memory ! Write(1)
1. Problem 1: Message Processing Semantics finally system.terminate()

Consider the following actor system:
What are the possible values printed by the println command in the Client
actor? Why?
enum Protocol:

case Write(value: Int) 1.2. Problem 1.2

caee RepdlEonesicn: ATErne:) Now, consider the following test:

import Protocol.x

enum Responses: @main def probleml_2 =

for _ <- 1 to 1000 do
val system = ActorSystem("example")

case Answer(value: Int)
import Responses.*

try

class Memory extends Actor: val memory = system.actorOf(Props(Memory()))

var value = 0 val proxy = system.actorOf(Props(MyProxy(memory)))
val client = system.actorOf(Props(Client(memory)))

override def receive: Receive = { proxy ! Read(client)
case Write(newValue) => value = newValue memory ! Write(1)

case Read(requester) => requester ! Answer(value) finally system.terminate()

K
class Client(memory: ActorRef) extends Actor: 1. What are the possible values printed by the println command in the
override def receive: Receive = { case Answer(value) => Client?2 actor? Why')
intl 1
: println(value) 2. Would the output be different if the Read and Write messages were issued

in the other order?

class MyProxy(memory: ActorRef) extends Actor: 3. What if both messages are sent through the Proxy actor?

override def receive: Receive = { case message =>
memory ! message

1.1. Problem 1.1
And the following test:

@main def probleml_1 =
for _ <- 1 to 1000 do
val system = ActorSystem("example")
try
val memory = system.actorOf(Props(Memory()))
val client = system.actorOf(Props(Client(memozry)))
memory ! Read(client)

2. Problem 2: The Josephus Problem

In this exercise, we will revisit the famous Josephus problem. In this problem, a
group of soldiers trapped by the enemy decide to commit suicide instead of
surrendering. In order not to have to take their own lives, the soldiers devise a
plan. All soldiers are arranged in a single circle. Each soldier, when it is their
turn to act, has to kill the next soldier alive next to them in the clockwise
direction. Then, the next soldier that is still alive in the same direction acts.
This continues until there remains only one soldier in the circle. This last

soldier is the lucky one, and can surrender if he decides to. The Josephus problem
consists in finding the position in the circle of this lucky soldier, depending on

the number of soldiers.

In this exercise, you will implement a simulation of the mass killing of the
soldiers. Each soldier will be modeled by an actor. Soldiers are arranged in a
circle and when their turn comes to act, they kill the next alive soldier in the
circle. The next soldier that is still alive in the circle should act next. The last
soldier remaining alive does not kill himself but prints out its number to the
standard output.

The code below covers the creation of all actors and the initialization of the
system. Your goal is to implement the receive method of Soldier.

Hint: Think about what state the soldier must have.

import akka.actor.x

object Soldier:
// The different messages that can be sent between the actors:
enum Protocol:

// The recipient should die.
case Death

// The recipient should update its next reference.
case Next(next: ActorRef)

// The recipient should act.
case Act

class Soldier(number: Int) extends Actor:
import Soldier.x

import Protocol.x

def receive: Receive = behavior(None, None, false)

def behavior(
next: Option[ActorRef],
killer: Option[ActorRef],
mustAct: Boolean

): Receive = ?2?2?

@main def problem2(n: Int) =

import Soldier.x
import Soldier.Protocol.x

// Initialization
val system = ActorSystem("mySystem")
require(n >= 1)

// Creation of the actors.
val actors = Seq.tabulate(n) (

(i: Int) => system.actorOf(Props(classOf[Soldier], i), "Soldier"

i)

)

// Inform all actors of the next actor in the circle.

for i <- @ to (n - 2) do actors(i) ! Next(actors(i + 1))

actors(n - 1) ! Next(actors(0))

// Inform the first actor to start acting.
actors(0) ! Act

