
Parallelism and Concurrency
Final Exam

Monday, August 10, 2020

Manage your time All points are not equal. We do not think that all exercises have the
same difficulty, even if they have the same number of points.

Follow instructions The exam problems are precisely and carefully formulated, some details
can be subtle. Pay attention, otherwise you will lose points.

Refer to the API The last pages of this exam are a small API. Please consult it before you
reinvent the wheel. Feel free to detach it. You are free to use methods that are not part
of this API provided they exist in the standard library.

Allowed materials This is a purely pen and paper exam. You are only allowed to bring your
pen and other writing materials. You may not use any notes, books, calculators, or any
electronic devices.

Extra paper sheets This exam comes with 4 pages of scrap paper (papier brouillon) that
you can find at the end of the exam. Please do not ask for extra scrap paper or use your
own.

Exam duration 2 hours and 40 minutes

Exercise Points Points Achieved
1 20
2 20
3 20
4 20

Total 80

Exercise 1: Parallel computation (20 points)
In this exercise you will implement the logic of the count and countIn methods defined in a Matrix
trait. The exercise will require you to use the parallel method to split computations into parallel
parts.

trait Matrix[T] {

/** Number of lines */
def lines: Int

/** Number of columns */
def columns: Int

/** Get the element at position ‘n’ (‘0 <= n < lines’) and ‘m’ (‘0 <= m < columns’)
* Throws if indices are not in bounds.
*/

def elem(n: Int, m: Int): T

/** Counts the number of elements in the matrix that satisfy a predicate ‘p’.
* The predicate operation is assumed to be computationally expensive.
* The predicate is evaluated in parallel on all elements of the matrix.
*/

def count(p: T => Boolean): Int = {
... // TODO: Question 1.1

}

/** Counts the number of elements in a non-empty block of the matrix
* which satisfy a predicate ‘p’.
* The predicate operation is assumed to be computationally expensive.
* The predicate is evaluated in parallel on all elements of the matrix.
* The block of the matrix is bounded by the rectangle starting at the
* point (‘startN’, startM’) and ending at (‘endN-1’, ‘endM-1’).
*/

def countIn(p: T => Boolean, startN: Int, endN: Int, startM: Int, endM: Int): Int = {
assert(startN < endN && startM < endM)
... // TODO: Question 1.2

}
}

To parallelize this operation we can use a divide and conquer strategy. On an array, this is done by
dividing the array into two sections, then compute the partial result of each in parallel and finally
combine the results. This approach can be generalized on matrices by reducing on one axis at a time.

Read carefully the documentation of count and countIn.

2

Question 1.1 (5 points)

Implement count in terms of countIn.

def count(p: T => Boolean): Int =

Question 1.2 (15 points)

Implement countIn making sure that each p is evaluated in parallel using the parallel operation.
Parallelizing all each p operation implies that the sequential threshold is of 1 element.

def countIn(p: T => Boolean, startN: Int, endN: Int, startM: Int, endM: Int): Int = {
assert(startN < endN && startM < endM)

}

3

Exercise 2: Memory model (20 points)
Each of the following 10 pieces of code runs code on some shared state in multiple threads, then prints
a result. Your task is to determine whether the printed output is deterministic, that is: whether it
always be the same regardless of how the threads are scheduled and assuming that the Java Memory
Model is followed.

A correct answer gives 2 points, a wrong answer gives −1 point, no answer gives 0 points, if your total
is negative you get 0 points for the exercise.

Question 2.1: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
var value: Int = 0
def plus(x: Int): Unit = {

value += x
}
def minus(x: Int): Unit = {

value -= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.plus(1)
myInt.minus(2)

}
val t2 = task {

myInt.minus(4)
myInt.plus(3)

}

t1.join()
t2.join()

println(myInt.value)

Question 2.2: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
@volatile var value: Int = 0
def plus(x: Int): Unit = {

value += x
}
def minus(x: Int): Unit = {

value -= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.plus(1)
myInt.minus(2)

}
t1.join()

val t2 = task {
myInt.minus(4)
myInt.plus(3)

}
t2.join()

println(myInt.value)

4

Question 2.3: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
@volatile var value: Int = 0
def plus(x: Int): Unit = {

value += x
}
def minus(x: Int): Unit = {

value -= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.plus(1)
myInt.minus(2)

}
val t2 = task {

myInt.minus(4)
myInt.plus(3)

}
t1.join()
t2.join()
println(myInt.value)

Question 2.4: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
@volatile var value: Int = 0
def plus(x: Int): Unit = {

value += x
}
def minus(x: Int): Unit = {

value -= x
}
def times(x: Int): Unit = {

value *= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.plus(1)
myInt.minus(2)
myInt.times(2)

}
val t2 = task {

myInt.minus(4)
myInt.plus(3)

}
t1.join()
t2.join()
println(myInt.value)

5

Question 2.5: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
var value: Int = 0
def plus(x: Int): Unit = synchronized {

value += x
}
def minus(x: Int): Unit = synchronized {

value -= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.plus(1)
myInt.minus(2)

}
val t2 = task {

myInt.minus(4)
myInt.plus(3)

}
t1.join()
t2.join()
println(myInt.value)

Question 2.6: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
var value: Int = 0
def plus(x: Int): Unit = synchronized {

value += x
}
def minus(x: Int): Unit = synchronized {

value -= x
}
def times(x: Int): Unit = synchronized {

value *= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.times(2)
myInt.plus(1)
myInt.minus(2)

}
val t2 = task {

myInt.minus(4)
myInt.plus(3)

}
t1.join()
t2.join()
println(myInt.value)

6

Question 2.7: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
val value: AtomicInteger =

new AtomicInteger(0)

def plus(x: Int): Unit = {
val cur = value.get
val retry =

!value.compareAndSet(cur, cur + x)
if (retry) this.plus(x)

}
def minus(x: Int): Unit = {

val cur = value.get
val retry =

!value.compareAndSet(cur, cur - x)
if (retry) this.minus(x)

}
}
val myInt = new MyInt
val t1 = task {

myInt.plus(1)
myInt.minus(2)

}
val t2 = task {

myInt.minus(4)
myInt.plus(3)

}
t1.join()
t2.join()
println(myInt.value.get)

Question 2.8: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
val value: AtomicInteger =

new AtomicInteger(0)

def plus(x: Int): Unit = {
val cur = value.get
val retry =

!value.compareAndSet(cur, cur + x)
if (retry) this.plus(x)

}
def minus(x: Int): Unit = {

val cur = value.get
val retry =

!value.compareAndSet(cur, cur - x)
if (retry) this.minus(x)

}
def times(x: Int): Unit = {

val cur = value.get
val retry =

!value.compareAndSet(cur, cur * x)
if (retry) this.times(x)

}
}
val myInt = new MyInt
val t1 = task {

myInt.times(2)
myInt.plus(1)
myInt.minus(2)

}
val t2 = task {

myInt.minus(4)
myInt.plus(3)

}
t1.join()
t2.join()
println(myInt.value.get)

7

Question 2.9: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
var value: Int = 0
def plus(x: Int): Unit = {

value += x
}
def minus(x: Int): Unit = {

value -= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.synchronized {
myInt.plus(1)
myInt.minus(2)

}
}
val t2 = task {

myInt.synchronized {
myInt.minus(4)
myInt.plus(3)

}
}

t1.join()
t2.join()

println(myInt.value)

Question 2.10: In the code below, is the
printed output deterministic?

� Yes � No

class MyInt {
var value: Int = 0
def plus(x: Int): Unit = {

value += x
}
def minus(x: Int): Unit = {

value -= x
}
def times(x: Int): Unit = {

values *= x
}

}
val myInt = new MyInt
val t1 = task {

myInt.synchronized {
myInt.times(2)
myInt.plus(1)
myInt.minus(2)

}
}
val t2 = task {

myInt.synchronized {
myInt.minus(4)
myInt.plus(3)

}
}

t1.join()
t2.join()

println(myInt.value)

8

Exercise 3: Futures (20 points)

Question 3.1 (8 points)

Implement the sequence function that transforms a List[Future[A]] into a Future[List[A]]. If
any of the input futures fail with exceptions, the returned future should fail with the exception of the
first failed future in the list. When all the input futures f1, f2, ..., fn succeed with values v1, v2, ...,
vn, the returned future should succeed with the list containing v1, v2, ..., vn.

Your implementation can use any method of List and Future (see Appendix) except Future.sequence
and Future.traverse.

Hints: Decompose the input list fs using pattern matching. Use for comprehension to combine futures.

def sequence[A](fs: List[Future[A]]): Future[List[A]] =

Question 3.2 (4 points)

Using the sequence function defined in Question 1, Implement the traverse function that transforms
a List[A] into a Future[List[B]] using the provided function f. This is useful for performing opera-
tions in parallel. For example, to apply a function to all items of a list in parallel: traverse(myList)(x
=> Future(myFunc(x))). The result of traverse should contain results of applying f to the input
list xs.

def traverse[A, B](xs: List[A])(f: A => Future[B]): Future[List[B]] =

Question 3.3 (8 points)

Given the following lemma about traverse:

9

Lemma: For all types A, B, C and values xs of type List[A], f of type A => Future[B], and g
of type B => Future[C], the following expressions are equivalent:

1. traverse(xs)(f).flatMap(ys => traverse(ys)(g))

2. traverse(xs)(a => f(a).flatMap(g))

Prove the following theorem about sequence:

Theorem: For all types A and values ffs of type List[Future[Future[A]]], the following
expressions are equivalent:

1. sequence(ffs).flatMap(fs => sequence(fs))

2. sequence(ffs.map(ff => ff.flatten))

In your proof you can use the fact that Future and List are monads, that is, the following properties
hold for F = Future and F = List

a. Monad associativity: for all types A, B, C and valued ma of type F[A], f of type A => F[B], and
g of type B => F[C]:

ma.flatMap(f).flatMap(g) == ma.flatMap(x => f(x).flatMap(g))

b. Monad flatten: for all types A and values ffa of type F[F[A]]:

ffa.flatten == ffa.flatMap(x => x)

c. Functor composition: for all types A, B, C and values fa of type F[A], f of type A => B, and g
of type B => C:

fa.map(f).map(g) == fa.map(x => g(f(x)))

d. Functor identity: for all types A and values fa of type F[A]:

fa.map(x => x) == fa

10

11

Exercise 4: Actors (20 points)
In this exercise, you will design an actor system that implements a simplified version of Tor. Tor is an
Internet protocol designed to anonymize the data relayed across it. For the purpose of thie exercise,
we will assume that Tor a network consists of several TorNode actors which are all capable of emitting
new requests, relaying requests, and performing outgoing requests to the Internet.

To ensure anonymity, every request must be relayed a fixed number of times inside the Tor network be-
fore being sent to the Internet (determined by the RELAY_COUNT constructor argument to the TorNode
class). We call exit node a node that performs an outgoing request. Responses from the Internet
should be relayed back thought the Tor network by going thought the same relays in reverse, this time
from the exit node all the back to the initial request emitter.

For example, with RELAY_COUNT = 3, if node N_A sends a new request to the Tor network, here is
a possible sequence of events to complete the request (here N_x -> N_y indicates that N_x sends a
message to N_y):

N_A.emitRequest("http://perdu.com") // entry point
Request relayed thought 3 nodes: N_A -> N_B -> N_C -> N_D
Node N_D calls performHttpRequest("http://perdu.com")
Response relayed back to N_A: N_D -> N_C -> N_B -> N_A
Node N_A calls displayResponse("<html><head><title>Vous Etes Perdu ?...")

Nodes should pick relays at random out of a set of actors called adjacentRelays, passed as a con-
structor argument to the TorNode class. You can assume that by construction randomly picking relays
from adjacentRelays will never result in a loop, i.e. the nodes N_A, N_B, N_C and, N_D are distinct in
the above example.

A node should maintain local state to allows responses to be routed thought the same paths that their
corresponding requests.

Your implementation should use the following Request and Response classes as messages exchanged
between the actors of the network:

import java.util.UUID // UUID stands for Universally Unique IDentifier

case class Request(url: String, remainingRelays: Int, id: UUID)
case class Response(payload: String, requestId: UUID)

Recall the Actor’s own ActorRef is available as self and the current message’s sender as sender().

Fill in the implementation of the TorNode class given on the next page.

12

import akka.actor._
import scala.util.Random

class TorNode(RELAY_COUNT: Int, adjacentRelays: List[ActorRef]) extends Actor {
// TODO: Add state for response routing

def emitRequest(url: String): Unit = {
// Randomly generate a new UUID for the request
val id: UUID = UUID.randomUUID()

// TODO: Create a new Request and send it to a relay picked at random

}

def displayResponse(payload: String): Unit = {
println(payload)

}

// Synchronously performs an HTTP requests to the Internet and
// returns the resulting payload.
def performHttpRequest(url: String): String = { "..." }

def receive = {
// TODO: handle Request and Response messages

}
}

13

14

Appendix

Static methods
• def parallel[A, B](op1: => A, op2: => B): (A, B): Executes the two given computations

in parallel and returns a pair with the results.
• def task[A](f: => A): Task[A]: Create a task that executes the computation passed as ar-
gument in a separate thread.

AnyRef

Relevant API for AnyRef:

• def synchronized[A](op: => A): A: Executes a computation within a synchronized block.

Task

Relevant API for Task[T]:

• def join(): T: Blocks until the task is completed and returns the computed value.

AtomicInteger

Contains an Int value that may be updated atomically.

Relevant API for AtomicInteger:

• new AtomicInteger(initialValue: Int): Creates a new AtomicInteger with the given initial
value.

• def get: Int: Gets the current value.
• def compareAndSet(expectedValue: Int, updatedValue: Int): Boolean: Atomically sets
the value to the given updatedValue if the current value == expectedValue.

Future

Relevant API for Future[T]:

• def onComplete(callback: Try[T] => Unit): Unit: When this future is completed, either
through an exception, or a value, apply the provided function.

• def flatMap[S](f: T => Future[S]): Future[S]: Creates a new future by applying a func-
tion to the successful result of this future, and returns the result of the function as the new
future.

• def filter(p: T => Boolean): Future[T]: Creates a new future by filtering the value of the
current future with a predicate.

• def map[S](f: T => S): Future[S]: Creates a new future by applying a function to the suc-
cessful result of this future.

• def foreach(f: T => Unit): Unit: Asynchronously processes the value in the future once
the value becomes available.

Relevant API for the Future object:

• def apply[T](body: => T): Future[T]: Starts an asynchronous computation and returns a
Future instance with the result of that computation.

• def successful[T](result: T): Future[T]: Creates an already completed Future with the
specified result.

A Future represents a value which may or may not currently be available, but will be available at
some point, or an exception if that value could not be made available.

15

Random
• def nextInt(n: Int): Int: Returns a pseudorandom, uniformly distributed int value between

zero (inclusive) and the specified value (exclusive).

Option

Relevant API for Option[+T]:

• def isEmpty: Boolean: Returns true if the option is None, false otherwise.
• def get: T: Returns the option’s value. Throws an exception in case of None.
• def orElse[R >: T](alternative: => Option[R]): Option[R]: Returns this Option if it

is nonempty, otherwise returns the result of evaluating alternative.

Constructors for Option[+T]:

• case class Some[+T](value: T) extends Option[T]: Represents existing values of type T.
• case object None extends Option[Nothing]: Represents non-existent values.

16

List

Relevant API for List[+T]:

• def ::[B >: A](elem: B): List[B]: Adds an element at the beginning of this list.
• def :::[B >: A](prefix: List[B]): List[B]: Adds the elements of a given list in front of
this list.

• def filter(p: (A) => Boolean): List[A]: Selects all elements of this list which satisfy a
predicate.

• def flatMap[B](f: (A) => List[B]): List[B]: Builds a new list by applying a function to
all elements of this list and using the elements of the resulting lists.

• def foldLeft[B](z: B)(op: (B, A) => B): B: Applies a binary operator to a start value and
all elements of this sequence, going left to right.

• def foldRight[B](z: B)(op: (A, B) => B): B: Applies a binary operator to all elements of
this list and a start value, going right to left.

• def foreach[U](f: (A) => U): Unit: Apply f to each element for its side effects Note: [U]
parameter needed to help scalac’s type inference.

• def head: A: Selects the first element.
• def isEmpty: Boolean: Tests whether the list is empty.
• def length: Int: The length (number of elements) of the list.
• def map[B](f: (A) => B): List[B]: Builds a new list by applying a function to all elements

of this list.
• def reverse: List[A]: Returns new list with elements in reversed order.
• def tail: List[A]: The rest of the list without its first element.

Set

Relevant API for Set[T]:

• def +(elem: T): Set[T]: Adds an element to the set.
• def -(elem: T): Set[T]: Removes an element from the set.
• def foreach(action: T => Unit): Unit: Executes an action for each element of the set.

Relevant API for the Set object:

• def apply[T](elems: T*): Set[T]: Creates a set with the specified elements.
• def empty[T]: Set[T]: Returns an empty set.

Map

Relevant API for Map[K, +V]:

• def +(kv: (K, V)): Map[K, V]: Creates a new map obtained by updating this map with a
given key/value pair.

• def -(key: K): Map[K, V]: Removes a key from this map, returning a new map.
• def get(key: K): Option[V]: Optionally returns the value associated with a key.

Relevant API for the Map object:

• def apply[K, V](elems: (K, V)*): Map[K, V]: Creates a map with the specified elements.
• def empty[K, V]: Map[K, V]: Returns an empty map.

17

18

