
D
RA
FT

y +1/1/60+ y

Profs. Martin Odersky and Sanidhya Kashyap
CS-206 Parallelism and Concurrency
27.04.2022 from 14h15 to 15h45
Duration : 90 minutes

1
SCIPER : 1000001 ROOM: CO1

Ada Lovelace
Wait for the start of the exam before turning to the next page. This document is printed
double sided, 16 pages. Do not unstaple.

• This is a closed book exam. No electronic devices allowed.

• Place on your desk: your student ID, writing utensils place all other personal items below your desk
or on the side.

• You each have a different exam. For technical reasons, do use black or blue pens for the MCQ
part, no pencils! Use white corrector if necessary.

• Your Time: All points are not equal: we do not think that all exercises have the same difficulty,
even if they have the same number of points.

• Your Attention: The exam problems are precisely and carefully formulated, some details can be
subtle. Pay attention, because if you do not understand a problem, you cannot obtain full points.

• The two last pages of this exam contains an appendix. Do not detach this sheet.

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/2/59+ y
First part: single choice questions

Each question has exactly one correct answer. Marking only the box corresponding to the correct answer
will get you 4 points. Otherwise, you will get 0 points for the question.

Function parallel3 is a variation of the parallel construct seen in class:

1 def parallel3[A, B, C](op1: => A, op2: => B, op3: => C): (A, B, C) =

2 val res1 = task { op1 }

3 val res2 = task { op2 }

4 val res3 = op3

5 (res1.join(), res2.join(), res3)

Consider the following code that uses the parallel3 function:

1 def find(arr: Array[Int], value: Int, threshold: Int): Option[Int] =

2 def findHelper(start: Int, end: Int): Option[Int] =

3 if end - start <= threshold then
4 var i = start

5 while i < end do
6 if arr(i) == value then
7 return Some(value)

8 i += 1

9 None

10 else
11 val inc = (end - start) / 3

12 val (res1, res2, res3) = parallel3(

13 findHelper(start, start + inc),

14 findHelper(start + inc, start + 2 * inc),

15 findHelper(start + 2 * inc, end)

16)

17 res1.orElse(res2).orElse(res3)

18 findHelper(0, arr.length)

Question 1 How many time will task be called when running find with the following arguments?

1 find(Array(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), 18, 3)

9

3

15

6

0

10

5

16

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/3/58+ y
Question 2 Define f and g such that find_aggregated computes the same result as the findmethod:

1 def findAggregated(arr: Array[Int], value: Int): Option[Int] =

2 val no: Option[Int] = None

3 val yes: Option[Int] = Some(value)

4 arr.par.aggregate(no)(f, g)

def f = (x1: Int, x2: Option[Int]) => if (x1 == value) yes else Some(x1)

def g = (x1: Int, x2: Int) => if (x1 != value) x2 else x1

def f = (x1: Option[Int], x2: Int) => if (x2 == value) Some(x2) else x1

def g = (x1: Option[Int], x2: Option[Int]) => if (x1 != None) x1 else x2

def f = (x1: Option[Int], x2: Option[Int]) => if (x1 == yes) x2 else x1

def g = (x1: Option[Int], x2: Option[Int]) => if (x1 == None) x2 else x1

def f = (arg1: Option[Int], x2: Int) => if (x2 == value) value else arg1

def g = (x1: Option[Int], x2: Option[Int]) => if (x2 != None) x1 else x2

def f = (arg1: Int, arg2: Int) => if (arg1 == value) Some(arg1) else arg2

def g = (x1: Option[Int], x2: Option[Int]) => if (x2 != None) x1 else x2

def f = (x: Option[Int], y: Option[Int]) => if (x != yes) None else yes

def g = (x: Option[Int], y: Option[Int]) => if (x == None) y else x

def f = (x1: Option[Int], x_2: Int) => if (x1 == yes) Some(x_2) else x1

def g = (x1: Option[Int], x_2: Option[Int]) => if (x1 == None) x_2 else x1

Question 3 What is the range of possible number of calls to g when running find_aggregated with
the following arguments:

1 find_aggregated(Array(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),9)

[1, 10]

[0, 18]

[1, 20]

[0, 9]

[0, 19]

[0, 20]

[1, 18]

[1, 19]

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/4/57+ y
Consider the following contains function defined on Iterable (in particular it accepts both Vector

and List).

1 def contains[A](l: Iterable[A], elem: A): Boolean =

2 val n = l.size

3 if n <= 5 then
4 for i <- l do
5 if i == elem then
6 return true
7 false
8 else
9 val (p0, p1) = parallel(

10 contains(l.take(n / 2), elem),

11 contains(l.drop(n / 2), elem)

12)

13 p0 || p1

Let n be the size of l. Assume that drop and take run in Θ(1) on Vector, and in Θ(n) on List.

Question 4 What is the asymptotic work of contains if it is called on a Vector?

W (n) = Θ(log(n))

W (n) = Θ(1)

W (n) = Θ(n · log(n))

W (n) = Θ(n)

Question 5 What is the asymptotic depth of contains if it is called on a Vector?

D(n) = Θ(n)

D(n) = Θ(log(n))

D(n) = Θ(n · log(n))

D(n) = Θ(1)

Question 6 What is the asymptotic work of contains if it is called on a List?

W (n) = Θ(n · log(n))

W (n) = Θ(log(n))

W (n) = Θ(n)

W (n) = Θ(1)

Question 7 What is the asymptotic depth of contains if it is called on a List?

D(n) = Θ(n · log(n))

D(n) = Θ(log(n))

D(n) = Θ(1)

D(n) = Θ(n)

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/5/56+ y
Question 8 Read the code below and select which is the correct output of the code.

1 def thread(b: => Unit) =

2 val t = new Thread:

3 override def run() = b

4 t

5 val t = thread { println(s"Hello World") }

6 t.join()

7 println(s"Hello")

Hello World
Hello

Hello World

Hello
Hello World

Hello

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/6/55+ y
Second part: yes/no questions

The answer of each question is either “Yes”, either “No”. Marking only the box corresponding to the
correct answer will get you 2 points. Marking only the wrong answer will get you -1 point. Otherwise, you
will get 0 point for the question.

Read the code below and answer the following questions.

1 class Node(

2 // Globally unique identifier. Different for each instance.

3 val guid: Int

4)

5
6 // sum and total variables are shared by all the threads.

7 var sum: Int = 0

8 var total = new AtomicInteger(0)

9
10 def increment(e: Int) = sum += e

11
12 // This function might be called concurrently.

13 def lockFun(nodes: List[Node], fn: (e: Int) => Unit): Unit =

14 if nodes.size > 0 then
15 nodes.head.synchronized {

16 fn(nodes(0).guid)

17 lockFun(nodes.tail, fn)

18 }

19 else
20 println(sum + " " + total.get)

21
22 // List of nodes used by the current thread. This list is a subset of

23 // a global list of nodes shared by all threads.

24 var nodes: List[Node] = getFromInput()

25 nodes = ???

26 lockFun(nodes, increment)

Question 9 Replace line 25 by the line below. Select Yes if the code can result in a deadlock.

1 nodes = nodes

Yes No

Question 10 Replace line 25 by the line below. Select Yes if the code can result in a deadlock.

1 nodes = nodes.sortWith((x,y) => x.guid > y.guid)

Yes No

Question 11 Replace line 25 by the line below. Select Yes if the code can result in a deadlock.

1 nodes = nodes.sortWith((x,y) => x.guid < y.guid)

Yes No

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/7/54+ y
Question 12 Replace line 25 by the line below. Select Yes if the code can result in a deadlock.

1 nodes = nodes.tail.appended(nodes(0))

Yes No

For the 3 next questions, assume that line 25 is replaced such that no deadlock can happen.

Question 13 Replace line 10 by the line below. Select Yes if the code will compute the correct value of
sum.

1 def increment(e: Int) = sum += e

Yes No

Question 14 Replace line 10 by the line below. Select Yes if the code will compute the correct value of
sum.

1 def increment(e: Int) = synchronized { sum += e }

Yes No

Question 15 Replace line 10 by the line below. Select Yes if the code will compute the correct value of
total.

1 def increment(e: Int) = total.addAndGet(e)

Yes No

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/8/53+ y
Consider the following function call on a possibly parallelized sequence:

1 seq.fold(z: B)(f:(B, B) -> B)

For which of the following type and arguments is the result of that call deterministic (i.e. it always
produce the same result than if it was executed sequentially)?

Question 16 B=Int, z=1, f= (a,b) -> a+b

Yes No

Question 17 B=List[C], z=Nil, f= (a,b) -> a++b

Yes No

Question 18 B=String, z="", f= (a,b) -> if (a.size > b.size) a else b

Yes No

Question 19 B=Boolean, z=True, f= (a,b) -> (a && b) || (!b && !a)

Yes No

Question 20 B=Double, z=0, f= (a,b) -> a+b

Yes No

Question 21 Consider the following code:

1 class TicketsManager(totalTickets: Int):

2 var remainingTickets = totalTickets

3
4 // This method might be called concurrently

5 def getTicket(): Boolean =

6 if remainingTickets > 0 then
7 this.synchronized {

8 remainingTickets -= 1

9 }

10 true
11 else false

If getTicket() is called concurrently, can there be a race condition on remainingTickets?

Yes No

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/9/52+ y
We implemented a function as shown below to assign Network Interface Cards (NIC) to concurrent

threads. Each thread requires two NICs for receiving and sending data. When threads finish their jobs, they
will release their corresponding NICs.

1 class NIC(val index: Int, var assigned: Boolean)

2
3 class NICManager(n: Int):

4 // Creates a list with n NICs

5 val nics = (for i <- 0 until n yield NIC(i, false)).toList
6
7 // This method might be called concurrently

8 def assignNICs(): (Int, Int) =

9 var recvNIC: Int = 0

10 var sendNIC: Int = 0

11 var gotRecvNIC: Boolean = false
12 var gotSendNIC: Boolean = false
13
14 /// Obtaining receiving NIC...

15 while !gotRecvNIC do
16 nics(recvNIC).synchronized {

17 if !nics(recvNIC).assigned then
18 nics(recvNIC).assigned = true
19 gotRecvNIC = true
20 else
21 recvNIC = (recvNIC + 1) % n

22 }

23 // Successfully obtained receiving NIC

24
25 // Obtaining sending NIC...

26 while !gotSendNIC do
27 nics(sendNIC).synchronized {

28 if !nics(sendNIC).assigned then
29 nics(sendNIC).assigned = true
30 gotSendNIC = true
31 else
32 sendNIC = (sendNIC + 1) % n

33 }

34 // Successfully obtained sending NIC

35
36 return (recvNIC, sendNIC)

Question 22 If the number of concurrent threads is less than n, is it possible to have deadlocks?

Yes No

Question 23 Is there definitely a deadlock if the number of concurrent threads is more than n?

Yes No

Question 24 The number of available NICs is n and we limit the number of available receiving NICs
to n - 1 (i.e. we replace line 21 by recvNIC = (recvNIC + 1) % (n - 1)). Can there be any
deadlock?

Yes No

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/10/51+ y
Third part, open questions

Question 25: This question is worth 36 points.

0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36

In this exercise, you will implement a data structure to handle the "following" relation in a social network
(who is following who). This data structures should contain 4 methods add, follow, unfollow and
delete that are documented below.
Internally, your data structure should use a TrieMap to store the relation and an atomic counter to store
the maximum id given to a user. You can find the documentation for TrieMap and AtomicInteger in
the appendix at the end of the exam.
Here is the interface of what you should implement:

1 import scala.collection.concurrent.TrieMap

2 import java.util.concurrent.atomic.AtomicInteger

3
4 // Represent a social network where user can follow each other. Each user is

5 // represented by an id that is an ‘Int‘.

6 abstract class AbstractInstagram:

7 // The map storing the "following" relation of our social network.

8 // ‘graph(a)‘ contains the list of user ids that user ‘a‘ follows.

9 val graph = new TrieMap[Int, List[Int]]()

10 // The maximum user id allocated until now. This value should be incremented

11 // by one each time a new user is added.

12 val maxId = new AtomicInteger(0)

13 // Allocates a new user and returns its unique id. Internally, this should

14 // also create an empty list at the corresponding id in ‘graph‘. The

15 // implementation must be thread-safe.

16 def add(): Int

17 // Make ‘a‘ follow ‘b‘. The implementation must be thread-safe.

18 def follow(a: Int, b: Int): Unit

19 // Makes ‘a‘ unfollow ‘b‘. The implementation must be thread-safe.

20 def unfollow(a: Int, b: Int): Unit

21 // Removes user with id ‘a‘. This should also remove all references to ‘a‘

22 // in ‘graph‘. The implementation must be thread-safe.

23 def remove(a: Int): Unit

Example successful sequential run:

1 val insta = Instagram()

2 assertEquals(1, insta.add())

3 assertEquals(2, insta.add())

4 insta.follow(1, 2)

5 assertEquals(insta.graph, Map(1 -> List(2), 2 -> List()))

6 insta.follow(2, 1)

7 insta.unfollow(1, 2)

8 assertEquals(insta.graph, Map(1 -> List(), 2 -> List(1)))

9 insta.follow(3, 1) // fails silently

10 assertEquals(insta.graph, Map(1 -> List(), 2 -> List(1)))

11 insta.remove(1)

12 assertEquals(insta.graph, Map(2 -> List()))

13 insta.unfollow(1, 2) // fails silently

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/11/50+ y
Your implementation must follow these guidelines:

• Your methods must be thread-safe and lock-free.

• You can not use synchronized.

• At the end of each operation, you data structure must be in a valid state: there must be no user
following an inexistent or removed user. Also you must make sure that no follow or unfollow call
is ignored when it shouldn’t.

class Instagram extends AbstractInstagram:

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/12/49+ y

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/13/48+ y

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/14/47+ y

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/15/46+ y
Appendix: Scala and Java Standard Library Methods

Here are the prototypes of some Scala and Java classes that you might find useful:

// Represents optional values. Instances of Option are either an instance of

// scala.Some or the object None.

sealed abstract class Option[+A]:

// Returns the option’s value if the option is an instance of scala.Some, or

// throws an exception if the option is None.

def get: A

// Returns true if the option is an instance of scala.Some, false otherwise.

// This is equivalent to:

// option match

// case Some(v) => true

// case None => false

def isDefined: Boolean

// Returns this scala.Option if it is nonempty, otherwise return the result of

// evaluating alternative.

def orElse[B >: A](alternative: => Option[B]): Option[B]

abstract class Iterable[+A]:

// Selects all elements except first n ones.

def drop(n: Int): Iterable[A]

// The size of this collection.

def size: Int

// Selects the first n elements.

def take(n: Int): Iterable[A]

abstract class List[+A] extends Iterable[A]:

// Adds an element at the beginning of this list.

def ::[B >: A](elem: B): List[B]

// A copy of this sequence with an element appended.

def appended[B >: A](elem: B): List[B]

// Get the element at the specified index.

def apply(n: Int): A

// Selects all elements of this list which satisfy a predicate.

def filter(pred: (A) => Boolean): List[A]

// Selects the first element of this list.

def head: A

// Sorts this sequence according to a comparison function.

def sortWith(lt: (A, A) => Boolean): List[A]

// Selects all elements except the first.

def tail: List[A]

abstract class Array[+A] extends Iterable[A]:

// Get the element at the specified index.

def apply(n: Int): A

abstract class Thread:

// Subclasses should override this method.

def run(): Unit

// Causes this thread to begin execution; the Java Virtual Machine calls the

// run method of this thread.

def start(): Unit

// Waits for this thread to die.

def join(): Unit

// Creates and starts a new task ran concurrently.

def task[T](body: => T): ForkJoinTask[T]

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

D
RA
FT

y +1/16/45+ y
abstract class ForkJoinTask[T]:

// Returns the result of the computation when it is done.

def join(): T

// A concurrent hash-trie or TrieMap is a concurrent thread-safe lock-free

// implementation of a hash array mapped trie.

abstract class TrieMap[K, V]:

// Retrieves the value which is associated with the given key. Throws an exception

// if there is no mapping from the given key to a value.

def apply(key: K): V

// Tests whether this map contains a binding for a key.

def contains(key: K): Boolean

// Applies a function f to all elements of this concurrent map. This function

// iterates over a snapshot of the map.

def foreach[U](f: ((K, V)) => U): Unit

// Optionally returns the value associated with a key.

def get(key: K): Option[V]

// Collects all key of this map in an iterable collection. The result is a

// snapshot of the values at a specific point in time.

def keys: Iterator[K]

// Transforms this map by applying a function to every retrieved value. This

// returns a new map.

def mapValues[W](f: V => W): TrieMap[K, W]

// Associates the given key with a given value, unless the key was already

// associated with some other value. This is an atomic operation.

def putIfAbsent(k: K, v: V): Option[V]

// Removes a key from this map, returning the value associated previously with

// that key as an option.

def remove(k: K): Option[V]

// Removes the entry for the specified key if it’s currently mapped to the

// specified value. This is an atomic operation.

def remove(k: K, v: V): Boolean

// Replaces the entry for the given key only if it was previously mapped to a

// given value. Returns true if the change is successful, or false otherwise.

// This is an atomic operation.

def replace(k: K, oldvalue: V, newvalue: V): Boolean

// Adds a new key/value pair to this map.

def update(k: K, v: V): Unit

// Collects all values of this map in an iterable collection. The result is a

// snapshot of the values at a specific point in time.

def values: Iterator[V]

// An int value that may be updated atomically.

// The constructor takes the initial value at its only argument. For example,

// this create an ‘AtomicInteger‘ with an initial value of ‘42‘:

// val myAtomicInteger = new AtomicInteger(42)

abstract class AtomicInteger:

// Atomically adds the given value to the current value and returns the

// updated value.

def addAndGet(delta: Int): Int

// Atomically sets the value to the given updated value if the current value

// == the expected value. Returns true if the change is successful, or false

// otherwise. This is an atomic operation.

def compareAndSet(oldvalue: Int, newvalue: Int): Boolean

// Gets the current value. This is an atomic operation.

def get(): Int

// Atomically increments by one the current value. This is an atomic operation.

def incrementAndGet(): Int

y For your examination, preferably print documents compiled from auto-
multiple-choice.

y

