_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Eventual Consistency

Principles of Reactive Programming

Roland Kuhn



Eventual Consistency (1)

Strong Consistency: after an update completes all reads will return the
updated value

private var field = 0

def update(f: Int => Int): Int = synchronized {
field = f(field)
field

]
def read(): Int = synchronized { field }



Eventual Consistency (2)

Strong Consistency: after an update completes all reads will return the
updated value

Weak Consistency: after an update conditions need to be met until reads
return the update value; this is the inconsistency window

private @volatile var field = 0

def update(f: Int => Int): Futurel[Int] = Future {
synchronized {

field = f(field)
field

]
def read(): Int = field



Eventual Consistency (3)

Strong Consistency: after an update completes all reads will return the
updated value

Weak Consistency: after an update conditions need to be met until reads
return the update value; this is the inconsistency window

Eventual Consistency: once no more updates are made to an object there
is a time after which all reads return the last written value

http:/ /www.allthingsdistributed.com /2008 /12 /eventually_consistent.html
http:/ /www.infoq.com /articles /cap-twelve-years-later-how-the-rules-have-changed



Eventually Consistent Store (1)

case class Update(x: Int) up(}{
case object Get

case class Result(x: Int)

case class Sync(x: Int, timestamp: Long)
case object Hello

class DistributedStore extends Actor {
var peers: List[ActorRef] = Nil

var field = 0
var lastUpdate = System.currentTimeMillis()

def receive = ...




Eventually Consistent Store (2)

def receive = {
case Update(x) =>
field = x
lastUpdate = System.currentTimeMillis()
peers foreach (_ ! Sync(field, lastUpdate))
case Get => sender ! Result(field)
case Sync(x, timestamp) 1f timestamp > lastUpdate =>
field = x
lastUpdate = timestamp
case Hello =>
peers ::= sender
sender ! Sync(field, lastUpdate)



Actors and Eventual Consistency

an actor forms an island of consistency

collaborating actors can at most be eventually consistent
actors are not automatically eventually consistent

event consistency requires eventual dissemination of all updates

vV v v v YV

need to employ suitable data structures, for example CRDTs?

'Shapiro, Preguica, Baquero, Zawirski (2011): A comprehensive study of Convergent
and Commutative Replicated Data Types, inria-00555588



An Example Data Structure

The cluster membership state is a convergent data type:

» directed acyclic graph of states
» conflicts can always be resolved locally
» conflict resolution is commutative




