Parallelism and Concurrency

Final Exam
Wednesday, May 30, 2018

Your points are precious, don’t let them go to waste!

Your Time All points are not equal. Note that we do not think that all exercises have the
same difficulty, even if they have the same number of points.

Your Attention The exam problems are precisely and carefully formulated, some details
can be subtle. Pay attention, because if you do not understand a problem, you can not
obtain full points.

Closed-book The exam is closed book.

No communication You are not allowed to use internet, mobile phones, laptops, smart
watches, etc.

Exercise | Points | Points Achieved

1 20
2 20
3 20

Total 60

Exercise 1: Spark (20 points)

You are the lead data analyst for the e-commerce site Macoop. The company maintains logs of all activities
on Spark.

Question 1

The online shop sells various kinds of items. Each item kind has a record of the form:
case class ItemKind(id: Int, name: String, price: Int)

Each record contains a unique id, a unique name and a price (in cents). The entire collection of item kinds is
stored as an RDD named items:

val items: RDD[ItemKind] = ...

Your task:

Efficiently build an array of the name of all item kinds whose price is stricly larger than 1000 CHF (i.e.,
100’000 cents). The order in which items appear in the array is not specified.

val expensiveltemsNames: Array[String] =

Question 2

The online shop also records all orders made by clients throughout the shop’s history. Each order has a record
of the following form:

case class Order(id: Int, date: Date, itemIds: Seq[Int])

Each order has a unique id and a date. Each record also contains a sequence of all item kind ids that are
part of the order. When a client orders the same item multiple times, the corresponding item kind id appears
multiple times in the sequence. The entire collection of orders is available as an RDD named orders:

val orders: RDD[Order] = ...

Your task:

Efficiently compute how many items were sold during the last Black Friday. You should use the helper
function isLastBlackFriday to check if a date corresponds to the last Black Friday.

def isLastBlackFriday(date: Date): Boolean = ... // Given to you.

val itemsSoldLastBlackFriday: Int =

Question 3

Efficiently get the id and price (in cents) of the most expensive order ever made to the shop. The price of an
order is the sum of the prices of all items ordered. In the case of a tie, you a free to return any of the most

expensive orders.

val mostExpensiveOrder: (Int, Int) =

Exercise 2: Futures (20 points)
Suppose you are given the following API to query student grades from IS-Academia:
def getGrade(s: Student): Future[Double]

Under the hood getGrade sends an authenticated HTTP request to the IS-Academia servers. If IS-Academia
is not broken that day it will answer with the student’s grade for the parallelism and concurrency class.

Here is an example showing how getGrade can be used from the Scala console:

scala> val me = Student ("STUDENTNAME", STUDENTSCIPER)
me: Student = Student (STUDENTNAME, STUDENTSCIPER)

scala> val future = getGrade(me)
future: scala.concurrent.Future[Double] = Future(<not completed>)

scala> future.foreach(println)
6.0 // Appears after ~500ms

Question 1

Given three students s1, s2 and s3, use the getGrade API to emit three sequential requests to IS-Academia
and compute the average of these three grades. One reason we might want to limit ourself to sequential
requests would be to prevent flooding the IS-Academia server. In this context, we say that two requests are
sequential if the second request is emitted after completion of the first request.

def computeAverage(sl: Student, s2: Student, s3: Student): Unit = {
// TODO: emit 3 sequencial requests

// TODO: compute the average grade
val average: Future[Double] =

average.foreach(println)

}

Question 2

Update your implementation to emit concurrent requests instead. In this context, we say that two requests
are concurrent if they are emitted one after the other, without waiting for completion of first request to emit

the second request.

def computeAverage2(sl: Student, s2: Student, s3: Student): Unit = {
// TODO: emit 3 concurrent requests

// TODO: compute the average grade

val average: Future[Double] =

average.foreach(println)

}

Question 3

Implement the zip method on Futures.

Zip creates a new Future holding the tuple of results of the two Futures it’s made from. If the first Future
fails, the resulting Future is failed with the exception stored in the first Future. Otherwise, if the second
Future fails, the resulting Future is failed with the exception stored in the second Future.

trait Future[A] {
def zip[B](fb: Future[B]): Futurel[(A, B)] = {

Exercise 3: Producer-consumer Problem (20 points)

You are an employee of the booming e-commerce company Amigros, a competitor of Macoop. To better
handle fast-growing orders, the engineering team decides to introduce a parallel order processing system. The
new system is designed around the following two concepts:

e producer: producers add new jobs to a shared queue.

e consumer: consumers remove jobs from the shared queue and handle them.

Multiple producers and multiple consumers are collaborating on a shared queue. By tuning the size of the job
queue and the number of consumers, the infrastructure can scale easily to growing demands.

Realizing the core of the system will be the shared job queue, the engineering team agreed on the following
design of the job queue:

case class Job(...)

abstract class JobQueue(maxSize: Int) {
def put(job: Job): Unit
def take: Job

}

The specification of the interface is as follows:
e S1: Producers will call put to schedule a job. The job should be appended to the queue when the call

returns. The method should handle the case where the queue is full.

e S2: Consumers will call take to remove a job from the queue. It removes the first job from the queue
and returns it. The method should handle the case where the queue is empty.

e S3: The system should not run into deadlock in the case of multiple consumers and producers.

e S4: The length of the job queue should not exceed maxSize.

Question 1

One of your colleagues proposed the following implementation of the job queue based on the idea of circular

buffer:

class MyQueue (maxSize: Int) extends JobQueue(maxSize) {
var front = 0
var size = 0
val buffer = new Array[Job] (maxSize)

def put(job: Job): Unit = synchronized {
if (size == maxSize) wait()

val rear = (front + size) % maxSize
buffer(rear) = job
size += 1

notifyAll1()
}

def take: Job = synchronized {
if (size == 0) wait()

buffer (front)

val job =
= (front + 1) % maxSize
1

front
size —-=

notifyAll1()

job

Does the implementation satisfy the specification S1-S4?7 If not, describe the changes needed to make it work?
Justify your answer briefly.

10

Question 2

After the proposed system works well for some time, your manager asks for a web page to observe the job
queue in real-time. To support this feature, the engineering team decides to add a new method snapshot to
JobQueue:

abstract class JobQueue(maxSize: Int) {
def put(job: Job): Unit
def take: Job
def snapshot: List[Job]

}

The specification for JobQueue is augmented as follows:

e S5: snapshot is called by watchers. It will return the content of the queue at some time-point during
the call of snapshot.

Note that the requirement S5 rejects implementations that produce the following output:

1. The job queue is j1, j2
2. Watcher A calls snapshot
3. A consumer removes j1
4. A producer appends j3
5. snapshot returns List(j1, j2, j3) to watcher A
The output above is incorrect because there exists no instant that the job queue holds the jobs j1, j2 and

j3. In the schedule above, returning List(j2), List(j1, j2) or List(j2, j3) would be correct. However,
returning List (j2, j1) or List(j3, j2) would be incorrect because of the wrong ordering.

Knowing that you are an expert on concurrency, you are asked by the CTO to propose an improvement of
JobQueue such that it satisfies all the requirements S1-S5. Please demonstrate your expertise.

def snapshot: List[Job] =

11

Question 3
After the snapshot feature is deployed in production, the maintenance team noticed that the system has a

regression on performance. After some diagnosis, you realized that it is possible to have multiple watchers
doing snapshot at the same time. You formulate the intution with the following specification:

e S6: multiple watchers should be able to execute snapshot in parallel.

Propose an improved version of JobQueue that implements the specifications S1-S6. For the methods take
and put, you may write only the changed line(s).

class MyQueue(maxSize: Int) extends JobQueue(maxSize) {
var front = 0
var size = 0

val buffer = new Array[Job] (maxSize)

def put(job: Job): Unit =

def take: Job =

12

def snapshot: List[Job] =

13

14

Spark API

Relevant API for Spark RDD[T]:

e def collect(): Array[T]: Return an array that contains all of the elements in this RDD.
e def count(): Long: Return the number of elements in the RDD.
e def distinct(): RDD[T]: Return a new RDD containing the distinct elements in this RDD.

e def filter(f: (T) => Boolean): RDD[T]: Return a new RDD containing only the elements that
satisfy a predicate.

e def flatMap[U](f: (T) => TraversableOnce[U]): RDD[U]: Return a new RDD by first applying a
function to all elements of this RDD, and then flattening the results. Collection types such as Seq[U],
List[U] and even Option[U] are valid TraversableOnce [U].

e def fold(zeroValue: T) (op: (T, T) => T): T: Aggregate the elements of each partition, and then
the results for all the partitions, using a given function and “zero value”.

e def groupBy[K](f: (T) => K): RDD[(K, Iterable[T])]: Return an RDD of grouped items.

e def map[U](f: (T) => U): RDD[U]: Return a new RDD by applying a function to all elements of this
RDD.

e def maxBy[K](f: (T) => K): T: Return a maximum element according to the given key function f.

e def reduce(f: (T, T) => T): T: Reduces the elements of this RDD using the specified commutative
and associative binary operator.

e def sortBy[K](f: (T) => K, ascending: Boolean = true): RDD[T]: Return this RDD sorted by
the given key function.

e def take(num: Int): Array[T]: Take the first num elements of the RDD.

e def union(other: RDD[T]): RDD[T]: Return the union of this RDD and another one.
Additional methods available to RDDs of type RDD[(K, V)]:
e def groupByKey(): RDD[(K, Iterable[V])]: Group the values for each key in the RDD into a single

sequence.

e def join[W] (other: RDD[(K, W)]): RDD[(K, (V, W))]: Return an RDD containing all pairs of
elements with matching keys in this and other.

e def leftOuterJoin[W] (other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]: Perform a left outer
join of this and other.

e def mapValues[U](f: (V) => U): RDD[(K, U)]: Pass each value in the key-value pair RDD through
a map function without changing the keys.

e def reduceByKey(func: (V, V) => V): RDD[(K, V)]: Merge the values for each key using an asso-
ciative reduce function.

e def rightOuterJoin[W] (other: RDD[(K, W)]): RDD[(K, (Option[V], W))]: Perform a right outer
join of this and other.

e def values(): RDD[V]: Return a RDD containing only the values.

15

Future API
Relevant API for Future[T]:
e def onComplete(callback: Try[T] => Unit): Unit: When this future is completed, either through

an exception, or a value, apply the provided function.

e def flatMap[S](f: T => Future[S]): Future[S]: Creates a new future by applying a function to
the successful result of this future, and returns the result of the function as the new future.

e def filter(p: T => Boolean): Future[T]: Creates a new future by filtering the value of the current
future with a predicate.

e def map[S](f: T => S): Future[S]: Creates a new future by applying a function to the successful
result of this future.

e def foreach(f: T => Unit): Unit: Asynchronously processes the value in the future once the value

becomes available.

A Future represents a value which may or may not currently be available, but will be available at some point,
or an exception if that value could not be made available.

Try API

The Try type represents a computation that may either result in an exception, or return a successfully
computed value. It’s similar to, but semantically different from the scala.util.Either type.

Instances of Try[T], are either an instance of Success[T] or Failure[T]:

sealed trait Tryl[T]
case class Failure[T] (exception: Exception) extends Try[T]
case class Success[T] (value: T) extends Try[T]

16

	Question 1
	Question 2
	Question 3
	Question 1
	Question 2
	Question 3
	Question 1
	Question 2
	Question 3
	Spark API
	Future API
	Try API

