
Pattern Matching

Principles of Functional Programming



Reminder: Decomposition

The task we are trying to solve is find a general and convenient way to
access heterogeneous data in a class hierarchy.

Attempts seen previously:

▶ Classification and access methods: quadratic explosion
▶ Type tests and casts: unsafe, low-level
▶ Object-oriented decomposition: causes coupling between data and

operations, need to touch all classes to add a new method.



Solution 2: Functional Decomposition with Pattern Matching

Observation: the sole purpose of test and accessor functions is to reverse
the construction process:

▶ Which subclass was used?
▶ What were the arguments of the constructor?

This situation is so common that many functional languages, Scala
included, automate it.



Case Classes

A case class definition is similar to a normal class definition, except that it
is preceded by the modifier case. For example:

trait Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr, e2: Expr) extends Expr

Like before, this defines a trait Expr, and two concrete subclasses Number

and Sum.
However, these classes are now empty. So how can we access the
members?



Pattern Matching

Pattern matching is a generalization of switch from C/Java to class
hierarchies.
It’s expressed in Scala using the keyword match.
Example

def eval(e: Expr): Int = e match

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)



Match Syntax

Rules:

▶ match is preceded by a selector expression and is followed by a
sequence of cases, pat => expr.

▶ Each case associates an expression expr with a pattern pat.
▶ A MatchError exception is thrown if no pattern matches the value of

the selector.



Forms of Patterns

Patterns are constructed from:

▶ constructors, e.g. Number, Sum,
▶ variables, e.g. n, e1, e2,
▶ wildcard patterns _,
▶ constants, e.g. 1, true.
▶ type tests, e.g. n: Number

Variables always begin with a lowercase letter.
The same variable name can only appear once in a pattern. So, Sum(x, x)

is not a legal pattern.
Names of constants begin with a capital letter, with the exception of the
reserved words null, true, false.



Evaluating Match Expressions

An expression of the form

e match { case p1 => e1 ... case pn => en }

matches the value of the selector e with the patterns p1, ..., pn in the order
in which they are written.
The whole match expression is rewritten to the right-hand side of the first
case where the pattern matches the selector e.
References to pattern variables are replaced by the corresponding parts in
the selector.



What Do Patterns Match?

▶ A constructor pattern C(p1, ..., pn) matches all the values of type C (or
a subtype) that have been constructed with arguments matching the
patterns p1, ..., pn.

▶ A variable pattern x matches any value, and binds the name of the
variable to this value.

▶ A constant pattern c matches values that are equal to c (in the sense
of ==)



Example

Example

eval(Sum(Number(1), Number(2)))

→

Sum(Number(1), Number(2)) match

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)

→

eval(Number(1)) + eval(Number(2))



Example (2)

→

Number(1) match

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)

+ eval(Number(2))

→

1 + eval(Number(2))

→→

3



Pattern Matching and Methods

Of course, it’s also possible to define the evaluation function as a method
of the base trait.
Example

trait Expr:

def eval: Int = this match

case Number(n) => n

case Sum(e1, e2) => e1.eval + e2.eval



Exercise

Write a function show that uses pattern matching to return the
representation of a given expressions as a string.

def show(e: Expr): String = ???



Exercise (Optional, Harder)

Add case classes Var for variables x and Prod for products x * y as
discussed previously.
Change your show function so that it also deals with products.
Pay attention you get operator precedence right but to use as few
parentheses as possible.
Example

Sum(Prod(2, Var(”x”)), Var(”y”))

should print as “2 * x + y”. But

Prod(Sum(2, Var(”x”)), Var(”y”))

should print as “(2 + x) * y”.


