
Tail Recursion

Principles of Functional Programming



Review: Evaluating a Function Application

One simple rule : One evaluates a function application f(e1, ..., en)

▶ by evaluating the expressions e1, . . . , en resulting in the values
v1, ..., vn, then

▶ by replacing the application with the body of the function f, in which
▶ the actual parameters v1, ..., vn replace the formal parameters of f.



Application Rewriting Rule

This can be formalized as a rewriting of the program itself:

def f(x1, ..., xn) = B; ... f(v1, ..., vn)
→

def f(x1, ..., xn) = B; ... [v1/x1, ..., vn/xn] B

Here, [v1/x1, ..., vn/xn] B means:
The expression B in which all occurrences of xi have been replaced by vi.
[v1/x1, ..., vn/xn] is called a substitution.



Rewriting example:

Consider gcd, the function that computes the greatest common divisor of
two numbers.
Here’s an implementation of gcd using Euclid’s algorithm.

def gcd(a: Int, b: Int): Int =

if b == 0 then a else gcd(b, a % b)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)

→ gcd(21, 14)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)

→ gcd(21, 14)

→ if 14 == 0 then 21 else gcd(14, 21 % 14)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)

→ gcd(21, 14)

→ if 14 == 0 then 21 else gcd(14, 21 % 14)

→→ gcd(14, 7)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)

→ gcd(21, 14)

→ if 14 == 0 then 21 else gcd(14, 21 % 14)

→→ gcd(14, 7)

→→ gcd(7, 0)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)

→ gcd(21, 14)

→ if 14 == 0 then 21 else gcd(14, 21 % 14)

→→ gcd(14, 7)

→→ gcd(7, 0)

→ if 0 == 0 then 7 else gcd(0, 7 % 0)



Rewriting example:

gcd(14, 21) is evaluated as follows:

gcd(14, 21)

→ if 21 == 0 then 14 else gcd(21, 14 % 21)

→ if false then 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)

→ gcd(21, 14)

→ if 14 == 0 then 21 else gcd(14, 21 % 14)

→→ gcd(14, 7)

→→ gcd(7, 0)

→ if 0 == 0 then 7 else gcd(0, 7 % 0)

→ 7



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =

if n == 0 then 1 else n * factorial(n - 1)

factorial(4)



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =

if n == 0 then 1 else n * factorial(n - 1)

factorial(4)

→ if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> →→ 4 * factorial(3)



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =

if n == 0 then 1 else n * factorial(n - 1)

factorial(4)

→ if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> →→ 4 * factorial(3)

→→ 4 * (3 * factorial(2))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =

if n == 0 then 1 else n * factorial(n - 1)

factorial(4)

→ if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> →→ 4 * factorial(3)

→→ 4 * (3 * factorial(2))

→→ 4 * (3 * (2 * factorial(1)))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =

if n == 0 then 1 else n * factorial(n - 1)

factorial(4)

→ if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> →→ 4 * factorial(3)

→→ 4 * (3 * factorial(2))

→→ 4 * (3 * (2 * factorial(1)))

→→ 4 * (3 * (2 * (1 * factorial(0)))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =

if n == 0 then 1 else n * factorial(n - 1)

factorial(4)

→ if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> →→ 4 * factorial(3)

→→ 4 * (3 * factorial(2))

→→ 4 * (3 * (2 * factorial(1)))

→→ 4 * (3 * (2 * (1 * factorial(0)))

→→ 4 * (3 * (2 * (1 * 1)))



Another rewriting example:

Consider factorial:

def factorial(n: Int): Int =

if n == 0 then 1 else n * factorial(n - 1)

factorial(4)

→ if 4 == 0 then 1 else 4 * factorial(4 - 1) 3-> →→ 4 * factorial(3)

→→ 4 * (3 * factorial(2))

→→ 4 * (3 * (2 * factorial(1)))

→→ 4 * (3 * (2 * (1 * factorial(0)))

→→ 4 * (3 * (2 * (1 * 1)))

→→ 24

What are the differences between the two sequences?



Tail Recursion

Implementation Consideration:
If a function calls itself as its last action, the function’s stack frame can be
reused. This is called tail recursion.
⇒ Tail recursive functions are iterative processes.
In general, if the last action of a function consists of calling a function
(which may be the same), one stack frame would be sufficient for both
functions. Such calls are called tail-calls.



Tail Recursion in Scala

In Scala, only directly recursive calls to the current function are optimized.
One can require that a function is tail-recursive using a @tailrec

annotation:

import scala.annotation.tailrec

@tailrec

def gcd(a: Int, b: Int): Int = ...

If the annotation is given, and the implementation of gcd were not tail
recursive, an error would be issued.



Exercise: Tail recursion

Design a tail recursive version of factorial.


