_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Persistent Actor State

Principles of Reactive Programming

Roland Kuhn



Persistent Actor State

Actors representing a stateful resource

> shall not lose important state due to (system) failure
» must persist state as needed
> must recover state at (re)start



Persistent Actor State

Actors representing a stateful resource

> shall not lose important state due to (system) failure
» must persist state as needed

> must recover state at (re)start
Two possibilities for persisting state:

> in-place updates
» persist changes in append-only fashion



Changes vs. Current State

Benefits of persisting current state:

» Recovery of latest state in constant time.
» Data volume depends on number of records, not their change rate.



Changes vs. Current State

Benefits of persisting current state:

» Recovery of latest state in constant time.
» Data volume depends on number of records, not their change rate.

Benefits of persisting changes: @

» History can be replayed, audited or restored.
» Some processing errors can be corrected retroactively. 4
Additional insight can be gained on business processes.

\ 4

\ 4

Writing an append-only stream optimizes |O bandwidth. ~
Changes are immutable and can freely be replicated. —

\ 4




Snapshots

Immutable snapshots can be used to bound recovery time.

@Jr@r
AN

— K 6\ Smdp:hm‘s

" /
ke >




Command-Sourcing

Command-Sourcing: Persist the command before processing it, persist
acknowledgement when processed.

< reply

actor

L og



Commands and Channels

During recovery

» all commands are replayed to recover state.
» a persistent Channel discards messages already sent to other actors.




Event-Sourcing

Event-Sourcing: Generate change requests (“events”) instead of modifying
local state; persist and apply them.



When to Apply the Events?

» Applying after persisting leaves actor in stale state.



When to Apply the Events?

» Applying after persisting leaves actor in stale state.
» Applying before persisting relies on regenerating during replay.



When to Apply the Events?

» Applying after persisting leaves actor in stale state.
» Applying before persisting relies on regenerating during replay.

Trading performance for consistency:

» Do not process new messages while waiting for persistence.



The Stash Trait

class UserProcessor extends Actor with Stash {
var state: State = ...
def receive = {
case NewPost(text) =>
emit(PostCreated(text), QuotaReached)
context.become(waiting(2), discardOld = false)
J
def waiting(n: Int): Receive = {
case e: kEvent =>
state = state.updated(e)
1f (n == 1) { context.unbecome(); unstashAll() }
else context.become(waiting(n - 1))
case _ => stash()



Summary

» Actors can persist incoming messages or generated events.
» Events can be replicated and used to inform other components.

» Recovery replays past commands or events; snapshots reduce this
cost.

» Actors can defer handling certain messages by using the Stash trait.



