
Objects Everywhere

Principles of Functional Programming

Pure Object Orientation

A pure object-oriented language is one in which every value is an object.
If the language is based on classes, this means that the type of each value
is a class.
Is Scala a pure object-oriented language?
At first glance, there seem to be some exceptions: primitive types,
functions.
But, let’s look closer:

Standard Classes

Conceptually, types such as Int or Boolean do not receive special treatment
in Scala. They are like the other classes, defined in the package scala.
For reasons of efficiency, the Scala compiler represents the values of type
scala.Int by 32-bit integers, and the values of type scala.Boolean by
Java’s Booleans, etc.

Pure Booleans

The Boolean type maps to the JVM’s primitive type boolean.
But one could define it as a class from first principles:

package idealized.scala

abstract class Boolean extends AnyVal:

def ifThenElse[T](t: => T, e: => T): T

def && (x: => Boolean): Boolean = ifThenElse(x, false)

def || (x: => Boolean): Boolean = ifThenElse(true, x)

def unary_!: Boolean = ifThenElse(false, true)

def == (x: Boolean): Boolean = ifThenElse(x, x.unary_!)

def != (x: Boolean): Boolean = ifThenElse(x.unary_!, x)

...

end Boolean

Boolean Constants

Here are constants true and false that go with Boolean in
idealized.scala:

package idealized.scala

object true extends Boolean:

def ifThenElse[T](t: => T, e: => T) = t

object false extends Boolean:

def ifThenElse[T](t: => T, e: => T) = e

Exercise

Provide an implementation of an implication operator ==> for class
idealized.scala.Boolean.

Exercise

Provide an implementation of an implication operator ==> for class
idealized.scala.Boolean.

extension (x: Boolean):

def ==> (y: Boolean) = x.ifThenElse(y, true)

That is, if x is true, y has to be true also, whereas if x is false, y can be
arbitrary.

The class Int

Here is a partial specification of the class scala.Int.

class Int:

def + (that: Double): Double

def + (that: Float): Float

def + (that: Long): Long

def + (that: Int): Int // same for -, *, /, %

def << (cnt: Int): Int // same for >>, >>> */

def & (that: Long): Long

def & (that: Int): Int // same for |, ^ */

The class Int (2)

def == (that: Double): Boolean

def == (that: Float): Boolean

def == (that: Long): Boolean // same for !=, <, >, <=, >=

...

end Int

Can it be represented as a class from first principles (i.e. not using
primitive ints?

Exercise

Provide an implementation of the abstract class Nat that represents
non-negative integers.

abstract class Nat:

def isZero: Boolean

def predecessor: Nat

def successor: Nat

def + (that: Nat): Nat

def - (that: Nat): Nat

end Nat

Exercise (2)

Do not use standard numerical classes in this implementation.
Rather, implement a sub-object and a sub-class:

object Zero extends Nat:

...

class Succ(n: Nat) extends Nat:

...

One for the number zero, the other for strictly positive numbers.
(this one is a bit more involved than previous quizzes).

