Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
inox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
LARA
inox
Commits
d5f23351
Commit
d5f23351
authored
9 years ago
by
Sandro Stucki
Committed by
Manos Koukoutos
9 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Adds test case for proof DSL: exponential function (some tests fail).
parent
9c1c14e8
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
testcases/verification/proof/Exponential.scala
+205
-0
205 additions, 0 deletions
testcases/verification/proof/Exponential.scala
with
205 additions
and
0 deletions
testcases/verification/proof/Exponential.scala
0 → 100644
+
205
−
0
View file @
d5f23351
/* Copyright 2009-2015 EPFL, Lausanne */
package
leon.testcases.verification.proof
import
leon.annotation._
import
leon.lang._
import
leon.proof._
object
Exponential
{
/** A simple, but slow function for computing exponentials. */
def
exp
(
x
:
BigInt
,
y
:
BigInt
)
:
BigInt
=
{
require
(
y
>=
0
)
if
(
x
==
0
)
0
else
if
(
y
==
0
)
1
else
x
*
exp
(
x
,
y
-
1
)
}
/** Exponentials of positive numbers are positive. */
def
positive
(
x
:
BigInt
,
y
:
BigInt
)
:
Boolean
=
{
require
(
y
>=
0
&&
x
>=
0
)
exp
(
x
,
y
)
>=
0
because
{
if
(
x
==
0
)
trivial
else
if
(
y
==
0
)
trivial
else
check
{
x
*
exp
(
x
,
y
-
1
)
>=
0
because
positive
(
x
,
y
-
1
)
}
}
}.
holds
/** The exponential function is positive (shorter proof). */
def
positiveShort
(
x
:
BigInt
,
y
:
BigInt
)
:
Boolean
=
{
require
(
y
>=
0
&&
x
>
0
)
exp
(
x
,
y
)
>=
0
because
{
if
(
x
==
0
)
trivial
else
if
(
y
==
0
)
trivial
else
positiveShort
(
x
,
y
-
1
)
}
}.
holds
/**
* The exponential function (with respect to a fixed base) is a
* homomorphism between the commutative monoids of addition and
* multiplication over integers.
*/
def
monoidHom
(
x
:
BigInt
,
y
:
BigInt
,
z
:
BigInt
)
:
Boolean
=
{
require
(
y
>=
0
&&
z
>=
0
)
exp
(
x
,
y
+
z
)
==
exp
(
x
,
y
)
*
exp
(
x
,
z
)
because
{
if
(
x
==
0
)
trivial
else
if
(
y
==
0
)
trivial
else
{
exp
(
x
,
y
+
z
)
==|
(
y
+
z
!=
0
)
|
x
*
exp
(
x
,
y
+
z
-
1
)
==|
monoidHom
(
x
,
y
-
1
,
z
)
|
x
*
exp
(
x
,
y
-
1
)
*
exp
(
x
,
z
)
}.
qed
}
}.
holds
/**
* Exponentiation (by a fixed exponent) commutes with
* multiplication.
*/
def
expMultCommute
(
x
:
BigInt
,
y
:
BigInt
,
z
:
BigInt
)
:
Boolean
=
{
require
(
z
>=
0
)
exp
(
x
*
y
,
z
)
==
exp
(
x
,
z
)
*
exp
(
y
,
z
)
because
{
if
(
x
==
0
)
trivial
else
if
(
y
==
0
)
trivial
else
if
(
z
==
0
)
trivial
else
check
{
x
*
y
*
exp
(
x
*
y
,
z
-
1
)
==
x
*
exp
(
x
,
z
-
1
)
*
y
*
exp
(
y
,
z
-
1
)
because
expMultCommute
(
x
,
y
,
z
-
1
)
}
}
}.
holds
/** A combination of the previous two lemmas. */
def
square
(
x
:
BigInt
,
y
:
BigInt
)
:
Boolean
=
{
require
(
y
>=
0
)
exp
(
x
,
2
*
y
)
==
exp
(
x
*
x
,
y
)
because
monoidHom
(
x
,
y
,
y
)
&&
expMultCommute
(
x
,
x
,
y
)
}.
holds
/** A more efficient function for computing exponentials. */
def
fastExp
(
x
:
BigInt
,
y
:
BigInt
)
:
BigInt
=
{
require
(
y
>=
0
)
if
(
x
==
0
)
0
else
if
(
y
==
0
)
1
else
if
(
y
%
2
==
0
)
fastExp
(
x
*
x
,
y
/
2
)
else
x
*
fastExp
(
x
,
y
-
1
)
}
/**
* The two versions of the exponential function are equivalent.
*
* NOTE: Leon is able to verify most of the individual sub-goals of
* this correctness proof in fractions of a second using Z3-F, but
* often times out after >30s when trying to verify the overall
* post-condition (Intel core i7, Ubuntu 14.04.2 LTS, x86-64,
* 2015-06-04).
*/
def
fastExpCorrect
(
x
:
BigInt
,
y
:
BigInt
)
:
Boolean
=
{
require
(
y
>=
0
)
fastExp
(
x
,
y
)
==
exp
(
x
,
y
)
because
{
if
(
x
==
0
)
trivial
else
if
(
y
==
0
)
trivial
else
if
(
y
%
2
==
0
)
{
val
z
=
y
/
2
;
{
fastExp
(
x
,
y
)
==|
trivial
|
fastExp
(
x
*
x
,
z
)
==|
fastExpCorrect
(
x
*
x
,
z
)
|
exp
(
x
*
x
,
z
)
==|
square
(
x
,
z
)
|
exp
(
x
,
y
)
}.
qed
}
else
{
val
z
=
(
y
-
1
)
/
2
;
{
fastExp
(
x
,
y
)
==|
(
y
%
2
!=
0
)
|
x
*
fastExp
(
x
*
x
,
z
)
==|
{
fastExp
(
x
*
x
,
z
)
==|
fastExpCorrect
(
x
*
x
,
z
)
|
exp
(
x
*
x
,
z
)
==|
square
(
x
,
z
)
|
exp
(
x
,
2
*
z
)
==|
trivial
|
exp
(
x
,
y
-
1
)
}.
qed
|
x
*
exp
(
x
,
y
-
1
)
==|
(
y
!=
0
)
|
exp
(
x
,
y
)
}.
qed
}
}
}.
holds
/**
* The two versions of the exponential function are equivalent.
*
* NOTE: this version of the correctness proof is more verbose but
* easier to debug. Leon is able to verify most of the individual
* sub-goals in fractions of a second using Z3-F, but often times
* out after >30s when trying to verify the overall post-condition
* (Intel core i7, Ubuntu 14.04.2 LTS, x86-64, 2015-06-04).
*/
def
fastExpCorrect2
(
x
:
BigInt
,
y
:
BigInt
)
:
Boolean
=
{
require
(
y
>=
0
)
fastExp
(
x
,
y
)
==
exp
(
x
,
y
)
because
{
if
(
x
==
0
)
trivial
else
if
(
y
==
0
)
trivial
else
if
(
y
%
2
==
0
)
{
val
z
=
y
/
2
check
{
fastExp
(
x
,
y
)
==
fastExp
(
x
*
x
,
z
)
}
&&
check
{
fastExp
(
x
*
x
,
z
)
==
exp
(
x
*
x
,
z
)
because
fastExpCorrect2
(
x
*
x
,
z
)
}
&&
check
{
exp
(
x
*
x
,
z
)
==
exp
(
x
,
y
)
because
square
(
x
,
z
)
}
}
else
{
val
z
=
(
y
-
1
)
/
2
;
check
{
fastExp
(
x
,
y
)
==
x
*
fastExp
(
x
*
x
,
z
)
because
(
y
%
2
!=
0
)
}
&&
check
{
x
*
fastExp
(
x
*
x
,
z
)
==
x
*
exp
(
x
,
y
-
1
)
because
{
check
{
fastExp
(
x
*
x
,
z
)
==
exp
(
x
*
x
,
z
)
because
fastExpCorrect2
(
x
*
x
,
z
)
}
&&
check
{
exp
(
x
*
x
,
z
)
==
exp
(
x
,
2
*
z
)
because
square
(
x
,
z
)
}
&&
check
{
exp
(
x
,
2
*
z
)
==
exp
(
x
,
y
-
1
)
}
}
}
&&
check
{
x
*
exp
(
x
,
y
-
1
)
==
exp
(
x
,
y
)
because
(
y
!=
0
)
}
}
}
}.
holds
/**
* A more efficient function for computing exponentials.
*
* NOTE: this version of fastExp incorporates the correctness proof
* directly into the post condition. Leon is sometimes able to
* verify the post-condition in seconds using Z3-F, but often times
* out after >30s (Intel core i7, Ubuntu 14.04.2 LTS, x86-64,
* 2015-06-04).
*/
def
fastExp2
(
x
:
BigInt
,
y
:
BigInt
)
:
BigInt
=
{
require
(
y
>=
0
)
if
(
x
==
0
)
BigInt
(
0
)
else
if
(
y
==
0
)
BigInt
(
1
)
else
if
(
y
%
2
==
0
)
fastExp2
(
x
*
x
,
y
/
2
)
else
x
*
fastExp2
(
x
,
y
-
1
)
}
ensuring
{
res
=>
res
==
exp
(
x
,
y
)
because
{
if
(
x
==
0
)
trivial
else
if
(
y
==
0
)
trivial
else
if
(
y
%
2
==
0
)
{
val
z
=
y
/
2
;
{
res
==|
trivial
|
fastExp2
(
x
*
x
,
z
)
==|
trivial
/* ind. hyp. */
|
exp
(
x
*
x
,
z
)
==|
square
(
x
,
z
)
|
exp
(
x
,
y
)
}.
qed
}
else
{
val
z
=
(
y
-
1
)
/
2
;
{
res
==|
(
y
%
2
!=
0
)
|
x
*
fastExp2
(
x
*
x
,
z
)
==|
{
fastExp2
(
x
*
x
,
z
)
==|
trivial
/* ind. hyp. */
|
exp
(
x
*
x
,
z
)
==|
square
(
x
,
z
)
|
exp
(
x
,
2
*
z
)
==|
trivial
|
exp
(
x
,
y
-
1
)
}.
qed
|
x
*
exp
(
x
,
y
-
1
)
==|
(
y
!=
0
)
|
exp
(
x
,
y
)
}.
qed
}
}
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment