
Parallelism and Concurrency
Final Exam - Solutions
Monday, August 10, 2020

Manage your time All points are not equal. We do not think that all exercises have the
same difficulty, even if they have the same number of points.

Follow instructions The exam problems are precisely and carefully formulated, some details
can be subtle. Pay attention, otherwise you will lose points.

Refer to the API The last page of this exam is a small API. Please consult it before you
reinvent the wheel. Feel free to detach it. You are free to use methods that are not part
of this API provided they exist in the standard library.

Exercise Points Points Achieved
1 20
2 20
3 20
4 20

Total 80

Exercise 1: Parallel computation

trait Matrix[T] {
def lines: Int
def columns: Int
def elem(n: Int, m: Int): T

def count(p: T => Boolean): Int =
if lines == 0 || column == 0 then 0
else countIn(p, 0, lines, 0, column)

def countIn(p: T => Boolean, startN: Int, endN: Int, startM: Int, endM: Int): Int =
assert(startN < endN && startM < endM)
if endN - startN > 1 then

val mid = startN + (endN - startN) / 2
val (a, b) = parallel(

countIn(p, startN, mid, startM, endM),
countIn(p, mid, endN, startM, endM)

)
a + b

else if endM - startM > 1 then
val mid = startM + (endM - startM) / 2
val (a, b) = parallel(

countIn(p, startN, endN, startM, mid),
countIn(p, startN, endN, mid, endM)

)
a + b

else if p(elem(startN, startM)) then
1

else
0

}

2

Exercise 2: Memory model
Question 2.1: No

Question 2.2: Yes

Question 2.3: No

Question 2.4: No

Question 2.5: Yes

Question 2.6: No

Question 2.7: Yes

Question 2.8: No

Question 2.9: Yes

Question 2.10: No

3

Exercise 3: Futures

Question 3.1

Implement the sequence function that transforms a List[Future[A]] into a Future[List[A]]. Your
implementation can use any method of List and Future except Future.sequence and Future.traverse.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

def sequence[A](fs: List[Future[A]]): Future[List[A]] =
fs match {

case f :: fs =>
for {

x <- f
xs <- sequence(fs)

} yield x :: xs
case Nil =>

Future.successful(Nil)
}

Question 3.2

def traverse[A, B](xs: List[A])(f: A => Future[B]): Future[List[B]] =
sequence(xs.map(f))

Question 3.3

Proof: instantiate g and f to be the identity function in the lemma:

traverse(in)(id).flatMap(ys => traverse(ys)(id))
==
traverse(in)(a => id(a).flatMap(id))

By definition of traverse:

sequence(in.map(id)).flatMap(ys => sequence(ys.map(id)))
==
sequence(in.map(a => id(a).flatMap(id)))

Using id(a) = a:

sequence(in.map(id)).flatMap(ys => sequence(ys.map(id)))
==
sequence(in.map(a => a.flatMap(id)))

Using the functor identity law:

sequence(in).flatMap(sequence)
==
sequence(in.map(a => a.flatMap(id)))

Using the monad flatten law:

sequence(in).flatMap(sequence)
==
sequence(in.map(a => a.flatten))

4

Exercise 4: Actors
class TorNode(RELAY_COUNT: Int, adjacentRelays: List[ActorRef]) extends Actor {

var pendingRequests = Map.empty[UUID, ActorRef]

def emitRequest(url: String): Unit = {
// Create a new universally unique id for the request
val id: UUID = UUID.randomUUID()

val relay = adjacentRelays(Random.nextInt(adjacentRelays.size))
relay ! Request(url, RELAY_COUNT - 1, id)

}

def displayResponse(payload: String): Unit = {
println(payload)

}

// Synchronously performs an HTTP requests to the Internet and
// returns the resulting payload.
def performHttpRequest(url: String): String = { "..." }

def receive: Receive = {
case Request(url, 0, id) =>

val payload = performHttpRequest(url)
sender ! Response(payload, id)

case Request(url, remainingRelays, id) =>
val relay = adjacentRelays(Random.nextInt(adjacentRelays.size))
relay ! Request(url, remainingRelays - 1, id)
pendingRequests = pendingRequests.+((id, sender))

case req @ Response(payload, id) =>
pendingRequests.get(id) match {

case None =>
displayResponse(payload)

case Some(relay) =>
pendingRequests = pendingRequests - id
relay ! req

}
}

}

5

