=PrL

Tail Recursion

Principles of Functional Programming



Review: Evaluating a Function Application

One simple rule : One evaluates a function application f(es, ..., e,)

» by evaluating the expressions e, ..., e, resulting in the values

Vi, ..., Vp, then
» by replacing the application with the body of the function f, in which
» the actual parameters vq, ..., v, replace the formal parameters of f.



Application Rewriting Rule
This can be formalized as a rewriting of the program itself:

def f(xq,..eyXn) =B; oo £V, ey Vi)
_>
def f(xqy..eyXn) =B; «oo [Vi/X1, ey Vi /Xn] B
Here, [vi/x1, ..., Va/xn] B means:
The expression B in which all occurrences of x; have been replaced by v;.

[Vi /X1, ..y v /xn] is called a substitution.



Rewriting example:

Consider gcd, the function that computes the greatest common divisor of
two numbers.

Here's an implementation of gcd using Euclid's algorithm.

def gcd(a: Int, b: Int): Int =
if b == @ then a else gcd(b, a % b)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:
gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)

— if false then 14 else gcd(21, 14 % 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)
— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)

— ged(21, 14 % 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gecd(21, 14)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)

—» ged(14, 7)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)
—» gcd(14, 7)

—» gcd(7, 0)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gcd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)
—» gcd(14, 7)

—» gcd(7, 0)

— if @ == @ then 7 else gcd(@, 7 % 0)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

— if 21 == @ then 14 else gcd(21, 14 % 21)
— if false then 14 else gcd(21, 14 % 21)
— gecd(21, 14 % 21)

— gcd(21, 14)

— if 14 == 0 then 21 else gcd(14, 21 % 14)
—» gcd(14, 7)

—» gcd(7, 0)

— if @ == @ then 7 else gcd(@, 7 % 0)

— 7



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial (4)



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial (4)

— if 4 == @ then 1 else 4 * factorial(4 - 1) 3-> —» 4 % factorial(3)



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial (4)
— if 4 == @ then 1 else 4 * factorial(4 - 1) 3-> —» 4 % factorial(3)

—» 4 % (3 x factorial(2))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)
— if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> —» 4 x factorial(3)
—» 4 % (3 x factorial(2))

—» 4 % (3 x (2 x factorial(1)))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)

— if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> —» 4 * factorial(3)
—» 4 * (3 x factorial(2))

—» 4 % (3 x (2 x factorial(1)))

—» 4 % (3 % (2 % (1 * factorial(@)))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)

— if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> —» 4 * factorial(3)
—» 4 * (3 x factorial(2))

—» 4 % (3 x (2 x factorial(1)))

—» 4 x (3 * (2 x (1 x factorial(Q)))

4% (3% (2% (1% 1))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =
if n == @ then 1 else n * factorial(n - 1)

factorial(4)
— if 4 == @ then 1 else 4 % factorial(4 - 1) 3-> —» 4 * factorial(3)
—» 4 * (3 » factorial(2))
—» 4 % (3 x (2 x factorial(1)))
—» 4 x (3 x (2 x (1 * factorial(@)))
4% (3% 2% (1%1)))
—» 24

What are the differences between the two sequences?



Tail Recursion

Implementation Consideration:

If a function calls itself as its last action, the function’s stack frame can be
reused. This is called tail recursion.

= Tail recursive functions are iterative processes.

In general, if the last action of a function consists of calling a function
(which may be the same), one stack frame would be sufficient for both
functions. Such calls are called tail-calls.



Tail Recursion in Scala

In Scala, only directly recursive calls to the current function are optimized.

One can require that a function is tail-recursive using a @tailrec
annotation:

import scala.annotation.tailrec

@tailrec
def gcd(a: Int, b: Int): Int = ...

If the annotation is given, and the implementation of gcd were not tail
recursive, an error would be issued.



Exercise: Tail recursion

Design a tail recursive version of factorial.



