From dcd628ddb2994e4be5851726b9875cb15df870f9 Mon Sep 17 00:00:00 2001 From: Etienne Kneuss <ekneuss@gmail.com> Date: Wed, 15 Apr 2015 20:53:45 +0200 Subject: [PATCH] Add tests for extraction of implicit defs --- .../frontends/passing/ImplicitDefs.scala | 31 + .../frontends/passing/ImplicitDefs2.scala | 590 ++++++++++++++++++ 2 files changed, 621 insertions(+) create mode 100644 src/test/resources/regression/frontends/passing/ImplicitDefs.scala create mode 100644 src/test/resources/regression/frontends/passing/ImplicitDefs2.scala diff --git a/src/test/resources/regression/frontends/passing/ImplicitDefs.scala b/src/test/resources/regression/frontends/passing/ImplicitDefs.scala new file mode 100644 index 000000000..74f6f2b88 --- /dev/null +++ b/src/test/resources/regression/frontends/passing/ImplicitDefs.scala @@ -0,0 +1,31 @@ +import leon.lang._ +import scala.language.implicitConversions + +object Preamble { + case class BoolOps(b: Boolean) { + def <==>(o: Boolean) = { + (!b || o) && (!o || b) + } + } + + implicit def bTobOps(b: Boolean): BoolOps = BoolOps(b) + def bTobOps2(b: Boolean): BoolOps = BoolOps(b) +} + +object Foo { + import Preamble._ + + def f(b: Boolean) = BoolOps(b) + + def test0(a: BigInt) = { + f((a > 1)).<==>(a > 0) + }.holds + + def test1(a: BigInt) = { + bTobOps2(a > 1).<==>(a > 0) + }.holds + + def test2(a: BigInt) = { + bTobOps(a > 1).<==>(a > 0) + }.holds +} diff --git a/src/test/resources/regression/frontends/passing/ImplicitDefs2.scala b/src/test/resources/regression/frontends/passing/ImplicitDefs2.scala new file mode 100644 index 000000000..1ab625164 --- /dev/null +++ b/src/test/resources/regression/frontends/passing/ImplicitDefs2.scala @@ -0,0 +1,590 @@ +package leon.blup + +import leon._ +import leon.lang._ +import leon.annotation._ +import leon.collection.{Option,None,Some} +//import leon.proof._ + +// FIXME: the following should go into the leon.proof package object. +import leon.annotation._ +import scala.language.implicitConversions +object proof { + + sealed case class ProofOps(val property: Boolean) { + def because(proof: Boolean): Boolean = property && proof + } + + implicit def boolean2ProofOps(property: Boolean): ProofOps = + ProofOps(property) + + // @ignore + def trivial: Boolean = true + + // @ignore + def by(proof: Boolean)(cont: Boolean): Boolean = + proof && cont + + @ignore + sealed class EqReasoning[A](val x: A) { + def ==:(proof: Boolean)(y: A): A = { + x == y && proof + y + } + def qed: A = x + } + + @ignore + implicit def any2EqReasoning[A](x: A): EqReasoning[A] = + new EqReasoning(x) +} + +import proof._ + +sealed abstract class List[T] { + + def size: BigInt = (this match { + case Nil() => BigInt(0) + case Cons(h, t) => 1 + t.size + }) ensuring (_ >= 0) + + def content: Set[T] = this match { + case Nil() => Set() + case Cons(h, t) => Set(h) ++ t.content + } + + def contains(v: T): Boolean = (this match { + case Cons(h, t) if h == v => true + case Cons(_, t) => t.contains(v) + case Nil() => false + }) ensuring { res => res == (content contains v) } + + def ++(that: List[T]): List[T] = (this match { + case Nil() => that + case Cons(x, xs) => Cons(x, xs ++ that) + }) ensuring { res => + (res.content == this.content ++ that.content) && + (res.size == this.size + that.size) + } + + def head: T = { + require(this != Nil[T]()) + val Cons(h, _) = this + h + } + + def tail: List[T] = { + require(this != Nil[T]()) + val Cons(_, t) = this + t + } + + def apply(index: BigInt): T = { + require(0 <= index && index < size) + if (index == BigInt(0)) { + head + } else { + tail(index-1) + } + } + + def ::(t:T): List[T] = Cons(t, this) + + def :+(t:T): List[T] = { + this match { + case Nil() => Cons(t, this) + case Cons(x, xs) => Cons(x, xs :+ (t)) + } + } ensuring(res => (res.size == size + 1) && (res.content == content ++ Set(t))) + + def reverse: List[T] = { + this match { + case Nil() => this + case Cons(x,xs) => xs.reverse :+ x + } + } ensuring (res => (res.size == size) && (res.content == content)) + + def take(i: BigInt): List[T] = { (this, i) match { + case (Nil(), _) => Nil() + case (Cons(h, t), i) => + if (i <= BigInt(0)) { + Nil() + } else { + Cons(h, t.take(i-1)) + } + }} ensuring { _.size == ( + if (i <= 0) BigInt(0) + else if (i >= this.size) this.size + else i + )} + + def drop(i: BigInt): List[T] = { (this, i) match { + case (Nil(), _) => Nil() + case (Cons(h, t), i) => + if (i <= BigInt(0)) { + Cons(h, t) + } else { + t.drop(i-1) + } + }} ensuring { _.size == ( + if (i <= 0) this.size + else if (i >= this.size) BigInt(0) + else this.size - i + )} + + def slice(from: BigInt, to: BigInt): List[T] = { + require(0 <= from && from <= to && to <= size) + drop(from).take(to-from) + } + + def replace(from: T, to: T): List[T] = { this match { + case Nil() => Nil() + case Cons(h, t) => + val r = t.replace(from, to) + if (h == from) { + Cons(to, r) + } else { + Cons(h, r) + } + }} ensuring { res => + res.size == this.size && + res.content == ( + (this.content -- Set(from)) ++ + (if (this.content contains from) Set(to) else Set[T]()) + ) + } + + private def chunk0(s: BigInt, l: List[T], acc: List[T], res: List[List[T]], s0: BigInt): List[List[T]] = l match { + case Nil() => + if (acc.size > 0) { + res :+ acc + } else { + res + } + case Cons(h, t) => + if (s0 == BigInt(0)) { + chunk0(s, l, Nil(), res :+ acc, s) + } else { + chunk0(s, t, acc :+ h, res, s0-1) + } + } + + def chunks(s: BigInt): List[List[T]] = { + require(s > 0) + + chunk0(s, this, Nil(), Nil(), s) + } + + def zip[B](that: List[B]): List[(T, B)] = { (this, that) match { + case (Cons(h1, t1), Cons(h2, t2)) => + Cons((h1, h2), t1.zip(t2)) + case (_) => + Nil() + }} ensuring { _.size == ( + if (this.size <= that.size) this.size else that.size + )} + + def -(e: T): List[T] = { this match { + case Cons(h, t) => + if (e == h) { + t - e + } else { + Cons(h, t - e) + } + case Nil() => + Nil() + }} ensuring { _.content == this.content -- Set(e) } + + def --(that: List[T]): List[T] = { this match { + case Cons(h, t) => + if (that.contains(h)) { + t -- that + } else { + Cons(h, t -- that) + } + case Nil() => + Nil() + }} ensuring { _.content == this.content -- that.content } + + def &(that: List[T]): List[T] = { this match { + case Cons(h, t) => + if (that.contains(h)) { + Cons(h, t & that) + } else { + t & that + } + case Nil() => + Nil() + }} ensuring { _.content == (this.content & that.content) } + + def pad(s: BigInt, e: T): List[T] = (this, s) match { + case (_, s) if s <= 0 => + this + case (Nil(), s) => + Cons(e, Nil().pad(s-1, e)) + case (Cons(h, t), s) => + Cons(h, t.pad(s-1, e)) + } + + def find(e: T): Option[BigInt] = { this match { + case Nil() => None() + case Cons(h, t) => + if (h == e) { + Some(0) + } else { + t.find(e) match { + case None() => None() + case Some(i) => Some(i+1) + } + } + }} ensuring { _.isDefined == this.contains(e) } + + def init: List[T] = (this match { + case Cons(h, Nil()) => + Nil[T]() + case Cons(h, t) => + Cons[T](h, t.init) + case Nil() => + Nil[T]() + }) ensuring ( (r: List[T]) => ((r.size < this.size) || (this.size == BigInt(0))) ) + + def last: T = { + require(!isEmpty) + this match { + case Cons(h, Nil()) => h + case Cons(_, t) => t.last + } + } + + def lastOption: Option[T] = this match { + case Cons(h, t) => + t.lastOption.orElse(Some(h)) + case Nil() => + None() + } + + def firstOption: Option[T] = this match { + case Cons(h, t) => + Some(h) + case Nil() => + None() + } + + def unique: List[T] = this match { + case Nil() => Nil() + case Cons(h, t) => + Cons(h, t.unique - h) + } + + def splitAt(e: T): List[List[T]] = split(Cons(e, Nil())) + + def split(seps: List[T]): List[List[T]] = this match { + case Cons(h, t) => + if (seps.contains(h)) { + Cons(Nil(), t.split(seps)) + } else { + val r = t.split(seps) + Cons(Cons(h, r.head), r.tail) + } + case Nil() => + Cons(Nil(), Nil()) + } + + def count(e: T): BigInt = this match { + case Cons(h, t) => + if (h == e) { + 1 + t.count(e) + } else { + t.count(e) + } + case Nil() => + BigInt(0) + } + + def evenSplit: (List[T], List[T]) = { + val c = size/2 + (take(c), drop(c)) + } + + def insertAt(pos: BigInt, l: List[T]): List[T] = { + if(pos < 0) { + insertAt(size + pos, l) + } else if(pos == BigInt(0)) { + l ++ this + } else { + this match { + case Cons(h, t) => + Cons(h, t.insertAt(pos-1, l)) + case Nil() => + l + } + } + } + + def replaceAt(pos: BigInt, l: List[T]): List[T] = { + if(pos < 0) { + replaceAt(size + pos, l) + } else if(pos == BigInt(0)) { + l ++ this.drop(l.size) + } else { + this match { + case Cons(h, t) => + Cons(h, t.replaceAt(pos-1, l)) + case Nil() => + l + } + } + } + + def rotate(s: BigInt): List[T] = { + if (s < 0) { + rotate(size+s) + } else { + val s2 = s % size + drop(s2) ++ take(s2) + } + } + + def isEmpty = this match { + case Nil() => true + case _ => false + } + + // Higher-order API + def map[R](f: T => R): List[R] = { this match { + case Nil() => Nil() + case Cons(h, t) => f(h) :: t.map(f) + }} ensuring { _.size == this.size} + + def foldLeft[R](z: R)(f: (R,T) => R): R = this match { + case Nil() => z + case Cons(h,t) => t.foldLeft(f(z,h))(f) + } + + def foldRight[R](f: (T,R) => R)(z: R): R = this match { + case Nil() => z + case Cons(h, t) => f(h, t.foldRight(f)(z)) + } + + def scanLeft[R](z: R)(f: (R,T) => R): List[R] = this match { + case Nil() => z :: Nil() + case Cons(h,t) => z :: t.scanLeft(f(z,h))(f) + } + + def scanRight[R](f: (T,R) => R)(z: R): List[R] = { this match { + case Nil() => z :: Nil() + case Cons(h, t) => + val rest@Cons(h1,_) = t.scanRight(f)(z) + f(h, h1) :: rest + }} ensuring { !_.isEmpty } + + def flatMap[R](f: T => List[R]): List[R] = + ListOps.flatten(this map f) + + def filter(p: T => Boolean): List[T] = { this match { + case Nil() => Nil() + case Cons(h, t) if p(h) => Cons(h, t.filter(p)) + case Cons(_, t) => t.filter(p) + }} ensuring { res => res.size <= this.size && res.forall(p) } + + // In case we implement for-comprehensions + def withFilter(p: T => Boolean) = filter(p) + + def forall(p: T => Boolean): Boolean = this match { + case Nil() => true + case Cons(h, t) => p(h) && t.forall(p) + } + + def exists(p: T => Boolean) = !forall(!p(_)) + + def find(p: T => Boolean): Option[T] = { this match { + case Nil() => None() + case Cons(h, t) if p(h) => Some(h) + case Cons(_, t) => t.find(p) + }} ensuring { _.isDefined == exists(p) } + + // FIXME: I keep getting these weird type errors + //def groupBy[R](f: T => R): Map[R, List[T]] = this match { + // case Nil() => Map.empty[R, List[T]] + // case Cons(h, t) => + // val key: R = f(h) + // val rest: Map[R, List[T]] = t.groupBy(f) + // val prev: List[T] = if (rest isDefinedAt key) rest(key) else Nil[T]() + // (rest ++ Map((key, h :: prev))) : Map[R, List[T]] + //} + + def takeWhile(p: T => Boolean): List[T] = { this match { + case Cons(h,t) if p(h) => Cons(h, t.takeWhile(p)) + case _ => Nil[T]() + }} ensuring { _ forall p } +} + +@ignore +object List { + def apply[T](elems: T*): List[T] = ??? +} + +@library +object ListOps { + def flatten[T](ls: List[List[T]]): List[T] = ls match { + case Cons(h, t) => h ++ flatten(t) + case Nil() => Nil() + } + + def isSorted(ls: List[BigInt]): Boolean = ls match { + case Nil() => true + case Cons(_, Nil()) => true + case Cons(h1, Cons(h2, _)) if(h1 > h2) => false + case Cons(_, t) => isSorted(t) + } + + def sorted(ls: List[BigInt]): List[BigInt] = ls match { + case Cons(h, t) => insSort(sorted(t), h) + case Nil() => Nil() + } + + def insSort(ls: List[BigInt], v: BigInt): List[BigInt] = ls match { + case Nil() => Cons(v, Nil()) + case Cons(h, t) => + if (v <= h) { + Cons(v, t) + } else { + Cons(h, insSort(t, v)) + } + } +} + +case class Cons[T](h: T, t: List[T]) extends List[T] +case class Nil[T]() extends List[T] + +@library +object ListSpecs { + def snocIndex[T](l : List[T], t : T, i : BigInt) : Boolean = { + require(0 <= i && i < l.size + 1) + // proof: + (l match { + case Nil() => true + case Cons(x, xs) => if (i > 0) snocIndex[T](xs, t, i-1) else true + }) && + // claim: + ((l :+ t).apply(i) == (if (i < l.size) l(i) else t)) + }.holds + + def reverseIndex[T](l : List[T], i : BigInt) : Boolean = { + require(0 <= i && i < l.size) + (l match { + case Nil() => true + case Cons(x,xs) => snocIndex(l, x, i) && reverseIndex[T](l,i) + }) && + (l.reverse.apply(i) == l.apply(l.size - 1 - i)) + }.holds + + def appendIndex[T](l1 : List[T], l2 : List[T], i : BigInt) : Boolean = { + require(0 <= i && i < l1.size + l2.size) + (l1 match { + case Nil() => true + case Cons(x,xs) => if (i==BigInt(0)) true else appendIndex[T](xs,l2,i-1) + }) && + ((l1 ++ l2).apply(i) == (if (i < l1.size) l1(i) else l2(i - l1.size))) + }.holds + + def appendAssoc[T](l1 : List[T], l2 : List[T], l3 : List[T]) : Boolean = { + (l1 match { + case Nil() => true + case Cons(x,xs) => appendAssoc(xs,l2,l3) + }) && + (((l1 ++ l2) ++ l3) == (l1 ++ (l2 ++ l3))) + }.holds + + def rightIdAppend[T](l1 : List[T]) : Boolean = { + (l1 match { + case Nil() => true + case Cons(x, xs) => rightIdAppend(xs) + }) && + ((l1 ++ Nil()) == l1) + }.holds + + + def snocIsAppend[T](l : List[T], t : T) : Boolean = { + (l match { + case Nil() => true + case Cons(x,xs) => snocIsAppend(xs,t) + }) && + ((l :+ t) == l ++ Cons[T](t, Nil())) + }.holds + + def snocAfterAppend[T](l1 : List[T], l2 : List[T], t : T) : Boolean = { + (l1 match { + case Nil() => true + case Cons(x,xs) => snocAfterAppend(xs,l2,t) + }) && + ((l1 ++ l2) :+ t == (l1 ++ (l2 :+ t))) + }.holds + + def snocReverse[T](l : List[T], t : T) : Boolean = { + (l match { + case Nil() => true + case Cons(x,xs) => snocReverse(xs,t) + }) && + ((l :+ t).reverse == Cons(t, l.reverse)) + }.holds + + def reverseReverse[T](l : List[T]) : Boolean = { + (l match { + case Nil() => true + case Cons(x,xs) => reverseReverse[T](xs) && snocReverse[T](xs.reverse, x) + }) && + (l.reverse.reverse == l) + }.holds + + def reverseAppend[T](l1 : List[T], l2 : List[T]) : Boolean = { + ((l1 ++ l2).reverse == (l2.reverse ++ l1.reverse)) because { + l1 match { + case Nil() => { + ((Nil() ++ l2).reverse == l2.reverse) && trivial && by { + rightIdAppend(l2.reverse) + } (l2.reverse ++ Nil() == l2.reverse ++ Nil().reverse) + } + case Cons(x, xs) => { + ((l1 ++ l2).reverse == ((x :: xs) ++ l2).reverse) && + (((x :: xs) ++ l2).reverse == (x :: (xs ++ l2)).reverse) && + ((x :: xs) ++ l2) == (x :: (xs ++ l2)) && + ((x :: (xs ++ l2)).reverse == (xs ++ l2).reverse :+ x) && + ((xs ++ l2).reverse :+ x == (l2.reverse ++ xs.reverse) :+ x) && + ((xs ++ l2).reverse == (l2.reverse ++ xs.reverse)) && + reverseAppend(xs, l2) && + ((l2.reverse ++ xs.reverse) :+ x == l2.reverse ++ (xs.reverse :+ x)) && + snocAfterAppend[T](l2.reverse, xs.reverse, x) && + ((xs.reverse :+ x) == l1.reverse) && + (l2.reverse ++ (xs.reverse :+ x) == l2.reverse ++ l1.reverse) + // (x :: xs.reverse) == xs.reverse :+ x + // (x :: xs) ++ that => x :: (xs ++ that) + //((l1 ++ l2).reverse == (l2.reverse ++ l1.reverse)) + } + } + } + }.holds + + //@induct + //def folds[T,R](l : List[T], z : R, f : (R,T) => R) = { + // { l match { + // case Nil() => true + // case Cons(h,t) => snocReverse[T](t, h) + // }} && + // l.foldLeft(z)(f) == l.reverse.foldRight((x:T,y:R) => f(y,x))(z) + //}.holds + // + + //Can't prove this + //@induct + //def scanVsFoldLeft[A,B](l : List[A], z: B, f: (B,A) => B): Boolean = { + // l.scanLeft(z)(f).last == l.foldLeft(z)(f) + //}.holds + + @induct + def scanVsFoldRight[A,B](l: List[A], z: B, f: (A,B) => B): Boolean = { + l.scanRight(f)(z).head == l.foldRight(f)(z) + }.holds + +} + -- GitLab