also the following methods that extract sublists
based on a predicate:

xs.filterNot(p) Same as xs.filter(x => !p(x)); The list consist-
ing of those elements of xs that do not satisfy the
predicate p.

xs.partition(p) Same as (xs.filter(p), xs.filterNot(p)), but
computed in a single traversal of the list xs.

xs.takeWhile(p) The longest prefix of list xs consisting of elements
that all satisfy the predicate p.

xs.dropWhile(p) The remainder of the list xs after any leading ele-
ments satisfying p have been removed.

xs.span(p) Same as (xs.takeWhile(p), xs.dropWhile(p)) but
computed in a single traversal of the list xs.



Exercise

Write a function pack that packs consecutive duplicates of list elements
into sublists. For instance,

pack(List(”a”, ”a”, ”a”, ”b”, ”c”, ”c”, ”a”))

should give

List(List(”a”, ”a”, ”a”), List(”b”), List(”c”, ”c”), List(”a”)).

You can use the following template:

def pack[T](xs: List[T]): List[List[T]] = xs match

case Nil => Nil

case x :: xs1 => ???



Exercise

Write a function pack that packs consecutive duplicates of list elements
into sublists. For instance,

pack(List(”a”, ”a”, ”a”, ”b”, ”c”, ”c”, ”a”))

should give

List(List(”a”, ”a”, ”a”), List(”b”), List(”c”, ”c”), List(”a”)).

You can use the following template:

def pack[T](xs: List[T]): List[List[T]] = xs match

case Nil => ???

case x :: xs1 => ???



Exercise

Using pack, write a function encode that produces the run-length encoding
of a list.
The idea is to encode n consecutive duplicates of an element x as a pair
(x, n). For instance,

encode(List(”a”, ”a”, ”a”, ”b”, ”c”, ”c”, ”a”))

should give

List((”a”, 3), (”b”, 1), (”c”, 2), (”a”, 1)).



Exercise

Using pack, write a function encode that produces the run-length encoding
of a list.

def encode[T](xs: List[T]): List[(T, Int)] = ???


