
Message Processing Semantics

Programming Reactive Systems
Roland Kuhn

Actor Encapsulation

No direct access is possible to the actor behavior.
Only messages can be sent to known addresses (ActorRef):

▶ every actor knows its own address (self)
▶ creating an actor returns its address
▶ addresses can be sent within messages (e.g. sender)

Actor Encapsulation

No direct access is possible to the actor behavior.
Only messages can be sent to known addresses (ActorRef):

▶ every actor knows its own address (self)
▶ creating an actor returns its address
▶ addresses can be sent within messages (e.g. sender)

Actors are completely independent agents of computation:

▶ local execution, no notion of global synchronization
▶ all actors run fully concurrently
▶ message-passing primitive is one-way communication

Actor-Internal Evaluation Order

An actor is effectively single-threaded:

▶ messages are received sequentially
▶ behavior change is effective before processing the next message
▶ processing one message is the atomic unit of execution

This has the benefits of synchronized methods, but blocking is replaced by
enqueueing a message.

The Bank Account (revisited)

It is good practice to define an Actor’s messages in its companion object.

object BankAccount {

case class Deposit(amount: BigInt) {

require(amount > 0)

}

case class Withdraw(amount: BigInt) {

require(amount > 0)

}

case object Done

case object Failed

}

The Bank Account (revisited)

class BankAccount extends Actor {

import BankAccount._

var balance = BigInt(0)

def receive = {

case Deposit(amount) => balance += amount

sender ! Done

case Withdraw(amount) if amount <= balance => balance -= amount

sender ! Done

case _ => sender ! Failed

}

}

Actor Collaboration

▶ picture actors as persons
▶ model activities as actors

Transferring Money (0)

object WireTransfer {

case class Transfer(from: ActorRef, to: ActorRef, amount: BigInt)

case object Done

case object Failed

}

Transferring Money (1)

class WireTransfer extends Actor {

import WireTransfer._

def receive = {

case Transfer(from, to, amount) =>

from ! BankAccount.Withdraw(amount)

context.become(awaitWithdraw(to, amount, sender))

}

def awaitWithdraw ...

}

Transferring Money (2)

class WireTransfer extends Actor {

...

def awaitWithdraw(to: ActorRef, amount: BigInt, client: ActorRef): Receive = {

case BankAccount.Done =>

to ! BankAccount.Deposit(amount)

context.become(awaitDeposit(client))

case BankAccount.Failed =>

client ! Failed

context.stop(self)

}

def awaitDeposit ...

}

Transferring Money (3)

class WireTransfer extends Actor {

...

def awaitDeposit(client: ActorRef): Receive = {

case BankAccount.Done =>

client ! Done

context.stop(self)

}

}

Message Delivery Guarantees

▶ all communication is inherently unreliable

Message Delivery Guarantees

▶ all communication is inherently unreliable
▶ delivery of a message requires eventual availability of channel &

recipient

at-most-once: sending once delivers [0, 1] times
at-least-once: resending until acknowledged delivers [1, ∞) times
exactly-once: processing only first reception delivers 1 time

Reliable Messaging

Messages support reliability:

▶ all messages can be persisted
▶ can include unique correlation IDs
▶ delivery can be retried until successful

Reliability can only be ensured by business-level acknowledgement.

Making the Transfer Reliable

▶ log activities of WireTransfer to persistent storage
▶ each transfer has a unique ID
▶ add ID to Withdraw and Deposit
▶ store IDs of completed actions within BankAccount

Message Ordering

If an actor sends multiple messages to the same destination, they will not
arrive out of order (this is Akka-specific).

Summary

Actors are fully encapsulated, independent agents of computation.
Messages are the only way to interact with actors.
Explicit messaging allows explicit treatment of reliability.
The order in which messages are processed is mostly undefined.

Designing Actor Systems

Programming Reactive Systems
Roland Kuhn

Starting Out with the Design

Imagine giving the task to a group of people, dividing it up.
Consider the group to be of very large size.
Start with how people with different tasks will talk with each other.
Consider these “people” to be easily replaceable1.
Draw a diagram with how the task will be split up, including
communication lines.

1This is where our abstract people differ from real people.

Example: the Link Checker

Write an actor system which given a URL will recursively download the
content, extract links and follow them, bounded by a maximum depth; all
links encountered shall be returned.

Plan of Action

▶ Write web client which turns a URL into a HTTP body
asynchronously.
We will be using ”com.ning” % ”async-http-client” % ”1.7.19”

▶ Write a Getter actor for processing the body.
▶ Write a Controller which spawns Getters for all links encountered.
▶ Write a Receptionist managing one Controller per request.

The Web Client (1)

Let us start simple:

val client = new AsyncHttpClient

def get(url: String): String = {

val response = client.prepareGet(url).execute().get

if (response.getStatusCode < 400)

response.getResponseBodyExcerpt(131072)

else throw BadStatus(response.getStatusCode)

}

The Web Client (1)

Let us start simple:

val client = new AsyncHttpClient

def get(url: String): String = {

val response = client.prepareGet(url).execute().get

if (response.getStatusCode < 400)

response.getResponseBodyExcerpt(131072)

else throw BadStatus(response.getStatusCode)

}

Blocks the calling actor until the web server has replied:

▶ actor is deaf to other requests, e.g. cancellation does not work
▶ wastes one thread—a finite resource

The Web Client (2)

private val client = new AsyncHttpClient

def get(url: String)(implicit exec: Executor): Future[String] = {

val f = client.prepareGet(url).execute();

val p = Promise[String]()

f.addListener(new Runnable {

def run = {

val response = f.get

if (response.getStatusCode < 400)

p.success(response.getResponseBodyExcerpt(131072))

else p.failure(BadStatus(response.getStatusCode))

}

}, exec)

p.future

}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.

Finding Links

// using ”org.jsoup” % ”jsoup” % ”1.8.1”

import org.jsoup.Jsoup

import import scala.collection.JavaConverters._

def findLinks(body: String): Iterator[String] = {

val document = Jsoup.parse(body, url)

val links = document.select(”a[href]”)

for {

link <- links.iterator().asScala

} yield link.absUrl(”href”)

}

The Getter Actor (1)

class Getter(url: String, depth: Int) extends Actor {

implicit val exec = context.dispatcher

val future = WebClient.get(url)

future onComplete {

case Success(body) => self ! body

case Failure(err) => self ! Status.Failure(err)

}

...

}

The Getter Actor (2)

class Getter(url: String, depth: Int) extends Actor {

implicit val exec = context.dispatcher

val future = WebClient.get(url)

future.pipeTo(self)

...

}

The Getter Actor (3)

class Getter(url: String, depth: Int) extends Actor {

implicit val exec = context.dispatcher

WebClient get url pipeTo self

...

}

The Getter Actor (4)

class Getter(url: String, depth: Int) extends Actor {

...

def receive = {

case body: String =>

for (link <- findLinks(body))

context.parent ! Controller.Check(link, depth)

stop()

case _: Status.Failure => stop()

}

def stop(): Unit = {

context.parent ! Done

context.stop(self)

}

}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.

Actor-Based Logging

▶ Logging includes IO which can block indefinitely
▶ Akka’s logging passes that task to dedicated actors
▶ supports ActorSystem-wide levels of debug, info, warning, error
▶ set level using setting akka.loglevel=DEBUG (for example)

class A extends Actor with ActorLogging {

def receive = {

case msg => log.debug(”received message: {}”, msg)

}

}

The Controller

class Controller extends Actor with ActorLogging {

var cache = Set.empty[String]

var children = Set.empty[ActorRef]

def receive = {

case Check(url, depth) =>

log.debug(”{} checking {}”, depth, url)

if (!cache(url) && depth > 0)

children += context.actorOf(Props(new Getter(url, depth - 1)))

cache += url

case Getter.Done =>

children -= sender

if (children.isEmpty) context.parent ! Result(cache)

}

}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.
▶ Prefer immutable data structures, since they can be shared.

Handling Timeouts

import scala.concurrent.duration._

class Controller extends Actor with ActorLogging {

context.setReceiveTimeout(10.seconds)

...

def receive = {

case Check(...) => ...

case Getter.Done => ...

case ReceiveTimeout => children foreach (_ ! Getter.Abort)

}

}

The receive timeout is reset by every received message.

Handling Abort in the Getter

class Getter(url: String, depth: Int) extends Actor {

...

def receive = {

case body: String =>

for (link <- findLinks(body)) ...

stop()

case _: Status.Failure => stop()

case Abort => stop()

}

def stop(): Unit = {

context.parent ! Done

context.stop(self)

}

}

The Scheduler

Akka includes a timer service optimized for high volume, short durations
and frequent cancellation.

trait Scheduler {

def scheduleOnce(delay: FiniteDuration, target: ActorRef, msg: Any)

(implicit ec: ExecutionContext): Cancellable

def scheduleOnce(delay: FiniteDuration)(block: => Unit)

(implicit ec: ExecutionContext): Cancellable

def scheduleOnce(delay: FiniteDuration, run: Runnable)

(implicit ec: ExecutionContext): Cancellable

... // the same for repeating timers

}

Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {

import context.dispatcher

var children = Set.empty[ActorRef]

context.system.scheduler.scheduleOnce(10.seconds) {

children foreach (_ ! Getter.Abort)

}

...

}

Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {

import context.dispatcher

var children = Set.empty[ActorRef]

context.system.scheduler.scheduleOnce(10.seconds) {

children foreach (_ ! Getter.Abort)

} ... }

Question: What is the problem with this code?

O it does not compile

O it is not thread-safe

O the scheduled code will not run

Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {

import context.dispatcher

var children = Set.empty[ActorRef]

context.system.scheduler.scheduleOnce(10.seconds) {

children foreach (_ ! Getter.Abort)

}

...

}

Accessing an actor’s state from outside its execution breaks encapsulation.

Adding an Overall Timeout (2)

class Controller extends Actor with ActorLogging {

import context.dispatcher

var children = Set.empty[ActorRef]

context.system.scheduler.scheduleOnce(10.seconds, self, Timeout)

...

def receive = {

...

case Timeout => children foreach (_ ! Getter.Abort)

}

}

How Actors and Futures Interact (1)

Future composition methods invite closing over the actor’s state:

class Cache extends Actor {

var cache = Map.empty[String, String]

def receive = {

case Get(url) =>

if (cache contains url) sender ! cache(url)

else

WebClient get url foreach { body =>

cache += url -> body

sender ! body

}

}

}

How Actors and Futures Interact (2)

class Cache extends Actor {

var cache = Map.empty[String, String]

def receive = {

case Get(url) =>

if (cache contains url) sender ! cache(url)

else

WebClient get url map (Result(sender, url, _)) pipeTo self

case Result(client, url, body) =>

cache += url -> body

client ! body

}

}

How Actors and Futures Interact (3)

class Cache extends Actor {

var cache = Map.empty[String, String]

def receive = {

case Get(url) =>

if (cache contains url) sender ! cache(url)

else {

val client = sender

WebClient get url map (Result(client, url, _)) pipeTo self

}

case Result(client, url, body) =>

cache += url -> body

client ! body

}

}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.
▶ Prefer immutable data structures, since they can be shared.
▶ Do not refer to actor state from code running asynchronously.

The Receptionist (1)

class Receptionist extends Actor {

def receive = waiting

val waiting: Receive = {

// upon Get(url) start a traversal and become running

}

def running(queue: Vector[Job]): Receive = {

// upon Get(url) apppend that to queue and keep running

// upon Controller.Result(links) ship that to client

// and run next job from queue (if any)

}

}

The Receptionist (2)

case class Job(client: ActorRef, url: String)

var reqNo = 0

def runNext(queue: Vector[Job]): Receive = {

reqNo += 1

if (queue.isEmpty) waiting

else {

val controller = context.actorOf(Props[Controller], s”c$reqNo”)

controller ! Controller.Check(queue.head.url, 2)

running(queue)

}

}

reqNo permeates all states but does not qualitatively change behavior: an
example for when using var may benefit.

The Receptionist (3)

def enqueueJob(queue: Vector[Job], job: Job): Receive = {

if (queue.size > 3) {

sender ! Failed(job.url)

running(queue)

} else running(queue :+ job)

}

The Receptionist (4)

val waiting: Receive = {

case Get(url) => context.become(runNext(Vector(Job(sender, url))))

}

def running(queue: Vector[Job]): Receive = {

case Controller.Result(links) =>

val job = queue.head

job.client ! Result(job.url, links)

context.stop(sender)

context.become(runNext(queue.tail))

case Get(url) =>

context.become(enqueueJob(queue, Job(sender, url)))

}

Summary

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.
▶ Prefer immutable data structures, since they can be shared.
▶ Prefer context.become for different states, with data local to the

behavior.
▶ Do not refer to actor state from code running asynchronously.

Testing Actor Systems

Programming Reactive Systems
Roland Kuhn

Testing Actors

Tests can only verify externally observable effects.

Testing Actors

Tests can only verify externally observable effects.

class Toggle extends Actor {

def happy: Receive = {

case ”How are you?” =>

sender ! ”happy”

context become sad

}

def sad: Receive = {

case ”How are you?” =>

sender ! ”sad”

context become happy

}

def receive = happy

}

Akka’s TestKit (1)

TestProbe as remote-controlled actor.

implicit val system = ActorSystem(”TestSys”)

val toggle = system.actorOf(Props[Toggle])

val p = TestProbe()

p.send(toggle, ”How are you?”)

p.expectMsg(”happy”)

p.send(toggle, ”How are you?”)

p.expectMsg(”sad”)

p.send(toggle, ”unknown”)

p.expectNoMsg(1.second)

system.shutdown()

Akka’s TestKit (2)

Running a test within a TestProbe:

new TestKit(ActorSystem(”TestSys”)) with ImplicitSender {

val toggle = system.actorOf(Props[Toggle])

toggle ! ”How are you?”

expectMsg(”happy”)

toggle ! ”How are you?”

expectMsg(”sad”)

toggle ! ”unknown”

expectNoMsg(1.second)

system.shutdown()

}

Testing Actors with Dependencies

Accessing the real DB or production web services is not desirable:

▶ one simple solution is to add overridable factory methods

Testing Actors with Dependencies

Accessing the real DB or production web services is not desirable:

▶ one simple solution is to add overridable factory methods

class Receptionist extends Actor {

def controllerProps: Props = Props[Controller]

...

def receive = {

...

val controller = context.actorOf(controllerProps, ”controller”)

...

}

}

Testing Actors with Dependencies

Accessing the real DB or production web services is not desirable:

▶ one simple solution is to add overridable factory methods

class Getter extends Actor {

...

def client: WebClient = AsyncWebClient

client get url pipeTo self

...

}

Testing Interaction with the Parent

Create a step-parent:

class StepParent(child: Props, probe: ActorRef) extends Actor {

context.actorOf(child, ”child”)

def receive = {

case msg => probe.tell(msg, sender)

}

}

Inserting a Foster-Parent

For when parent–child communication should occur, but monitored:

class FosterParent(child: Props, probe: ActorRef) extends Actor {

val child = context.actorOf(child, ”child”)

def receive = {

case msg if sender == context.parent =>

probe forward msg

child forward msg

case msg =>

probe forward msg

context.parent forward msg

}

}

Testing Actor Hierarchies

Start verifying leaves, work your way up:

▶ “Reverse Onion Testing”

