
Identity and Change

Principles of Functional Programming
Martin Odersky



Identity and Change

Assignment poses the new problem of deciding whether two expressions
are “the same”
When one excludes assignments and one writes:

val x = E; val y = E

where E is an arbitrary expression, then it is reasonable to assume that x

and y are the same. That is to say that we could have also written:

val x = E; val y = x

(This property is usually called referential transparency)



Identity and Change (2)

But once we allow the assignment, the two formulations are different. For
example:

val x = BankAccount()

val y = BankAccount()

Question: Are x and y the same?

O Yes

O No



Operational Equivalence

To respond to the last question, we must specify what is meant by “the
same”.
The precise meaning of “being the same” is defined by the property of
operational equivalence.
In a somewhat informal way, this property is stated as follows.
Suppose we have two definitions x and y.
x and y are operationally equivalent if no possible test can distinguish
between them.



Testing for Operational Equivalence

To test if x and y are the same, we must

▶ Execute the definitions followed by an arbitrary sequence f of
operations that involves x and y, observing the possible outcomes.

val x = BankAccount()

val y = BankAccount()

S



Testing for Operational Equivalence

To test if x and y are the same, we must

▶ Execute the definitions followed by an arbitrary sequence of
operations that involves x and y, observing the possible outcomes.

val x = BankAccount() val x = BankAccount()

val y = BankAccount() val y = BankAccount()

S S’ = [x/y]S

▶ Then, execute the definitions with another sequence S’ obtained by
renaming all occurrences of y by x in S



Testing for Operational Equivalence

To test if x and y are the same, we must

▶ Execute the definitions followed by an arbitrary sequence of
operations that involves x and y, observing the possible outcomes.

val x = BankAccount() val x = BankAccount()

val y = BankAccount() val y = BankAccount()

S S’ = [x/y]S

▶ Then, execute the definitions with another sequence S’ obtained by
renaming all occurrences of y by x in S

▶ If the results are different, then the expressions x and y are certainly
different.



Testing for Operational Equivalence

To test if x and y are the same, we must

▶ Execute the definitions followed by an arbitrary sequence of
operations that involves x and y, observing the possible outcomes.

val x = BankAccount() val x = BankAccount()

val y = BankAccount() val y = BankAccount()

S S’ = [x/y]S

▶ Then, execute the definitions with another sequence S’ obtained by
renaming all occurrences of y by x in S

▶ If the results are different, then the expressions x and y are certainly
different.

▶ On the other hand, if all possible pairs of sequences (S, S’) produce
the same result, then x and y are the same.



Counterexample for Operational Equivalence

Based on this definition, let’s see if the expressions

val x = BankAccount()

val y = BankAccount()

define values x and y that are the same.
Let’s follow the definitions by a test sequence:

val x = BankAccount()

val y = BankAccount()

x.deposit(30) // : Int = 30

y.withdraw(20) // java.lang.Error: insufficient funds



Counterexample for Operational Equivalence (2)

Now rename all occurrences of y with x in this sequence. We obtain:

val x = BankAccount()

val y = BankAccount()

x.deposit(30) // : Int = 30

x.withdraw(20) // : Int = 10

The final results are different. We conclude that x and y are not the same.



Establishing Operational Equivalence

On the other hand, if we define

val x = BankAccount()

val y = x

then no sequence of operations can distinguish between x and y, so x and
y are the same in this case.



Assignment and Substitution Model

The preceding examples show that our model of computation by
substitution cannot be used.
Indeed, according to this model, one can always replace the name of a
value by the expression that defines it. For example, in

val x = BankAccount()

val y = x

the x in the definition of y could be replaced by BankAccount()



Assignment and The Substitution Model

The preceding examples show that our model of computation by
substitution cannot be used.
Indeed, according to this model, one can always replace the name of a
value by the expression that defines it. For example, in

val x = BankAccount() val x = BankAccount()

val y = x val y = BankAccount()

the x in the definition of y could be replaced by BankAccount()

But we have seen that this change leads to a different program!
The substitution model ceases to be valid when we add the assignment.
It is possible to adapt the substitution model by introducing a store, but
this becomes considerably more complicated.


