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Topics covered in this lecture

Building blocks of concurrency:
Memory model
Atomics
Volatile variable
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Recap: Memory model and executors

A memory model is a contract about data access and visibility.
Memory models are non-deterministic, to allow some freedom of
implementation in compiler and hardware.

Java follows happens-before relation-based memory model.
Program order, monitor locking, volatile, thread start, thread termination.

Execution context uses threads to multiplex tasks and task creation
overhead.
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Atomic Primitives

So far, we have based concurrent operations on synchronized, wait, notify
and notifyAll.

These are all complex operations which require support from the OS scheduler.

We now look at the primitives in terms of which these higher-level operations are
implemented.

On the JVM these primitives are based on the notion of an atomic variable.
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Atomic Variables

An atomic variable is a memory location that supports linearizable operations.

A linearizable operation is one that appears instantaneously with the rest of the
system. We also say the operation is performed atomically.

Classes that create atomic variables are defined in package

java.util.concurrent.atomic

They include

AtomicInteger, AtomicLong, AtomicBoolean, AtomicReference
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Atomic operations

Atomic increment/decrement
Atomic exchange
Atomic compare and swap
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Example: Generating unique ID (getUniqueId)

object GetUID extends Monitor:
var uidCount = 0
def getUniqueId() = synchronized {

val freshUID = uidCount + 1
uidCount = freshUID
freshUID

}
...
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Problem with this approach

This code is slow due to:
Possibility of a deadlock if the lock monitor is used at several places.
Possibility of arbitrary delay
More instructions are being issued in this case.
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Using Atomic Variables

Here’s how getUniqueId can be defined without synchronized:

import java.util.concurrent.atomic._

@main def AtomicUid =
private val uid = new AtomicLong(0L)
def getUniqueId(): Long = uid.incrementAndGet()
execute {

log(s"Got a unique id asynchronously: ${getUniqueId()}")
}
log(s"Got a unique id: ${getUniqueId()}")
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Atomic Operations

The incrementAndGet method is a complex, linearizable operation.

It reads the value x of uid, computes x + 1, stores the result back in uid and
returns it.

All this occurs in one instruction

No intermediate result can be observed by other threads.

Other linearizable method offered by AtomicLong:

def getAndSet(newValue: Long)

This reads the current value of the atomic variable, sets the new value, and
returns the previous value.
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Compare and Swap

Complex atomic Operations often rely on the compare-and-swap (CAS)
primitive.

CAS is available as a compareAndSet method on atomic variables.

It is usually implemented by the underlying hardware as a machine instruction,
but we can think of its implementation as follows:

class AtomicLong {
...
def compareAndSet(expect: Long, update: Long) =

this.synchronized {
if this.get == expect then { this.set(update); true }
else false

}

That is, compareAndSet atomically sets the value to the given updated value if
the current value equals the expected value.
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Using CAS

Let’s implement getUniqueId using CAS directly:

@tailrec def getUniqueId(): Long =
val oldUid = uid.get
val newUid = oldUid + 1
if uid.compareAndSet(oldUid, newUid) then newUid
else getUniqueId()

This uses the following general schema:
1 Read the old value from the atomic variable
2 Compute the new value
3 Try do do a CAS.

If successful, the value was updated, and we are done.
If unsuccessful, a some other thread had stored a new value in the meantime.
In that case, try the same operation again.
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Execution Diagram
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Programming Without Locks

Locks as implemented by synchronized are a convenient concurrency
mechanism.

But they are also problematic

possibility of deadlock
possibility to arbitrarily delay other threads if a thread executes a
long-running operation in a synchronized, or if it gets pre-empted by the
OS.

With atomic variables and their lock-free operations, we can avoid these
problems.

A thread executing a lock-free operation cannot be pre-empted by the OS, so it
cannot temporarily block other threads.
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Simulating Locks

However, not all operations composed from atomic primitives are lock-free.

In fact, we can implement synchronized only from atomic operations:

private val lock = new AtomicBoolean(false)
def mySynchronized(body: => Unit): Unit =

while !lock.compareAndSet(false, true) do {}
try body
finally lock.set(false)

So, atomic operations can be used to model locks and locking operations.
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Lock-Free Operations

Here is a way to define lock-freedom without looking at implementation
primitives:

An operation op is lock-free if whenever there is a set of threads
executing op at least one thread completes the operation after a finite
number of steps, regardless of the speed in which the different threads
progress.

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 16 / 46



Example

Is this operation lock-free?

@tailrec def getUniqueId(): Long =
val oldUid = uid.get
val newUid = oldUid + 1
if uid.compareAndSet(oldUid, newUid then newUid
else getUniqueId()

Problem: It is (tail-)recursive, so could take arbitrarily long.

However, the recursive call is made only if some other thread completed the
operation (in a finite number of steps).

This observation proves lock-freedom.

In general, lock-freedom is quite hard to reason about.
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Volatile Variables

One last synchronization primitive that we examine are volatile variables.

Sometimes we need only safe publication instead of atomic execution. In these
cases, synchronized can be too heavyweight.

There’s a cheaper solution than using synchronized – we can use a volatile
field.
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Guarantees of Volatile

Making a variable @volatile has several effects.

First, reads and writes to volatile variables are never reordered by the compiler.

Second, volatile reads and writes are never cached in CPU registers – they go
directly to the main memory.

Third, writes to normal variables that in the program precede a volatile write W
cannot be moved by the compiler after W.

Fourth, reads from normal variables that in the program appear after a volatile
read R cannot be moved by the compiler before R.

Fifth, before a volatile write, values cached in registers must be written back to
main memory.

Sixth, after a volatile read, values cached in registers must be re-read from the
main memory.
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Conclusion About Volatiles

For almost all practical purposes, you should keep your programs simple, and
avoid using @volatile variables.

Instead, as a rule of the thumb, stick with synchronized when you need to
make your writes visible to other threads.
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Lazy Values

Scala provides lazy values to compute only once.

Writing efficient functional data structures
Avoid allocating and iniitializing expensive resources
Achieve the correct “initialize only once” semantic

lazy val x: T = E

We now look at how to implement them so that several threads can use a lazy
value.

Would like to achieve the following:

The first thread that demands a lazy value computes it.
Other threads will block until the value is computed by the first thread.
That way, every lazy value initializer is executed at most once.
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Lazy Values (1)

Here is a first, naive implementation of the definition of x above:

import compiletime.uninitialized
private var x_defined = false
private var x_cached: T = uninitialized

def x: T =
if !x_defined then

x_cached = E
x_defined = true

x_cached

What is wrong with this implementation?
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Lazy Values (2)

The previous implementation of x is not thread-safe.

E might be evaluated several times
We might access x without a value (possible reordering between x_defined
and x_cached assignments).

Martin Odersky and Sanidhya Kashyap CS206 Concurrency and Parallelism 23 / 46



Lazy Values (3)

Here’s a safer implementation:

private var x_defined = false
private var x_cached: T = uninitialized

def x: T = this.synchronized {
if !x_defined then

x_cached = E
x_defined = true

x_cached
}

What are potential problems with this implementation?
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Lazy Values (4)

The synchronized call on every access is quite costly. Here is a faster
implementation:

@volatile private var x_defined = false
private var x_cached: T = uninitialized
def x: T =

if !x_defined then this.synchronized {
if !x_defined then { x_cached = E; x_defined = true }

}
x_cached

This pattern is called double locking. How does it work?

If x_defined is set, some thread must have completed the synchronized to do
this.
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Lazy Values (5)

The previous implementation of lazy values is what scalac currently implements
in version 2.13.

It’s not without problems though:

it is not lock free
it uses the current object as a lock, which might conflict with
application-defined locking.
it is prone to deadlocks.

Consider:

object A: object B:
lazy val x = B.y lazy val y = A.x

What does this do in a sequential setting? What can it do in a concurrent one?
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Better Lazy Values

An alternative implementation of lazy values uses two flag bits per lazy value:

private var x_evaluating = false
private var x_defined = false
private var x_cached = uninitialized
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Better Lazy Values (2)

The implementation of the getter x is as follows:

def x: T =
if !x_defined then

this.synchronized {
if x_evaluating then wait() else x_evaluating = true

}
if !x_defined then

x_cached = E
this.synchronized {

x_evaluating = false; x_defined = true; notifyAll()
}

x_cached
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Better Lazy Values (3)

This is essentially the implementation scheme used in the new Scala 3 compiler,
dotc, developed at LAMP/EPFL.

Notes:

The evaluation of expression E happens outside a monitor, therefore no
arbitrary slowdowns.
Two short synchronized blocks instead of one arbitrary long one.
No interference with user-defined locks.
lazy val/lazy val deadlocks are still possible with the new implementation,
but only in cases where sequential execution would give an infinite loop.

Exercise: Implement the new getter implementation using only atomic
operations.

Check out the following link to further consider more issues:

https://docs.scala-lang.org/sips/improved-lazy-val-initialization.html
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Using Collections Concurrently

Operations on mutable collections are usually not thread-safe.

Example:

import scala.collection._
@main def CollectionBad =

val buffer = mutable.ArrayBuffer[Int]()
def add(numbers: Seq[Int]) = execute {

buffer ++= numbers
log(s"buffer = $buffer")

}
add(0 until 10)
add(10 until 20)
Thread.sleep(1000)

This can give arbitrary interleavings of elements in buffer and it can also crash.
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Using Synchronization

A safe way to deal with this is to use synchronized:

val buffer = mutable.ArrayBuffer[Int]()
def add(numbers: Seq[Int]) = execute {

buffer.synchronized {
buffer ++= numbers
log(s"buffer = $buffer")

}
}
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Concurrent Collections

Using synchronized often leads to too much blocking because of
coarse-grained locking.

To gain speed, we can use or implement special concurrent collection
implementations.

Example: Concurrent queues, with operations append, remove.

Append needs access to the end of the queue
Remove needs access to the beginning of the queue
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Concurrent Queues

We now develop a lock-free concurrent queues implementation.

First step: A sequential implementation.

A queue has two fields:

head points to a dummy node before the first element
last points to the last element (or the dummy node if the queue is empty).

head last head last

Empty Queue Non-empty queue
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Sequential Queue Implementation

object SeqQueue:
private class Node[T](var next: Node[T]):

var elem: T = uninitialized

class SeqQueue[T]:
import SeqQueue._
private var last = new Node[T](null)
private var head = last
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Sequential Queue Implementation (ctd)

final def append(elem: T): Unit =
val last1 = new Node[T](null)
last1.elem = elem
val prev = last
last = last1
prev.next = last1

final def remove(): Option[T] =
if head eq last then None
else

val first = head.next
head = first
Some(first.elem)
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Concurrent Queue Implementation

Idea: make head and last atomic (reference) variables.

Problem: append needs to atomically update two variables:

last = last1
prev.next = last1

But CAS can only work on one variable at a time!

Solution:

Use one CAS (for last = last1) and fix the other assignment when
successful.
This leaves a window of vulnerability where prev.next == null instead of
prev.next == last1.
We need to detect and compensate for this in remove.
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Concurrent Queue: Setup

import java.util.concurrent.atomic._
import scala.annotation.tailrec

object ConcQueue:
private class Node[T](@volatile var next: Node[T]):

var elem: T = uninitialized

class ConcQueue[T]:
import ConcQueue._
private var last = new AtomicReference(new Node[T](null))
private var head = new AtomicReference(last.get)
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Concurrent Queue: Append

@tailrec final def append(elem: T): Unit =
val last1 = new Node[T](null)
last1.elem = elem
val prev = last.get
if last.compareAndSet(prev, last1)
then prev.next = last1
else append(elem)

Only last two lines are substantially different from the sequential implementation.
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Concurrent Queue: Remove

@tailrec final def remove(): Option[T] =
if head eq last then None
else

val hd = head.get
val first = hd.next
if first != null && head.compareAndSet(hd, first)
then Some(first.elem)
else remove()

Again, only the last two lines are substantially different from the sequential
implementation.
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Question

Are append and remove of ConcQueue lock-free operations?

Recall the definition:
An operation op is lock-free if whenever there is a set of threads
executing op at least one thread completes the operation after a finite
number of steps, regardless of the speed in which the different threads
progress.
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Question (2)

What about if we change remove to the following implementation?

@tailrec final def remove(): Option[T] =
val hd = head.get
val first = hd.next
if first == null then None
else if head.compareAndSet(hd, first)
then Some(first.elem)
else remove()
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Concurrent Queues in the Standard Library

Multiple implementations in package java.util.concurrent implement interface
BlockingQueue:

ArrayBlockingQueue // bounded queue, similar to exercise last week

LinkedBlockingQueue // unbounded queue, similar to implementation here
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Concurrent Sets and Maps

The Scala library also provides implementations of concurrent sets and maps.

These make use of the underlying data structure for efficiency.

Hashmaps are use hashtable with chaining.
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Revisit: Memory Models in General

A memory model is a contract about data access and visibility.

It essentially abstracts over the underlying systems cache coherence protocol.

Memory models are non-deterministic, to allow some freedom of implementation
in compiler and hardware.
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Recap: The Java Memory Model

Define a “happens-before” relationship as follows.

Program order: Each action in a thread happens-before every subsequent
action in the same thread.

Monitor locking: Unlocking a monitor happens-before every subsequent
locking of that monitor

Volatile fields: A write to a volatile field happens-before every subsequent
read of that field.

Thread start: A call to start() on a thread happens-before all actions of
that thread.

Thread termination. An action in a thread happens-before another thread
completes a join on that thread.

Transitivity. If A happens before B and B happens-before C, then A
happens-before C.
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Revisit: The Java Memory Model

Consider:

var x = 0; var y = 0;
val t1 = thread { val t2 = thread {

x = 1 println(x)
lock.synchronized { lock.synchronized { println(y) }

y = 2 println(x)
} }

}

What we discussed in the last class does not follow the Java memory model. We
learned about the weaker memory model.

If we think about the Java’s memory model, is 0, 2, 0 a possibility, remember
program order and monitor locking?
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