
D
RA
FT

y +1/1/60+ y

Profs. Martin Odersky and Sanidhya Kashyap
CS-206 Parallelism and Concurrency
27.04.2022 from 14h15 to 15h45
Duration : 90 minutes

1
SCIPER : 1000001 ROOM: CO1

Ada Lovelace
Wait for the start of the exam before turning to the next page. This document is printed
double sided, 4 pages. Do not unstaple.

• This is a closed book exam. No electronic devices allowed.

• Place on your desk: your student ID, writing utensils place all other personal items below your desk
or on the side.

• You each have a different exam. For technical reasons, do use black or blue pens for the MCQ
part, no pencils! Use white corrector if necessary.

• Your Time: All points are not equal: we do not think that all exercises have the same difficulty,
even if they have the same number of points.

• Your Attention: The exam problems are precisely and carefully formulated, some details can be
subtle. Pay attention, because if you do not understand a problem, you cannot obtain full points.

• The two last pages of this exam contains an appendix. Do not detach this sheet.

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y



D
RA
FT

y +1/2/59+ y
First part: single choice questions

Each question has exactly one correct answer. Marking only the box corresponding to the correct answer
will get you 4 points. Otherwise, you will get 0 points for the question.

Question 1 What are the possible values of the variable sum after the execution of the snippet below?

1 var sum = 0

2 val t1 = task {sum += 1}

3 val t2 = task {sum += 1}

4 t1.join()

5 t2.join()

{1, 2}

{2}

{0}

{1}

{0, 2}

{0, 1, 2}

Second part: yes/no questions

The answer of each question is either “Yes”, either “No”. Marking only the box corresponding to the
correct answer will get you 2 points. Marking only the wrong answer will get you -1 point. Otherwise, you
will get 0 point for the question.

Question 2 Can the following snippet result in a deadlock?

1 class Account(private var amount: Int = 0) extends Monitor:

2 def transfer(target: Account, n: Int) =

3 this.synchronized {

4 target.synchronized {

5 this.amount -= n

6 target.amount += n

7 }

8 }

9
10 val a = new Account(50)

11 val b = new Account(70)

12 val t1 = task { a.transfer(b, 10) }

13 val t2 = task { b.transfer(a, 10) }

14 t1.join()

15 t2.join()

Yes No

Third part, open questions

...

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y



D
RA
FT

y +1/3/58+ y
Appendix: Scala and Java Standard Library Methods

Here are the prototypes of some Scala and Java classes that you might find useful:

// Represents optional values. Instances of Option are either an instance of

// scala.Some or the object None.

abstract class Option[A]:

// Returns the option’s value if the option is an instance of scala.Some, or

// throws an exception if the option is None.

def get: A

// Returns true if the option is an instance of scala.Some, false otherwise.

// This is equivalent to:

// option match

// case Some(v) => true

// case None => false

def isDefined: Boolean

abstract class Iterable[+A]:

// Selects all elements except first n ones.

def drop(n: Int): Iterable[A]

// Selects all elements of this iterable collection which satisfy a predicate.

def filter(pred: (A) => Boolean): Iterable[A]

// Apply f to each element for its side effects.

def foreach[U](f: (A) => U): Unit

// The size of this collection.

def size: Int

// Selects the first n elements.

def take(n: Int): Iterable[A]

abstract class List[+A] extends Iterable[A]:

// Adds an element at the beginning of this list.

def ::[B >: A](elem: B): List[B]

// Get the element at the specified index.

def apply(n: Int): A

// Selects all elements of this list which satisfy a predicate.

def filter(pred: (A) => Boolean): List[A]

abstract class Vector[+A] extends Iterable[A]:

// Get the element at the specified index.

def apply(n: Int): A

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y



D
RA
FT

y +1/4/57+ y
// An int value that may be updated atomically.

// The constructor takes the initial value at its only argument. For example,

// this create an ‘AtomicInteger‘ with an initial value of ‘42‘:

// val myAtomicInteger = new AtomicInteger(42)

abstract class AtomicInteger:

// Atomically adds the given value to the current value.

def addAndGet(delta: Int): Boolean

// Atomically sets the value to the given updated value if the current value

// == the expected value. Returns true if the change is successful, or false

// otherwise. This is an atomic operation.

def compareAndSet(oldvalue: Int, newvalue: Int): Boolean

// Gets the current value. This is an atomic operation.

def get(): Int

// Atomically increments by one the current value. This is an atomic operation.

def incrementAndGet(): Int

// A concurrent hash-trie or TrieMap is a concurrent thread-safe lock-free

// implementation of a hash array mapped trie.

abstract class TrieMap[K, V]:

// Retrieves the value which is associated with the given key. Throws a

// NoSuchElementException if there is no mapping from the given key to a

// value.

def apply(key: K): V

// Tests whether this map contains a binding for a key.

def contains(key: K): Boolean

// Applies a function f to all elements of this concurrent map. This function

// iterates over a snapshot of the map.

def foreach: Iterator[K]

// Optionally returns the value associated with a key.

def get(key: K): Option[V]

// Collects all key of this map in an iterable collection. The result is a

// snapshot of the values at a specific point in time.

def keys: Iterator[K]

// Transforms this map by applying a function to every retrieved value. This

// returns a new map.

def mapValues[W](f: V => W): TrieMap[K, V]

// Associates the given key with a given value, unless the key was already

// associated with some other value. This is an atomic operation.

def putIfAbsent(k: K, v: V): Option[V]

// Removes a key from this map, returning the value associated previously with

// that key as an option.

def remove(k: K): Option[V]

// Removes the entry for the specified key if it’s currently mapped to the

// specified value. This is an atomic operation.

def remove(k: K, v: V): Boolean

// Replaces the entry for the given key only if it was previously mapped to a

// given value. Returns true if the change is successful, or false otherwise.

// This is an atomic operation.

def replace(k: K, oldvalue: V, newvalue: V): Boolean

// Adds a new key/value pair to this map.

def update(k: K, v: V): Unit

// Collects all values of this map in an iterable collection. The result is a

// snapshot of the values at a specific point in time.

def values: Iterator[V]

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y


