_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Designing Actor Systems

Programming Reactive Systems

Roland Kuhn



Starting Out with the Design

Imagine giving the task to a group of people, dividing it up.
Consider the group to be of very large size.

Start with how people with different tasks will talk with each other.
Consider these “people” to be easily replaceable!.

Draw a diagram with how the task will be split up, including
communication lines.

'This is where our abstract people differ from real people.



Example: the Link Checker

Write an actor system which given a URL will recursively download the
content, extract links and follow them, bounded by a maximum depth; all
links encountered shall be returned.



Plan of Action

» Write web client which turns a URL into a HT TP body
asynchronously.
We will be using ”com.ning” % ”async-http-client” % ”1.7.19”

» Write a Getter actor for processing the body.
» Write a Controller which spawns Getters for all links encountered.

» Write a Receptionist managing one Controller per request.



The Web Client (1)

Let us start simple:

val client = new AsyncHttpClient
def get(url: String): String = {
val response = client.prepareGet(url).execute().get
1f (response.getStatusCode < 400)
response.getResponseBodyExcerpt(131072)
else throw BadStatus(response.getStatusCode)



The Web Client (1)

Let us start simple:

val client = new AsyncHttpClient
def get(url: String): String = {
val response = client.prepareGet(url).execute().get
1f (response.getStatusCode < 400)
response.getResponseBodyExcerpt(131072)
else throw BadStatus(response.getStatusCode)

Blocks the calling actor until the web server has replied:

» actor is deaf to other requests, e.g. cancellation does not work
» wastes one thread—a finite resource



The Web Client (2)

private val client = new AsyncHttpClient
def get(url: String)(implicit exec: Executor): Future[String] = {
val f = client.prepareGet(url).execute();
val p = Promise[Stringl()
f.addListener(new Runnable {
def run = {
val response = f.get
1f (response.getStatusCode < 400)
p.success(response.getResponseBodyExcerpt(131072))
else p.failure(BadStatus(response.getStatusCode))

¥

}, exec)
p.future



What we learned so far

> A reactive application is non-blocking & event-driven top to bottom.



Finding Links

// using ”org.jsoup” % ”jsoup” % ”1.8.1”
1mport org.jsoup.Jsoup

import import scala.collection.JavaConverters._

def findLinks(body: String): Iterator[String] = {
val document = Jsoup.parse(body, url)
val links = document.select(”alhref]”)
for {
link <- links.1iterator().asScala
} yield link.absUrl(”href”)



The Getter Actor (1)

class Getter(url: String, depth: Int) extends Actor {
implicit val exec = context.dispatcher

val future = WebClient.get(url)
future onComplete {
case Success(body) => self ! body
case Failure(err) => self ! Status.Failure(err)



The Getter Actor (2)

class Getter(url: String, depth: Int) extends Actor {
implicit val exec = context.dispatcher

val future = WebClient.get(url)
future.pipeTo(self)



The Getter Actor (3)

class Getter(url: String, depth: Int) extends Actor {
implicit val exec = context.dispatcher

WebClient get url pipeTo self



The Getter Actor (4)

class Getter(url: String, depth: Int) extends Actor {

def receive = {
case body: String =>
for (link <- findLinks(body))
context.parent ! Controller.Check(link, depth)

stop()
case _: Status.Failure => stop()

J
def stop(): Unit = {

context.parent ! Done
context.stop(self)



What we learned so far

> A reactive application is non-blocking & event-driven top to bottom.
» Actors are run by a dispatcher—potentially shared—which can also
run Futures.



Actor-Based Logging

Logging includes |O which can block indefinitely

Akka's logging passes that task to dedicated actors

supports ActorSystem-wide levels of debug, info, warning, error
set level using setting akka.loglevel=DEBUG (for example)

vV v v YV

class A extends Actor with ActorlLogging {
def receive = {

case msg => log.debug(”received message: {}”, msg)



The Controller

class Controller extends Actor with ActorLogging {
var cache = Set.empty[String]
var children = Set.empty[ActorRef]
def receive = {
case Check(url, depth) =>
log.debug(”{} checking {}”, depth, url)
1f (!cache(url) && depth > 0)
children += context.actorOf(Props(new Getter(url, depth - 1)))
cache += url

case Getter.Done =>
children -= sender

1f (children.isEmpty) context.parent ! Result(cache)



What we learned so far

> A reactive application is non-blocking & event-driven top to bottom.

» Actors are run by a dispatcher—potentially shared—which can also
run Futures.

» Prefer immutable data structures, since they can be shared.



Handling Timeouts

import scala.concurrent.duration._

class Controller extends Actor with ActorLogging {
context.setReceiveTimeout(10.seconds)

def receive = {

case Check(...) => ...

case Getter.Done => ...

case ReceiveTimeout => children foreach (_ ! Getter.Abort)
J

The receive timeout is reset by every received message.



Handling Abort in the Getter

class Getter(url: String, depth: Int) extends Actor {

def receive = {
case body: String =>
for (link <- findLinks(body)) ...

stop()
case _: Status.Failure => stop()
case Abort => stop()

J
def stop(): Unit = {

context.parent ! Done
context.stop(self)



The Scheduler

Akka includes a timer service optimized for high volume, short durations
and frequent cancellation.

trait Scheduler {

def scheduleOnce(delay: FiniteDuration, target: ActorRef, msg: Any)
(implicit ec: ExecutionContext): Cancellable

def scheduleOnce(delay: FiniteDuration)(block: => Unit)
(implicit ec: ExecutionContext): Cancellable

def scheduleOnce(delay: FiniteDuration, run: Runnable)
(implicit ec: ExecutionContext): Cancellable

. // the same for repeating timers



Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {

import context.dispatcher

var children = Set.empty[ActorRef]

context.system.sc
children foreac

neduler.scheduleOnce(10.seconds) {

n (_ ! Getter.Abort)



Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {
import context.dispatcher
var children = Set.empty[ActorRef]
context.system.scheduler.scheduleOnce(19.seconds) {
children foreach (_ ! Getter.Abort)

SR

Question: What is the problem with this code?

O 1t does not compile
O it 1s not thread-safe

O the scheduled code will not run



Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {
import context.dispatcher
var children = Set.empty[ActorRef]
context.system.scheduler.scheduleOnce(19.seconds) {
children foreach (_ ! Getter.Abort)

Accessing an actor’s state from outside its execution breaks encapsulation.



Adding an Overall Timeout (2)

class Controller extends Actor with ActorLogging {
import context.dispatcher
var children = Set.empty[ActorRef]
context.system.scheduler.scheduleOnce(10.seconds, self, Timeout)

def receive = {

case Timeout => children foreach (_ ! Getter.Abort)



How Actors and Futures Interact (1)

Future composition methods invite closing over the actor's state:

class Cache extends Actor {

var cache = Map.empty[String, String]
def receive = {
case Get(url) =>
1f (cache contains url) sender ! cache(url)
else
WebClient get url foreach { body =>
cache += url -> body
sender ! body



How Actors and Futures Interact (2)

class Cache extends Actor {

var cache = Map.empty[String, String]
def receive = {
case Get(url) =>
1f (cache contains url) sender ! cache(url)
else
WebClient get url map (Result(sender, url, _)) pipeTo self
case Result(client, url, body) =>

cache += url -> body
client ! body



How Actors and Futures Interact (3)

class Cache extends Actor {

var cache = Map.empty[String, String]
def receive = {
case Get(url) =>
1f (cache contains url) sender ! cache(url)
else {
val client = sender
WebClient get url map (Result(client, url, _)) pipeTo self
J

case Result(client, url, body) =>

cache += url -> body
client ! body



What we learned so far

> A reactive application is non-blocking & event-driven top to bottom.

» Actors are run by a dispatcher—potentially shared—which can also
run Futures.

» Prefer immutable data structures, since they can be shared.
» Do not refer to actor state from code running asynchronously.



The Receptionist (1)

class Receptionist extends Actor {
def receive = waiting

val waiting: Receive = {
// upon Get(url) start a traversal and become running

def running(queue: Vector[Job]): Receive = {

// upon Get(url) apppend that to queue and keep running
// upon Controller.Result(links) ship that to client
// and run next job from queue (if any)




The Receptionist (2)

case class Job(client: ActorRef, url: String)
var regNo = 0
def runNext(queue: Vector[Job]): Receive = {

regNo += 1
1f (queue.isEmpty) waiting
else {
val controller = context.actorOf(Props[Controller], s”c )

controller ! Controller.Check(queue.head.url, 2)
running(queue)

regNo permeates all states but does not qualitatively change behavior: an
example for when using var may benefit.



The Receptionist (3)

def enqueueJob(queue: Vector[Job], job: Job): Receive = {
1f (queue.size > 3) {
sender ! Failed(job.url)
running(queue)
} else running(queue :+ job)



The Receptionist (4)

val waiting: Receive = {
case Get(url) => context.become(runNext(Vector(Job(sender, url))))

def running(queue: Vector[Job]): Receive = {

case Controller.Result(links) =>
val job = queue.head
job.client ! Result(job.url, links)
context.stop(sender)
context.become(runNext (queue.tail))

case Get(url) =>
context.become(enqueueJob(queue, Job(sender, url)))



Summary

> A reactive application is non-blocking & event-driven top to bottom.

» Actors are run by a dispatcher—potentially shared—which can also
run Futures.

» Prefer immutable data structures, since they can be shared.

» Prefer context.become for different states, with data local to the
behavior.

» Do not refer to actor state from code running asynchronously.



