=PrL

Functions and State

Principles of Functional Programming

Martin Odersky



Functions and State

Until now, our programs have been side-effect free.
Therefore, the concept of time wasn't important.

For all programs that terminate, any sequence of actions would have given
the same results.

This was also reflected in the substitution model of computation.



Reminder: Substitution Model

Programs can be evaluated by rewriting.

The most important rewrite rule covers function applications:

def (X1, .oy Xn) = B; oo F(Vi, ey Vi)
_)
def f(x1,...,xn) =B; ... [v1/x1,...,vn/xn]B



Rewriting Example:

Say you have the following two functions iterate and square:

def iterate(n: Int, f: Int => Int, x: Int) =
if n == @ then x else iterate(n-1, f, f(x))
def square(x: Int) = x * X

Then the call iterate(1, square, 3) gets rewritten as follows:



Rewriting Example:

Say you have the following two functions iterate and square:

def iterate(n: Int, f: Int => Int, x: Int) =
if n == @ then x else iterate(n-1, f, f(x))
def square(x: Int) = x * X

Then the call iterate(1, square, 3) gets rewritten as follows:

— if 1 == @ then 3 else iterate(1-1, square, square(3))



Rewriting Example:

Say you have the following two functions iterate and square:

def iterate(n: Int, f: Int => Int, x: Int) =
if n == @ then x else iterate(n-1, f, f(x))
def square(x: Int) = x * X

Then the call iterate(1, square, 3) gets rewritten as follows:
— if 1 == @ then 3 else iterate(1-1, square, square(3))

— iterate(@, square, square(3))



Rewriting Example:

Say you have the following two functions iterate and square:

def iterate(n: Int, f: Int => Int, x: Int) =
if n == @ then x else iterate(n-1, f, f(x))
def square(x: Int) = x * X

Then the call iterate(1, square, 3) gets rewritten as follows:
— if 1 == @ then 3 else iterate(1-1, square, square(3))
— iterate(@, square, square(3))

— iterate(@, square, 3 * 3)



Rewriting Example:

Say you have the following two functions iterate and square:

def iterate(n: Int, f: Int => Int, x: Int) =
if n == @ then x else iterate(n-1, f, f(x))
def square(x: Int) = x * X

Then the call iterate(1, square, 3) gets rewritten as follows:
— if 1 == @ then 3 else iterate(1-1, square, square(3))
— iterate(@, square, square(3))

— iterate(@, square, 3 * 3)

— iterate(@, square, 9)



Rewriting Example:

Say you have the following two functions iterate and square:

def iterate(n: Int, f: Int => Int, x: Int) =
if n == @ then x else iterate(n-1, f, f(x))
def square(x: Int) = x * x

Then the call iterate(1, square, 3) gets rewritten as follows:
— if 1 == @ then 3 else iterate(1-1, square, square(3))
— iterate(@, square, square(3))

— iterate(@, square, 3 * 3)

— iterate(@, square, 9)

— if @ == 0 then 9 else iterate(0-1, square, square(9)) — 9



Observation:

Rewriting can be done anywhere in a term, and all rewritings which
terminate lead to the same solution.

This is an important result of the A-calculus, the theory behind functional
programming.

Example:

if 1 == @ then 3 else iterate(1 - 1, square, square(3))



Observation:

Rewriting can be done anywhere in a term, and all rewritings which
terminate lead to the same solution.

This is an important result of the A-calculus, the theory behind functional
programming.

Example:

if 1 == @ then 3 else iterate(1 - 1, square, square(3))

iterate(@, square, square(3)) if 1 == @ then 3
else iterate(1 - 1, square, 3 * 3)



Stateful Objects

One normally describes the world as a set of objects, some of which have
state that changes over the course of time.

An object has a state if its behavior is influenced by its history.

Example: a bank account has a state, because the answer to the question
“can | withdraw 100 CHF ?”

may vary over the course of the lifetime of the account.



Implementation of State

Every form of mutable state is constructed from variables.

A variable definition is written like a value definition, but with the keyword
var in place of val:

var x: String = ”abc”
var count = 111

Just like a value definition, a variable definition associates a value with a
name.

However, in the case of variable definitions, this association can be
changed later through an assignment, like in Java:

X = nhin

count = count + 1



State in Objects

In practice, objects with state are usually represented by objects that have
some variable members. For instance, here is a class modeling a bank
account.

class BankAccount:
private var balance = 0

def deposit(amount: Int): Unit =
if amount > @ then balance = balance + amount

def withdraw(amount: Int): Int =
if @ < amount && amount <= balance then
balance = balance - amount
balance
else throw Error(”insufficient funds”)



State in Objects (2)

The class BankAccount defines a variable balance that contains the current
balance of the account.

The methods deposit and withdraw change the value of the balance
through assignments.

Note that balance is private in the BankAccount class, it therefore cannot
be accessed from outside the class.

To create bank accounts, we use the usual notation for object creation:

val account = BankAccount()



Working with Mutable Objects

Here is a worksheet that manipulates bank accounts.

val account = BankAccount() // account: BankAccount = ...
account.deposit(50) //

account.withdraw(20) // : Int = 30

account.withdraw(20) // : Int =10

account.withdraw(15) // java.lang.Error: insufficient funds

Applying the same operation to an account twice in a row produces
different results. Clearly, accounts are stateful objects.



Statefulness and Variables

Remember the implementation of TailLazylList. Instead of using a lazy
val, we could also implement non-empty lazy lists using a mutable variable

def cons[T1(hd: T, tl: => TaillazylList[T]) = new TaillazylList[T]:
def head = hd

private var tlOpt: Option[TaillLazylList[T]] = None
def tail: T = tlOpt match
case Some(x) => x

case None => tlOpt = Some(tl); tail
Question: Is the result of cons a stateful object?

0 Yes
0 No



Statefulness and Variables

Remember the implementation of TailLazylList. Instead of using a lazy
val, we could also implement non-empty layz lists using a mutable variable:

def cons[T](hd: T, tl: => TaillazylList[T]) = new TaillazylList[T]:
def head = hd
private var tlOpt: Option[TaillLazylList[T]] = None
def tail: T = tlOpt match
case Some(x) => x
case None => tlOpt = Some(tl); tail

Question: Is the result of cons a stateful object?

0 Yes
No
X It depends: No, if the rest of the program is purely functional



Statefulness and Variables (2)

Consider the following class:

class BankAccountProxy(ba: BankAccount):
def deposit(amount: Int): Unit = ba.deposit(amount)
def withdraw(amount: Int): Int = ba.withdraw(amount)

Question: Are instances of BankAccountProxy stateful objects?

0 Yes
0 No



Statefulness and Variables (2)

Consider the following class:

class BankAccountProxy(ba: BankAccount):
def deposit(amount: Int): Unit = ba.deposit(amount)
def withdraw(amount: Int): Int = ba.withdraw(amount)

Question: Are instances of BankAccountProxy stateful objects?

X Yes
No



