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> must recover state at (re)start
Two possibilities for persisting state:

> in-place updates
» persist changes in append-only fashion
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» Data volume depends on number of records, not their change rate.
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Benefits of persisting changes: @

» History can be replayed, audited or restored.
» Some processing errors can be corrected retroactively. 4
Additional insight can be gained on business processes.
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Writing an append-only stream optimizes |O bandwidth. ~
Changes are immutable and can freely be replicated. —
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Snapshots

Immutable snapshots can be used to bound recovery time.
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Command-Sourcing

Command-Sourcing: Persist the command before processing it, persist
acknowledgement when processed.
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Commands and Channels

During recovery

» all commands are replayed to recover state.
» a persistent Channel discards messages already sent to other actors.




Event-Sourcing

Event-Sourcing: Generate change requests (“events”) instead of modifying
local state; persist and apply them.
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Trading performance for consistency:

» Do not process new messages while waiting for persistence.



The Stash Trait

class UserProcessor extends Actor with Stash {
var state: State = ...
def receive = {
case NewPost(text) =>
emit(PostCreated(text), QuotaReached)
context.become(waiting(2), discardOld = false)
J
def waiting(n: Int): Receive = {
case e: kEvent =>
state = state.updated(e)
1f (n == 1) { context.unbecome(); unstashAll() }
else context.become(waiting(n - 1))
case _ => stash()



Summary

» Actors can persist incoming messages or generated events.
» Events can be replicated and used to inform other components.

» Recovery replays past commands or events; snapshots reduce this
cost.

» Actors can defer handling certain messages by using the Stash trait.



