
CS206 Concurrency and Parallelism

Martin Odersky and Sanidhya Kashyap

EPFL, Spring 2022

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 1 / 23



Topics covered in this lecture

Garbage collection
Understanding memory
Manual memory reclamation

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 2 / 23



Garbage collection

Responsible for heap management
A process of automatically freeing objects when they are no longer
referenced by the program

Allocate memory from the OS and returns back
Delivers memory to the application when required
Determines which memory is still in use
Reclaims the unused memory

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 3 / 23



Garbage collection

Responsible for heap management
A process of automatically freeing objects when they are no longer
referenced by the program

Allocate memory from the OS and returns back
Delivers memory to the application when required
Determines which memory is still in use
Reclaims the unused memory

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 3 / 23



Why do we need garbage collection?

Free unreferenced memory
Leads to use-after-free bugs
Google/Apple pay you thousands of dollars for finding them

Allocates memory in an efficient manner
Relieves programmers from manually freeing the memory
Reset memory during deallocation and provide clean memory during
allocation
Ensures memory safety:

An object cannot use the memory for itself that has been allocated for
another object

Helps in ensuring program integrity

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4 / 23



Why do we need garbage collection?

Free unreferenced memory
Leads to use-after-free bugs
Google/Apple pay you thousands of dollars for finding them

Allocates memory in an efficient manner
Relieves programmers from manually freeing the memory
Reset memory during deallocation and provide clean memory during
allocation
Ensures memory safety:

An object cannot use the memory for itself that has been allocated for
another object

Helps in ensuring program integrity

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4 / 23



Why do we need garbage collection?

Free unreferenced memory
Leads to use-after-free bugs
Google/Apple pay you thousands of dollars for finding them

Allocates memory in an efficient manner
Relieves programmers from manually freeing the memory
Reset memory during deallocation and provide clean memory during
allocation
Ensures memory safety:

An object cannot use the memory for itself that has been allocated for
another object

Helps in ensuring program integrity

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4 / 23



Why do we need garbage collection?

Free unreferenced memory
Leads to use-after-free bugs
Google/Apple pay you thousands of dollars for finding them

Allocates memory in an efficient manner
Relieves programmers from manually freeing the memory
Reset memory during deallocation and provide clean memory during
allocation
Ensures memory safety:

An object cannot use the memory for itself that has been allocated for
another object

Helps in ensuring program integrity

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 4 / 23



Memory?

OS provides the illusion of separate infinite (almost) resources
Achieves through CPU and memory virtualization
OS provides an address space abstraction for mapping address (memory
location) to data

Static: code and global variables
Dynamic: stack, heap

Q: Why do we need dynamic memory?

Memory use is dependent on the task
Input size is not known at the compile time
Pre-allocation can be wasteful
Recursive functions

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 5 / 23



Memory?

OS provides the illusion of separate infinite (almost) resources
Achieves through CPU and memory virtualization
OS provides an address space abstraction for mapping address (memory
location) to data

Static: code and global variables
Dynamic: stack, heap

Q: Why do we need dynamic memory?

Memory use is dependent on the task
Input size is not known at the compile time
Pre-allocation can be wasteful
Recursive functions

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 5 / 23



Dynamic memory: Stack

Local variables get allocated when executing a function
Memory allocation size is known at compile time
Allocation happens when a function is called and de-allocated after the
function call is over

Called temporary memory allocation
Data accessed is only used by the current task, no concurrency

Implementation: bump or decrement a pointer
De-allocation must be in reverse order

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 6 / 23



Dynamic memory: Stack

Local variables get allocated when executing a function
Memory allocation size is known at compile time
Allocation happens when a function is called and de-allocated after the
function call is over

Called temporary memory allocation
Data accessed is only used by the current task, no concurrency

Implementation: bump or decrement a pointer
De-allocation must be in reverse order

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 6 / 23



Dynamic memory: Heap

A set of randomly allocated memory objects with statically unknown size and
statically unknown allocation patterns. The size and lifetime of each allocated
object is unknown

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 7 / 23



Simple heap implementation (free list)

Idea: abstract heap into a list of free blocks
Keep track of free space, program handles allocated space
Keep a list of all available memory objects and their size

Implementation:
Memory allocation: take a free block, split, put the remaining back on the
free list
Memory deallocation: add the freed block back to the free list

Q: What is the issue with this approach?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 8 / 23



Simple heap implementation (free list)

Idea: abstract heap into a list of free blocks
Keep track of free space, program handles allocated space
Keep a list of all available memory objects and their size

Implementation:
Memory allocation: take a free block, split, put the remaining back on the
free list
Memory deallocation: add the freed block back to the free list

Q: What is the issue with this approach?

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 8 / 23



Heap: better approaches

Allocation: Find a fitting object (first, best, worst fit)
first fit: find the first object in the list and split it
best fit: find the object that is closest to the size
worst fit: find the largest object and split it

De-allocation: merge adjacent blocks
If the adjacent region is free, merge the two blocks

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 9 / 23



Heap: better approaches

Allocation: Find a fitting object (first, best, worst fit)
first fit: find the first object in the list and split it
best fit: find the object that is closest to the size
worst fit: find the largest object and split it

De-allocation: merge adjacent blocks
If the adjacent region is free, merge the two blocks

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 9 / 23



GC: Memory allocation

On starting a process:
Runtime reserves a contiguous memory from the OS
Reserved address space is called managed heap

Managed heap maintains a pointer for allocating the next object
Initially, it points to the heap’s base address

How will allocation happen when you run a program?

Memory allocation is faster as objects can be allocated contiguously, similar
to stack

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 10 / 23



GC: Memory allocation

On starting a process:
Runtime reserves a contiguous memory from the OS
Reserved address space is called managed heap

Managed heap maintains a pointer for allocating the next object
Initially, it points to the heap’s base address

How will allocation happen when you run a program?

Memory allocation is faster as objects can be allocated contiguously, similar
to stack

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 10 / 23



GC: Memory release

GC determines best time to collect the garbage based on the allocations
Releases memory for object when the application is not using the object
GC figures out as follows:

GC maintains a set of application’s roots
Root are storage locations, referring to objects
Roots include static field, local variables, CPU registers, GC specific data
List of active roots is maintained by the runtime and GC can access it

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 11 / 23



Garbage collection process

GC first constructs a graph of reachable objects by assuming that all objects
are garbage

GC walks through the heap linearly and shifts non garbage objects to
remove all gaps

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 12 / 23



Garbage collection process

GC first constructs a graph of reachable objects by assuming that all objects
are garbage

GC walks through the heap linearly and shifts non garbage objects to
remove all gaps

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 12 / 23



Physically cleaning the associated resources

Java provides finalize() method to clean other resources that are part of
that object.

Ex: Outside resources, such as file descriptor
On detecting the object to be a garbage, GC calls the finalize method to
clean up all the resources as well as the associated objects

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 13 / 23



Garbage collection algorithms

Reference counting
Mark and sweep
Many more. . .

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 14 / 23



Reference counting

Maintain a count for each object
The count increase with increasing reference
When count reaches 0, the object is eligible for reclamation

Q: Do you need an atomic count or a simple counter variable?

Advantages:
Easiest to implement
Immediate memory re-use

Disadvantages:
Cannot detect cycles, eg. doubly linked-list
Overhead of atomic counting

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 15 / 23



Reference counting

Maintain a count for each object
The count increase with increasing reference
When count reaches 0, the object is eligible for reclamation

Q: Do you need an atomic count or a simple counter variable?

Advantages:
Easiest to implement
Immediate memory re-use

Disadvantages:
Cannot detect cycles, eg. doubly linked-list
Overhead of atomic counting

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 15 / 23



Reference counting

Maintain a count for each object
The count increase with increasing reference
When count reaches 0, the object is eligible for reclamation

Q: Do you need an atomic count or a simple counter variable?

Advantages:
Easiest to implement
Immediate memory re-use

Disadvantages:
Cannot detect cycles, eg. doubly linked-list
Overhead of atomic counting

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 15 / 23



Mark and Sweep algorithm

Divided into two steps: mark and sweep phase
Mark phase:

Traverse all roots
Marks all objects if the object is in use by setting a bit
Do it recursively for all objects

Sweep phase:
Scan the heap from start until end
If the object is marked, then unmark it
Else free the object

This approach requires pausing the whole application
Stop the world model

Advantages: Handles cycles and more space efficient
Disadvantages: Long pauses are possible

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 16 / 23



Mark and Sweep algorithm

Divided into two steps: mark and sweep phase
Mark phase:

Traverse all roots
Marks all objects if the object is in use by setting a bit
Do it recursively for all objects

Sweep phase:
Scan the heap from start until end
If the object is marked, then unmark it
Else free the object

This approach requires pausing the whole application
Stop the world model

Advantages: Handles cycles and more space efficient
Disadvantages: Long pauses are possible

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 16 / 23



Manual memory reclamation

Concurrent data structures mostly use lock-free operations.
These algorithms assume that threads operate on any object at any time
Operations of a concurrent data structure:

Add/remove
Traverse the data structure

NOTE: A thread removing the object, makes the object unreachable and
prohibits the creation of new references to that object.

Q. How do we free the memory in this case?

Let’s understand it from a linked list perspective

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 17 / 23



Manual memory reclamation

Concurrent data structures mostly use lock-free operations.
These algorithms assume that threads operate on any object at any time
Operations of a concurrent data structure:

Add/remove
Traverse the data structure

NOTE: A thread removing the object, makes the object unreachable and
prohibits the creation of new references to that object.

Q. How do we free the memory in this case?

Let’s understand it from a linked list perspective

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 17 / 23



Memory reclamation schemes:

Ensure that reading of data is consistent
Several approaches:

Quiescent-state-based reclamation (QSBR)
Epoch-based reclamation (EBR)
Hazard pointers (HP)

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 18 / 23



Quiescent-state-based reclamation (QSBR)

Idea: Identify a quiescent state in each thread. Once all threads achieve their
quiescent state, then the system has finished the grace period. After finishing
the grace period, it is safe to invoke the reclamation of the element.

Opposite of a critical section
In a quiescent state, a thread does not hold any reference to any shared
object.
After a quiescent state, it is guaranteed that no critical section will hold
that object.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 19 / 23



QSBR example

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 20 / 23



Hazard Pointers

Idea: Associate a number of single-writer multi-reader pointers for each process.
Such pointers are called hazard pointers that indicate which nodes they might be
able to access without further validation. If a node is marked by hazard pointer,
it is unsafe for reclamation.

High-level pseudocode:
1 Read a reference of the object O
2 Assign a hazard pointer to O
3 Check if O is still valid
4 Access the object O
5 Release the reference to O

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 21 / 23



Hazard pointers

Each thread individually maintain a set of pointers
The thread can write to it while others will read it

The thread will first add the reference of the node in its list before
accessing the dynamic list.

Each thread also maintain a list of nodes it has deleted and wants to free

When the length of the list reaches a threshold, the thread scans hazard
pointer list of all other threads to see if its safe to free

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 22 / 23



Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 23 / 23


