
Decomposition

Principles of Functional Programming



Decomposition

Suppose you want to write a small interpreter for arithmetic expressions.
To keep it simple, let’s restrict ourselves to numbers and additions.
Expressions can be represented as a class hierarchy, with a base trait Expr

and two subclasses, Number and Sum.
To treat an expression, it’s necessary to know the expression’s shape and
its components.
This brings us to the following implementation.



Expressions

trait Expr:

def isNumber: Boolean

def isSum: Boolean

def numValue: Int

def leftOp: Expr

def rightOp: Expr

class Number(n: Int) extends Expr:

def isNumber = true

def isSum = false

def numValue = n

def leftOp = throw Error(”Number.leftOp”)

def rightOp = throw Error(”Number.rightOp”)



Expressions (2)

class Sum(e1: Expr, e2: Expr) extends Expr:

def isNumber = false

def isSum = true

def numValue = throw Error(”Sum.numValue”)

def leftOp = e1

def rightOp = e2



Evaluation of Expressions

You can now write an evaluation function as follows.

def eval(e: Expr): Int =

if e.isNumber then e.numValue

else if e.isSum then eval(e.leftOp) + eval(e.rightOp)

else throw Error(”Unknown expression ” + e)

Problem: Writing all these classification and accessor functions quickly
becomes tedious!
Problem: There’s no static guarantee you use the right accessor functions.
You might hit an Error case if you are not careful.



Adding New Forms of Expressions

So, what happens if you want to add new expression forms, say

class Prod(e1: Expr, e2: Expr) extends Expr // e1 * e2

class Var(x: String) extends Expr // Variable ‘x’

You need to add methods for classification and access to all classes
defined above.



Question

To integrate Prod and Var into the hierarchy, how many new method
definitions do you need?
(including method definitions in Prod and Var themselves, but not
counting methods that were already given on the slides)
Possible Answers

O 9

O 10

O 19

O 25

O 35

O 40



Question

To integrate Prod and Var into the hierarchy, how many new method
definitions do you need?
(including method definitions in Prod and Var themselves, but not
counting methods that were already given on the slides)
Possible Answers

O 9

O 10

O 19

O 25

O 35

O 40



Non-Solution: Type Tests and Type Casts

A “hacky” solution could use type tests and type casts.
Scala let’s you do these using methods defined in class Any:

def isInstanceOf[T]: Boolean // checks whether this object’s type conforms to ‘T‘

def asInstanceOf[T]: T // treats this object as an instance of type ‘T‘

// throws ‘ClassCastException‘ if it isn’t.

These correspond to Java’s type tests and casts

Scala Java

x.isInstanceOf[T] x instanceof T

x.asInstanceOf[T] (T) x

But their use in Scala is discouraged, because there are better alternatives.



Eval with Type Tests and Type Casts

Here’s a formulation of the eval method using type tests and casts:

def eval(e: Expr): Int =

if e.isInstanceOf[Number] then

e.asInstanceOf[Number].numValue

else if e.isInstanceOf[Sum] then

eval(e.asInstanceOf[Sum].leftOp)

+ eval(e.asInstanceOf[Sum].rightOp)

else throw Error(”Unknown expression ” + e)

This is ugly and potentially unsafe.



Solution 1: Object-Oriented Decomposition

For example, suppose that all you want to do is evaluate expressions.
You could then define:

trait Expr:

def eval: Int

class Number(n: Int) extends Expr:

def eval: Int = n

class Sum(e1: Expr, e2: Expr) extends Expr:

def eval: Int = e1.eval + e2.eval

But what happens if you’d like to display expressions now?
You have to define new methods in all the subclasses.



Assessment of OO Decomposition

▶ OO decomposition mixes data with operations on the data.
▶ This can be the right thing if there’s a need for encapsulation and

data abstraction.
▶ On the other hand, it increases complexity(*) and adds new

dependencies to classes.
▶ It makes it easy to add new kinds of data but hard to add new kinds

of operations.

(*) In the literal sense of the word:
complex = plaited, woven together

Thus, complexity arises from mixing several things together.



Limitations of OO Decomposition

OO decomposition only works well if operations are on a single object.
What if you want to simplify expressions, say using the rule:

a * b + a * c -> a * (b + c)

Problem: This is a non-local simplification. It cannot be encapsulated in
the method of a single object.
You are back to square one; you need test and access methods for all the
different subclasses.


