_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Introduction: Why Actors?

Principles of Reactive Programming

Roland Kuhn



Where Actors came from

A selection of events in the history of Actors:

Carl Hewitt et al, 1973: Actors invented for research on artificial
intelligence

Gul Agha, 1986: Actor languages and communication patterns

Ericsson, 1995: first commercial use in Erlang/OTP for
telecommunications platform

Philipp Haller, 2006: implementation in Scala standard library
Jonas Bonér, 2009: creation of Akka



Threads

CPUs are not getting faster anymore, they are getting wider:

» multiple execution cores within one chip, sharing memory
» virtual cores sharing a single physical execution core



Threads

CPUs are not getting faster anymore, they are getting wider:

» multiple execution cores within one chip, sharing memory
» virtual cores sharing a single physical execution core

Programs running on the computer must feed these cores:

> running multiple programs in parallel (multi-tasking)
> running parts of the same program in parallel (multi-threading)



Example: Bank Account

class BankAccount {
private var balance = 0

def deposit(amount: Int): Unit =
1f (amount > @) balance = balance + amount

def withdraw(amount: Int): Int =
1f (0 < amount && amount <= balance) {
palance = balance - amount

palance
} else throw new Error(”insufficient funds”)



Example: Bank Account

/ JIPA
def withdraw(amount: Int): Int = { OWV\()W:[— 50 "y
val b = balance bQLOlV\CE’_ 20 20
1f (0 < amount && amount <= b) {
val newBalance = b - amount ﬂewBa(awce 30 L(-O
balance = newBalance balance 350 g%/ t0
newBalance
} else {
throw new Error(”insufficient funds”)
J

¥

Executing this twice in parallel can violate the invariant and lose updates.



Synchronization

Multiple threads stepping on each others’ toes:

» demarcate regions of code with “don't disturb” semantics
» make sure that all access to shared state is protected




Synchronization

Multiple threads stepping on each others’ toes:

» demarcate regions of code with “don't disturb” semantics
» make sure that all access to shared state is protected

Primary tools: lock, mutex, semaphore



Synchronization

Multiple threads stepping on each others’ toes:

» demarcate regions of code with “don't disturb” semantics
» make sure that all access to shared state is protected

Primary tools: lock, mutex, semaphore

In Scala every object has a lock: synchronized(obj) { ... }



Bank Account with Synchronization

class BankAccount {
private var balance = 0
def deposit(amount: Int): Unit = synchronized(this) {

1f (amount > @) balance = balance + amount

def withdraw(amount: Int): Int = synchronized(this) {
1f (0 < amount && amount <= balance) {
nalance = balance - amount

palance
} else throw new Error(”insufficient funds”)



Composition of Synchronized Objects

def transfer(from: BankAccount, to: BankAccount, amount: Int): Unit = {
synchronized(from) {
synchronized(to) {
from.withdraw(amount)
to.deposit(amount)



Composition of Synchronized Objects

def transfer(from: BankAccount, to: BankAccount, amount: Int): Unit = {
synchronized(from) {
synchronized(to) {
from.withdraw(amount)
to.deposit(amount)

Introduces Dead-Lock:

» transfer(accountA, accountB, x) in one thread
» transfer(accountB, accountA, y) in another thread
» one lock taken by each, nobody can progress



We want Non-Blocking Objects

» blocking synchronization introduces dead-locks
» blocking is bad for CPU utilization
» synchronous communication couples sender and receiver



