
Enums

Principles of Functional Programming

Pure Data

In the previous sessions, you have learned how to model data with class
hierarchies.
Classes are essentially bundles of functions operating on some common
values represented as fields.
They are a very useful abstraction, since they allow encapsulation of data.
But sometimes we just need to compose and decompose pure data
without any associated functions.
Case classes and pattern matching work well for this task.

A Case Class Hierarchy

Here’s our case class hierarchy for expressions again:

trait Expr

object Expr:

case class Var(s: String) extends Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr, e2: Expr) extends Expr

case class Prod(e1: Expr, e2: Expr) extends Expr

This time we have put all case classes in the Expr companion object, in
order not to pollute the global namespace.
So it’s Expr.Number(1) instead of Number(1), for example.
One can still “pull out” all the cases using an import.

import Expr._

A Case Class Hierarchy

Here’s our case class hierarchy for expressions again:

trait Expr

object Expr:

case class Var(s: String) extends Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr, e2: Expr) extends Expr

case class Prod(e1: Expr, e2: Expr) extends Expr

Pure data definitions like these are called algebraic data types, or ADTs
for short.
They are very common in functional programming.
To make them even more convenient, Scala offers some special syntax.

Enums for ADTs

An enum enumerates all the cases of an ADT and nothing else.
Example

enum Expr:

case Var(s: String)

case Number(n: Int)

case Sum(e1: Expr, e2: Expr)

case Prod(e1: Expr, e2: Expr)

This enum is equivalent to the case class hierarchy on the previous slide,
but is shorter, since it avoids the repetitive class ... extends Expr

notation.

Pattern Matching on ADTs

Match expressions can be used on enums as usual.
For instance, to print expressions with proper parameterization:

def show(e: Expr): String = e match

case Expr.Var(x) => x

case Expr.Number(n) => n.toString

case Expr.Sum(a, b) => s”${show(a)} + ${show(a)}}”

case Expr.Prod(a, b) => s”${showP(a)} * ${showP(a)}”

def showP(e: Expr): String = e match

case e: Sum => s”(${show(expr)})”

case _ => show(expr)

Simple Enums

Cases of an enum can also be simple values, without any parameters.
Example

Define a Color type with values Red, Green, and Blue:

enum Color:

case Red

case Green

case Blue

We can also combine several simple cases in one list:

enum Color:

case Red, Green, Blue

Pattern Matching on Simple Enums

For pattern matching, simple cases count as constants:

enum DayOfWeek:

case Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

import DayOfWeek._

def isWeekend(day: DayOfWeek) = day match

case Saturday | Sunday => true

case _ => false

More Fun With Enums

Enumerations can take parameters and can define methods.
Example:

enum Direction(val dx: Int, val dy: Int):

case Right extends Direction(1, 0)

case Up extends Direction(0, 1)

case Left extends Direction(-1, 0)

case Down extends Direction(0, -1)

def leftTurn = Direction.values((ordinal + 1) % 4)

end Direction

val r = Direction.Right

val u = x.leftTurn // u = Up

val v = (u.dx, u.dy) // v = (1, 0)

More Fun With Enums

Notes:

▶ Enumeration cases that pass parameters have to use an explicit
extends clause

▶ The expression e.ordinal gives the ordinal value of the enum case e.
Cases start with zero and are numbered consecutively.

▶ values is an immutable array in the companion object of of an enum
that contains all enum values.

▶ Only simple cases have ordinal numbers and show up in values,
parameterized cases do not.

Enumerations Are Shorthands for Classes and Objects

The Direction enum is expanded by the Scala compiler to roughly the
following structure:

abstract class Direction(val dx: Int, val dy: Int):

def rightTurn = Direction.values((ordinal - 1) % 4)

object Direction:

val Right = new Direction(1, 0) {}

val Up = new Direction(0, 1) {}

val Left = new Direction(-1, 0) {}

val Down = new Direction(0, -1) {}

end Direction

There are also compiler-defined helper methods ordinal in the class and
values and valueOf in the companion object.

Domain Modeling

ADTs and enums are particularly useful for domain modelling tasks where
one needs to define a large number of data types without attaching
operations.
Example: Modelling payment methods.

enum PaymentMethod:

case CreditCard(kind: Card, holder: String, number: Long, expires: Date)

case PayPal(email: String)

case Cash

enum Card:

case Visa, Mastercard, Amex

Summary

In this unit, we covered two uses of enum definitions:

▶ as a shorthand for hierarchies of case classes,
▶ as a way to define data types accepting alternative values,

The two cases can be combined: an enum can comprise parameterized
and simple cases at the same time.
Enums are typically used for pure data, where all operations on such data
are defined elsewhere.

