=PrL

Evaluation Strategies and Termination

Principles of Functional Programming



Call-by-name, Call-by-value and termination

You know from the last module that the call-by-name and call-by-value

evaluation strategies reduce an expression to the same value, as long as
both evaluations terminate.

But what if termination is not guaranteed?
We have:

» If CBV evaluation of an expression e terminates, then CBN evaluation
of e terminates, too.

» The other direction is not true



Non-termination example

Question: Find an expression that terminates under CBN but not under
CBV.



Non-termination example

Let's define
def first(x: Int, y: Int) = x

and consider the expression first(1, loop).

Under CBN: Under CBV:

first(1, loop) first(1, loop)



Scala’s evaluation strategy

Scala normally uses call-by-value.
But if the type of a function parameter starts with => it uses call-by-name.

Example:
def constOne(x: Int, y: => Int) =1
Let’s trace the evaluations of
constOne(1+2, loop)
and

constOne(loop, 1+2)



Trace of constOne(1 + 2, loop)

constOne(1 + 2, loop)



Trace of constOne(1 + 2, loop)

constOne(1 + 2, loop)
constOne(3, loop)



Trace of constOne(1 + 2, loop)

constOne(1 + 2, loop)
constOne(3, loop)
1



Trace of constOne(loop, 1 + 2)

constOne(loop, 1 + 2)



Trace of constOne(loop, 1 + 2)

constOne(loop, 1 + 2)
constOne(loop, 1 + 2)
constOne(loop, 1 + 2)



