=PrL

Case Study

Principles of Functional Programming



The Water Pouring Problem

» You are given some glasses of different sizes.
» Your task is to produce a glass with a given amount of water in it.
» You don’t have a measure or balance.
» All you can do is:
> fill a glass (completely)
» empty a glass
» pour from one glass to another until the first glass is empty or the
second glass is full.

Example task:

You have two glasses. One holds 7 units of water, the other 4. Produce a
glass filled with 6 units of water.



Strategy



States and Moves

Representations:

Glass: Int (glasses are numbered 0, 1, 2)
State: Vector[Int] (one entry per glass)

l.e. Vector(2, 3) would be a state where we have two glasses that have 2
and 3 units of water in it.

Moves:

Empty(glass)
Fill(glass)
Pour(from, to)



Variants

In a program of the complexity of the pouring program, there are many
choices to be made.

Choice of representations.

» Specific classes for moves and paths, or some encoding?
» Object-oriented methods, or naked data structures with functions?

The present elaboration is just one solution, and not necessarily the
shortest one.



Guiding Principles for Good Design

> Name everything you can.
> Put operations into natural scopes.
> Keep degrees of freedom for future refinements.



