
Example: Square roots with Newton’s
method

Principles of Functional Programming

Task

We will define in this session a function

/** Calculates the square root of parameter x */

def sqrt(x: Double): Double = ...

The classical way to achieve this is by successive approximations using
Newton’s method.

Method

To compute sqrt(x):

▶ Start with an initial estimate y (let’s pick y = 1).
▶ Repeatedly improve the estimate by taking the mean of y and x/y.

Example:

Estimation Quotient Mean

1 2 / 1 = 2 1.5

1.5 2 / 1.5 = 1.333 1.4167

1.4167 2 / 1.4167 = 1.4118 1.4142

1.4142

Implementation in Scala (1)

First, define a function which computes one iteration step

def sqrtIter(guess: Double, x: Double): Double =

if isGoodEnough(guess, x) then guess

else sqrtIter(improve(guess, x), x)

Note that sqrtIter is recursive, its right-hand side calls itself.
Recursive functions need an explicit return type in Scala.
For non-recursive functions, the return type is optional

Implementation in Scala (2)

Second, define a function improve to improve an estimate and a test to
check for termination:

def improve(guess: Double, x: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =

abs(guess * guess - x) < 0.001

Implementation in Scala (3)

Third, define the sqrt function:

def sqrt(x: Double) = sqrtIter(1.0, x)

Exercise

1. The isGoodEnough test is not very precise for small numbers and can
lead to non-termination for very large numbers. Explain why.

2. Design a different version of isGoodEnough that does not have these
problems.

3. Test your version with some very very small and large numbers, e.g.

0.001

0.1e-20

1.0e20

1.0e50

