=PrL

Loops

Principles of Functional Programming

Martin Odersky



Loops

Proposition: Variables are enough to model all imperative programs.
But what about control statements like loops?
We can model them using functions.

Example: Here is a Scala program that uses a while loop:

def power(x: Double, exp: Int): Double =
var r = 1.0

var i = exp
while i >0 do{r=r*xx; i=1-113%
r

In Scala, while-do is a built-in control construct

But how could we define while using a function (call it whileDo)?



Definition of whileDo

The function whileDo can be defined as follows:

def whileDo(condition: => Boolean)(command: => Unit): Unit =
if condition then
command
whileDo(condition) (command)
else )

Note: The condition and the command must be passed by name so that
they're reevaluated in each iteration.

Note: whileDo is tail recursive, so it can operate with a constant stack size.



Exercise

Write a function implementing a repeat loop that is used as follows:

repeatUntil {
command
} ( condition )

It should execute command one or more times, until condition is true.



Exercise

Write a function implementing a repeat loop that is used as follows:

repeatUntil {
command
} ( condition )

It should execute command one or more times, until condition is true.

The repeatUntil function starts like this:

def repeatUntil(command: => Unit)(condition: => Boolean) =



Exercise (open-ended)

Is it also possible to obtain the following syntax?

repeat {
command
} until ( condition )



For-Loops

The classical for loop in Java can not be modeled simply by a
higher-order function.

The reason is that in a Java program like
for (int i =1; i <3; 1i=1+1){ System.out.print(i +” ”); }

the arguments of for contain the declaration of the variable i, which is
visible in other arguments and in the body.

However, in Scala there is a kind of for loop similar to Java's extended for
loop:

for i <= 1 until 3 do System.out.print(s”$i ”)

This displays 1 2.



Translation of For-Loops

For-loops translate similarly to for-expressions, but using the foreach
combinator instead of map and flatMap.

foreach is defined on collections with elements of type T as follows:

def foreach(f: T => Unit): Unit =
// apply ‘f‘ to each element of the collection

Example
for i <= 1 until 3; j <- 7abc” do println(s”$i $j7)
translates to:

(1 until 3).foreach(i => ”abc”.foreach(j => println(s”$i $37)))



