CS206 Concurrency and Parallelism

Martin Odersky and Sanidhya Kashyap

EPFL, Spring 2022

Martin Odersky and Sanidhya Kashyap €S206 Concurrency and Parallelism

Topics covered in this lecture

@ What is the meaning of concurrency?
@ Basic constructs to handle concurrency?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 2/49

A Surprising Program

var a, b false
var x, y = -1
val t1 = thread {
Thread.sleep(1)
a = true
y = if b then 0 else 1
}
val t2 = thread {
Thread.sleep(1)
b = true
x = if a then O else 1

© 00 N O Ok W N =

=
= O

[
N

}
tl.join(); t2.join()
assert(!(x == 1 && y == 1))

= e
N

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 3/49

Enumerating Executions Intuitively

o Possibility I:

o tl writes true to a

o t1 reads b and sees false — writes 1 to y
o t2 writes true to b

o t2 reads a and sees true — writes 0 to x

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4/49

Enumerating Executions Intuitively

o Possibility I:

o tl writes true to a

o t1 reads b and sees false — writes 1 to y
o t2 writes true to b

o t2 reads a and sees true — writes 0 to x

@ Possibility Il: same as I, with t1 and t2 reversed (x = 1, y = 0)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4/49

Enumerating Executions Intuitively

o Possibility I:

o tl writes true to a

o t1 reads b and sees false — writes 1 to y
o t2 writes true to b

o t2 reads a and sees true — writes 0 to x

@ Possibility Il: same as I, with t1 and t2 reversed (x = 1, y = 0)

o Possibility I

t1 writes true to a
t2 writes true to b
t1 reads b and sees true — writes 0 to y

]
)
o
o t2 reads a and sees true — writes 0 to x

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4/49

Enumerating Executions Intuitively

Possibility I:

o tl writes true to a

o t1 reads b and sees false — writes 1 to y
o t2 writes true to b

o t2 reads a and sees true — writes 0 to x

@ Possibility Il: same as I, with t1 and t2 reversed (x = 1, y = 0)

Possibility Il1:

e t1 writes true to a
e t2 writes true to b
o t1 reads b and sees true — writes O to y
o t2 reads a and sees true — writes 0 to x

Conclusion: there is no execution in whichx =1 andy =1

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4/49

Surprising Result

However, upon running the previous program many times, we get occasional
executions in which x = 1 and y = 1 — the assert statement sometimes crashes
the program.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 5/49

Surprising Result

However, upon running the previous program many times, we get occasional
executions in which x = 1 and y = 1 — the assert statement sometimes crashes

the program.
Something is wrong with our intuition of concurrent programming.

Let’s rebuild our intuition about concurrency, starting from the basic principles.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 5/49

Goals of a Concurrent Programming Model

Every concurrent programming model must answer two questions:
© How to express that two executions are concurrent?

@ Given a set of concurrent executions, how can they exchange information
(i.e. synchronize)?

In what follows, we will answer these two questions in the context of the JVM
concurrency model.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 6/49

The thread notation starts a new thread — a concurrent execution.

thread {

a = true

y = if b then O else 1
}

The thread function is implemented as follows:

def thread(body: => Unit): Thread =
val t = new Thread:
override def run() = body
t.start()
t

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 7/49

Why Threads?

Why do we need threads? Why not just program with CPUs directly?

at (CPU1) {
a = true
y = if b then O else 1

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 8/49

Why Threads?

Why do we need threads? Why not just program with CPUs directly?

at (CPU1) {

a = true

y = if b then O else 1
}

Several reasons:

@ portability — number of available processors varies (not every computer has
a CPU1)

@ number of concurrent entities in a program can be much larger than the
number of CPUs

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 8/49

Thread as an Abstraction

Principle: threads are resrouce (CPU/mem) abstraction that express
opportunities for concurrency.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 9/49

Thread as an Abstraction

Principle: threads are resrouce (CPU/mem) abstraction that express
opportunities for concurrency.

To start a thread:

@ Define what a thread does (on the JVM, create a Thread object and
override run).

@ Start a thread instance (on the JVM, call start on the Thread object).

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 9/49

Thread Under-the-Hood

A thread image in memory contains:

@ copies of processor registers
@ the call stack (default size: ~2MB)

Hence, we cannot have more than a couple of thousand threads per VM.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 10/49

Cores, Processes, Threads

How do the threads get assigned to CPUs under-the-hood?

CPU Core 1 CPU Core 2
» < =
0S
Process 1 Process 2 Process 3
| Thread 1 | | Thread 1 | | Thread 1 |
| Thread 2 | | Thread 2 | | Thread 2 | "t

Memory Memory Memory Memory

reserved reserved reserved
for Process 1 for Process 2 ifor Process 3i

User program instances are separated into processes, which have separate

memory spaces.
Each process can have multiple threads, and starts with one main thread.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism

Role of the OS

The operating system eventually assigns threads to processes (the OS guarantees
liveness).

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 12 /49

Role of the OS

The operating system eventually assigns threads to processes (the OS guarantees
liveness).

Two approaches:

@ cooperative multitasking — a program has to explicitly give control (yield)
back to the OS (think Windows 3.1)

@ preemptive multitasking — the OS has a hardware timer that periodically

interrupts the running thread, and assigns different thread to the CPU (time
slices usually ~10 ms)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 12/49

Example Thread Program

def log(msg: String) = println(s"${Thread.currentThread}: $msg")

log("Creating a new thread.")

val t = thread {
log("New thread still running.")
Thread.sleep(1000)
log("Completed.")

}

The Thread.sleep statement pauses the thread, and revives after the specified
period in milliseconds.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 13/49

Example Thread Program

def log(msg: String) = println(s"${Thread.currentThread}: $msg")

log("Creating a new thread.")

val t = thread {
log("New thread still running.")
Thread.sleep(1000)
log("Completed.")

}

The Thread.sleep statement pauses the thread, and revives after the specified
period in milliseconds.

The program above is deterministic, but this is not generally so.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 13/49

Non-Deterministic Programs

Given the same input, the program output is not unique between multiple runs.

Omain def ThreadsNonDeterminism =
val t = thread {
log("New thread running")

}
log("...")
log("...")

}

We call such programs non-deterministic.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 14 /49

Synchronization

The second requirement of a concurrent programming model is synchronization.
On JVM, threads synchronize through shared memory.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 15/49

Synchronization

The second requirement of a concurrent programming model is synchronization.
On JVM, threads synchronize through shared memory.

Some problems with shared memory synchronization:

@ Interleaving and race conditions
o Deadlocks
o Data races

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 15/49

Thread Joining

One of the basic forms of synchronization.
The call t.join() lets the calling thread wait until thread t has terminated.

Omain def ThreadsStart =
class MyThread extends Thread:
override def run(): Unit =
println(s"New thread running")
val t = new MyThread()
t.start()
t.join()
println(s"New thread joined")

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 16 /49

Thread Joining

One of the basic forms of synchronization.
The call t.join() lets the calling thread wait until thread t has terminated.

Omain def ThreadsStart =
val t = thread { println(s"New thread running") }
t.join()
println(s"New thread joined")

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 17 /49

Start and Join - Diagrammatically

main thread

—+

val t = new MyThread -+

t.start() ———\

t.join() =+

println(”New thread running.”)

println(”New thread joined.”) o

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism

Guarantees When Joining Threads

When join returns, the effects of the terminated thread are visible to the thread
that called join.

Omain def ThreadsStart =
var a = false
val t = thread {
a = true

}
t.join()
assert(a)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 19/49

Guarantees When Joining Threads

When join returns, the effects of the terminated thread are visible to the thread
that called join.

Omain def ThreadsStart =
var a = false
val t = thread {
a = true

}
t.join()
assert(a)

However, join is not useful enough — it always demands that the target thread
terminates.

How to see the effects of another thread that did not yet terminate?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 19/49

Interleaving

Consider the problem of implementing a concurrent UID generator.

object GetUID:
var uidCount = 0
def getUniqueId() =
val freshUID = uidCount + 1
uidCount = freshUID
freshUID

Is it true that every call to getUniqueUID will yield a unique number?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 20/49

Interleaving

Let's put it to the test

@main def ThreadsGetUID =
def printUniquelds(n: Int): Unit =

val uids = for i <- 0 until n yield GetUID.getUniqueId()
log(s"Generated uids: $uids")

val t = thread { printUniquelds(5) }
printUniquelds(5)
t.join()

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 21/49

Sample Test Output

> java ThreadsGetUID

Thread[main,5,main] : Generated uids: Vector(i, 3, 4, 6, 8)
Thread[Thread-0,5,main] : Generated uids: Vector(2, 5, 7, 9, 10)
> java ThreadsGetUID

Thread [Thread-0,5,main] : Generated uids: Vector(i, 2, 3, 4, 5)
Thread[main,5,main] : Generated uids: Vector(6, 7, 8, 9, 10)

> java ThreadsGetUID

Thread [Thread-0,5,main] : Generated uids: Vector(i, 2, 3, 4, 5)
Thread[main,5,main] : Generated uids: Vector(6, 7, 8, 9, 10)

s> java ThreadsGetUID

Thread[main,5,main] : Generated uids: Vector(i, 2, 3, 4, 5)
Thread[Thread-0,5,main] : Generated uids: Vector(6, 7, 8, 9, 10)
> java ThreadsGetUID

Thread[Thread-0,5,main] : Generated uids: Vector(i, 2, 4, 6, 8)
Thread[main,5,main] : Generated uids: Vector(i, 3, 5, 7, 9)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 22 /49

Interleaving

We observe:

@ Most runs produce different sequences of IDs.
@ In most runs, threads share some IDs but not others.

How can we explain this?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 23 /49

Interleavin

We observe:

@ Most runs produce different sequences of IDs.
@ In most runs, threads share some IDs but not others.

How can we explain this?

main thread t

val freshUid = 0@ + 1

IS S —4--val freshUid = 0 + 1

uidCount = 1---=f=---ommmmmmoeeooeey|

......................... —-uidCount = 1

uidCount: 1

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism

main thread t

uidCount: @
val freshUid = 0 + 1=

uidCount: ©
IS —4--val freshUid = 0 + 1

uidCount: @
uidCount = Lo
uidCount: 1
......................... —--uidCount =1

uidCount: 1

The scenario shown in the previous figure is called a race condition.

A race condition occurs when the behavior of the system depends on the
interleaving of executions.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism

Atomic Execution

We would like to ensure that all operations of getUniqueId are performed
atomically, without another thread reading or writing intermediate results.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 25/49

Atomic Execution

We would like to ensure that all operations of getUniqueId are performed
atomically, without another thread reading or writing intermediate results.

This can be achieved by wrapping a block in a synchronized call:

object GetUID extends Monitor:
var uidCount = 0
def getUniqueId() = synchronized {
val freshUID = uidCount + 1
uidCount = freshUID
freshUID

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 25/49

Atomic Execution

main thread t
uidCount: 0 l
this. h ized [SRR SR .
1e-synehronized i . this.synchronized {
uidCount: © ‘oo
val freshUid = 0 + 1 B '
uidCount: 0O .52
uidCount = 1 B v

} // lock released
--val freshUid =1 + 1

--uidCount = 2

-} // lock released

uidCount: 2

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism

Synchronized statement

In Scala, synchronized is a member method of AnyRef. In the call:
obj.synchronized { block }
obj serves as a lock.

@ block can be executed only by thread t holds the lock.
@ At most one thread can hold a lock at any one time.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 27 /49

Synchronized statement

In Scala, synchronized is a member method of AnyRef. In the call:
obj.synchronized { block }
obj serves as a lock.

@ block can be executed only by thread t holds the lock.
@ At most one thread can hold a lock at any one time.

Consequently, if another thread is already running synchronized on the same
object (i.e. it holds the lock), then a thread calling synchronized gets
temporarily blocked, until the lock is released.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 27 /49

@ Having synchronized defined on any object imposes a significant runtime
cost.

@ So that’s generally considered a design mistake of Java.

@ Typically, we want provide synchronized (and associated operations such as
wait, notify) only for instances of a special class Monitor.

@ That's what the examples in this course segment do.

@ Our testing framework also requires to extend from Monitor since it
overrides synchronized.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 28 /49

Example: Money Transfers

The synchronized statements can nest, which allows composition.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 29 /49

Example: Money Transfers

The synchronized statements can nest, which allows composition.
Let's design an online banking system in which we want to log money transfers.
First, here is the code to collect log messages:

import scala.collection._

private val transfers = mutable.ArrayBuffer[String] ()

private val log = new Monitor {}

def logTransfer(name: String, n: Int) = log.synchronized {
transfers += s'"transfer to account $name = $n"

}

Note the synchronized, which is needed because += is not by itself atomic.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 29 /49

Accounts

Next, here is the class Account:

class Account(val name: String, initialBalance: Int) extends Monitor:
private var myBalance = initialBalance

def
def

}

val

balance: Int = this.synchronized { myBalance }
add(n: Int): Unit = this.synchronized {
myBalance += n

if n > 10 then logTransfer (name, n)

getUID = ThreadsGetUID.getUniqueId()

(we will need getUID later)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism

Finally, here is some code that simulates account movements:

val jane = new Account("Jane", 100)
val john = new Account("John", 200)
val t1 = thread { jane.add(5) }

val t2 = thread { john.add(50) }

val t3 = thread { jane.add(70) }
t1.join(); t2.join(); t3.join()
log(s"--- transfers ---\n$transfers")

Note the nested synchronized calls: First on add, then on logTransfer.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 31/49

Transfers

Let's add a method that transfers money from one account to another (as an
atomic action):

def transfer(a: Account, b: Account, n: Int) =
a.synchronized {
b.synchronized {
a.add(n)
b.add(-n)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 32/49

Testing Transfers

Test it as follows:

val jane = new Account("Jane", 1000)

val john = new Account("John", 2000)

log("started...")

val t1 = thread { for i <- 0 until 100 do transfer(jane, john, 1) }
val t2 = thread { for i <- 0 until 100 do transfer(john, jane, 1) }
t1.join(); t2.join();

log(s"john = ${john.balance}, jane = ${jane.balance}")

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 33/49

Testing Transfers

Test it as follows:

val jane = new Account("Jane", 1000)

val john = new Account("John", 2000)

log("started...")

val t1 = thread { for i <- 0 until 100 do transfer(jane, john, 1) }
val t2 = thread { for i <- 0 until 100 do transfer(john, jane, 1) }
t1.join(); t2.join();

log(s"john = ${john.balance}, jane = ${jane.balance}")

What behavior do you expect to see?

@ The program terminates with both accounts having the same balance at the
end as at the beginning.

@ The program terminates with accounts having a different balance.
© The program crashes.
@ The program hangs.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 33/49

Deadlocks

Here's a possible sequence of events:

def transfer(a: Account, b: Account, n: Int) =
a.synchronized {
b.synchronized {
a.add(n)
b.add(-n)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 34 /49

Deadlocks

Here's a possible sequence of events:

def transfer(a: Account, b: Account, n: Int) =
a.synchronized {
b.synchronized {
a.add(n)
b.add(-n)

}

A situation like this where no thread can make progress because each thread
waits on some lock is called a deadlock.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 34 /49

Preventing Deadlocks

In the previous example, a deadlock arose because two threads tried to grab two
locks in different order.

To prevent the deadlock, we can enforce that locks are always taken in the same
order by all threads.

Here's a way to do this:

def transfer(a: Account, b: Account, n: Int) =
def adjust() { a.add(n); b.add(-n) }
if a.getUID < b.getUID then
a.synchronized { b.synchronized { adjust() } }
else
b.synchronized { a.synchronized { adjust() } }

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 35/49

The fork and the synchronized statement allow serializing the execution of
different threads, but sometimes a thread needs to wait for a specific condition
(for example, a particular value of some variable).

In such cases, we need a synchronization primitive called a monitor.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 36 /49

The fork and the synchronized statement allow serializing the execution of
different threads, but sometimes a thread needs to wait for a specific condition
(for example, a particular value of some variable).

In such cases, we need a synchronization primitive called a monitor.

In Scala and Java, the synchronized statement has a dual purpose — it can be
used both as a lock and as a monitor.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 36 /49

The fork and the synchronized statement allow serializing the execution of
different threads, but sometimes a thread needs to wait for a specific condition
(for example, a particular value of some variable).

In such cases, we need a synchronization primitive called a monitor.

In Scala and Java, the synchronized statement has a dual purpose — it can be
used both as a lock and as a monitor.

Let's implement a commonly used synchronization data structure — a one-place
buffer.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 36 /49

One-Place Buffer

When using a one-place buffer, we will distinguish two roles a thread can have, a
producer, or a consumer.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 37/49

One-Place Buffer

When using a one-place buffer, we will distinguish two roles a thread can have, a
producer, or a consumer.

The one-place buffer has the following invariants:

producers send an element to the buffer.

consumers take an element from the buffer.

at most one element can be in the buffer at any one time.
If buffer is full, producers have to wait.

If buffer is empty, consumers have to wait.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 37/49

Implementation Schema

Here's an outline of class OnePlaceBuffer

import compiletime.unintialized
class OnePlaceBuffer[Elem] extends Monitor:
private var elem: Elem = uninitialized
private var full: Boolean = false
def put(e: Elem): Unit = synchronized {
if full then 777
else { elem = e; full = true }
}
def get(): Elem = synchronized {
if !full then 777
else { full = false; elem }

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 38/49

Implementation Schema

Here's an outline of class OnePlaceBuffer

import compiletime.unintialized
class OnePlaceBuffer[Elem] extends Monitor:
private var elem: Elem = uninitialized
private var full: Boolean = false
def put(e: Elem): Unit = synchronized {
if full then 777
else { elem = e; full = true }
}
def get(): Elem = synchronized {
if !full then 777
else { full = false; elem }
}

Question: How to implement the 777s?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 38/49

Busy Waiting

We could wait as follows:

class OnePlaceBuffer[Elem] extends Monitor:
private var elem: Elem = uninitialized
private var full: Boolean = false
def put(e: Elem) = while !tryToPut(e) do {}
def tryToPut(e: Elem): Boolean = synchronized {
if full then false
else { elem = e; full = true; true }

}
// similarly for get

This technique is called polling or busy waiting.

Problem: Consumes compute time while waiting.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 39/49

Wait and Notify

A monitor can be used for more than just locking. Every monitor object has the
following methods:

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 40 /49

Wait and Notify

A monitor can be used for more than just locking. Every monitor object has the
following methods:

wait () suspends the current thread,
notify() wakes up one other thread waiting on the current object,
notifyAll() wakes up all other thread waiting on the current object.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 40 /49

Wait and Notify

A monitor can be used for more than just locking. Every monitor object has the
following methods:

wait () suspends the current thread,
notify() wakes up one other thread waiting on the current object,
notifyAll() wakes up all other thread waiting on the current object.

Note: these methods can only be called from inside a synchronized statement.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 40 /49

Blocking Implementation

class OnePlaceBuffer[Elem] extends Monitor:
var elem: Elem = uninitialized; var full = false
def put(e: Elem): Unit = synchronized {
while full do wait()
elem = e; full = true; notifyAll()

def get(): Elem = synchronized {

while !full do wait()
full = false; notifyAll(); elem

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 41/49

Blocking Implementation

class OnePlaceBuffer[Elem] extends Monitor:
var elem: Elem = uninitialized; var full = false
def put(e: Elem): Unit = synchronized {
while full do wait()
elem = e; full = true; notifyAll()

def get(): Elem = synchronized {
while !full do wait()
full = false; notifyAll(); elem
}

Questions:

© Why notifyAll() instead of notify()?
@ Why while full do wait() instead of if full then wait()?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 41/49

The Fine Print

@ wait, notify and notifyAll should only be called from within a
synchronized on this

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 42 /49

The Fine Print

@ wait, notify and notifyAll should only be called from within a
synchronized on this

o wait will release the lock, so other threads can enter the monitor

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 42 /49

The Fine Print

@ wait, notify and notifyAll should only be called from within a
synchronized on this

o wait will release the lock, so other threads can enter the monitor

@ notify and notifyAll schedule other threads for execution after the
calling thread has released the lock (has left the monitor)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 42 /49

The Fine Print

@ wait, notify and notifyAll should only be called from within a
synchronized on this

o wait will release the lock, so other threads can enter the monitor

@ notify and notifyAll schedule other threads for execution after the
calling thread has released the lock (has left the monitor)

@ on the JVM runtime, it is possible that a thread calling wait sometimes
wakes up even if nobody called notify or notifyAll

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 42 /49

Visibility

While discussing fork and synchronized, we did not examine how they affect
the visibility of memory writes.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 43 /49

Visibility

While discussing fork and synchronized, we did not examine how they affect
the visibility of memory writes.

The join method ensures that all the writes of the joined thread are visible to
the thread that called join.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 43 /49

Visibility

While discussing fork and synchronized, we did not examine how they affect
the visibility of memory writes.

The join method ensures that all the writes of the joined thread are visible to
the thread that called join.

The synchronized statement ensures that all the writes by thread A preceding
the release of the lock by that thread A are visible to any thread B that
subsequently acquires the lock.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 43 /49

A Memory Model

A memory model is a set of rules that defines how and when the writes to
memory by one thread become visible to other threads.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 44 /49

A Memory Model

A memory model is a set of rules that defines how and when the writes to
memory by one thread become visible to other threads.

Consider our introductory example:

var a, b = false; var x, y = -1
val t1 = thread {
a = true
y = if b then O else 1
}
val t2 = thread {
b = true
x = if a then 0 else 1
}

t1.join(); t2.join()
assert(!(x == 1 & y == 1))

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 44 /49

Sequential Consistency Model

When we initially analyzed the introductory example, we assumed that every
read and write happens in the program order, and that every read and write goes
to main memory.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 45 /49

Sequential Consistency Model

When we initially analyzed the introductory example, we assumed that every
read and write happens in the program order, and that every read and write goes
to main memory.

That specific memory model is called the sequential consistency model.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 45 /49

Sequential Consistency Model

When we initially analyzed the introductory example, we assumed that every
read and write happens in the program order, and that every read and write goes
to main memory.

That specific memory model is called the sequential consistency model.

More formally:
Consider all the reads and writes to program variables. If the result
of the execution is the same as if the read and write operations were
executed in some sequential order, and the operations of each individual
processor appear in the program order, then the model is sequentially
consistent.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 45 /49

Unfortunately, as we saw in our experiment, multicore processors and compilers
do not implement the sequential consistency model.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 46 /49

Unfortunately, as we saw in our experiment, multicore processors and compilers
do not implement the sequential consistency model.

One reason are CPU registers, which hold local copies of memory values.
@ Each core might have a different copy of shared memory in its registers.
o Writing the registers back to main-memory happens at unpredictable times.

Another reason are optimizing compilers: they are generally allowed to reorder
instructions as if no other thread was watching.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 46 /49

The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship as
follows.

@ Program order: Each action in a thread happens-before every subsequent
action in the same thread.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 47 /49

The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship as
follows.

@ Program order: Each action in a thread happens-before every subsequent
action in the same thread.

@ Monitor locking: Unlocking a monitor happens-before every subsequent
locking of that monitor.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 47 /49

The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship as
follows.

@ Program order: Each action in a thread happens-before every subsequent
action in the same thread.

@ Monitor locking: Unlocking a monitor happens-before every subsequent
locking of that monitor.

@ Volatile fields: A write to a volatile field happens-before every subsequent
read of that field.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 47 /49

The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship as
follows.

@ Program order: Each action in a thread happens-before every subsequent
action in the same thread.

@ Monitor locking: Unlocking a monitor happens-before every subsequent
locking of that monitor.

@ Volatile fields: A write to a volatile field happens-before every subsequent
read of that field.

@ Thread start: A call to start() on a thread happens-before all actions of
that thread.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 47 /49

The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship as
follows.

@ Program order: Each action in a thread happens-before every subsequent
action in the same thread.

@ Monitor locking: Unlocking a monitor happens-before every subsequent
locking of that monitor.

@ Volatile fields: A write to a volatile field happens-before every subsequent
read of that field.

@ Thread start: A call to start() on a thread happens-before all actions of
that thread.

o Thread termination. An action in a thread happens-before another thread
completes a join on that thread.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 47 /49

The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship as
follows.

@ Program order: Each action in a thread happens-before every subsequent
action in the same thread.

@ Monitor locking: Unlocking a monitor happens-before every subsequent
locking of that monitor.

@ Volatile fields: A write to a volatile field happens-before every subsequent
read of that field.

@ Thread start: A call to start() on a thread happens-before all actions of
that thread.

o Thread termination. An action in a thread happens-before another thread
completes a join on that thread.

o Transitivity. If A happens before B and B happens-before C, then A
happens-before C.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 47 /49

The Java Memory Model ctd

Rule: if any two operations A and B are in a happens-before relationship, then B
is guaranteed to see the memory effects of A.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 48 /49

The Java Memory Model ctd

Rule: if any two operations A and B are in a happens-before relationship, then B
is guaranteed to see the memory effects of A.

Example:

var a = 0
var set = false

thread {
a=1
synchronized { set = true }
}
thread {
synchronized { if set then println(a) }
}

Can the second thread print 07

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 48 /49

Observing Reorderings

var a, b = false
var x, y = -1
val tl = thread {
synchronized { a = true }
synchronized { y = if b then 0 else 1 }
}

val t2 = thread {
synchronized { b = true }
synchronized { x = if a then O else 1 }
}
tl.join()
t2.join()
assert(!(x == 1) && (y == 1))

Will the assertion fail now?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 49 /49

