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Introduction

This document aims to give a complete documentation on LISA. Tentatively,
every chapter and section will explain a part or concept of LISA, and explains
both its implementation and its theoretical foundations [?].
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Chapter 1

LISA’s trusted code: The
Kernel

LISA’s kernel is the starting point of LISA, formalising the foundations of
the whole theorem prover. It is the only trusted code base, meaning that
if it is bug-free then no further erroneous or malicious code can violate the
soundness property and prove invalid statements. Hence, the two main goals
of the kernel are to be efficient and trustworthy.

LISA’s foundations are based on very traditional (in the mathematical
community) foundational theory of all mathematics: First Order Logic,
expressed using Sequent Calculus (augmented with schematic symbols),
with axioms of Set Theory. Interestingly, while LISA is built with the goal
of using Set Theory, the kernel is actually theory-agnostic and is sound to
use with any other set of axioms. Hence, we defer Set Theory to chapter 2.

1.1 First Order Logic

1.1.1 Syntax

Definition 1 (Terms). In LISA, the set of terms 7 is defined by the fol-
lowing grammar:

T :=Lrerm(List[T]) (1.1)

Where Lrerm, is the set of term labels:

LTerm = Constant TermLabel(Id, Arity)

1.2
| SchematicTermLabel(Id, Arity) (1.2)

A label can be either constant or schematic, and is made of an identifier
(a string) and the arity of the label (an integer). A term is made of a term

7
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label and a list of children, whose length must be equal to the arity of the
label. A constant label of arity 0 is sometimes called just a constant, and a
schematic label of arity 0 a variable. We define the shortcut

Var(z) = SchematicTermLabel(x, 0)

As the definition states, we have two kinds of function symbols: Constant
ones and Schematic ones. Constant labels represent a fixed function symbol
in some language, for example the addition “+” in Peano arithmetic.

Schematic symbols on the other hand, are uninterpreted — they can
represent any possible term and hence can be substituted by any term.
Their use will become clearer in the next section when we introduce the
concept of deductions. Moreover, variables, which are schematic terms of
arity 0, can be bound in formulas, as we explain below. !

Definition 2 (Formulas). The set of Formulas F is defined similarly:

]::ZEPredicate(LiSt[ﬂ)
|£Connector(LiSt[F]) (13)
| Binder(Id)(Var(Id), F)

Where L predicate 18 the set of predicate labels:

L predicate := ConstantPredicateLabel(Id, Arity)

1.4
| SchematicPredicateLabel(Id, Arity) (1.4)

and Lconnector 18 the set of connector labels:
Lconnector := ConstantConnectorLabel(Id, Arity) (1.5)

| SchematicConnectorLabel(Id, Arity)
A formula can be constructed from a list of terms using a predicate label
<(z,7)
or from a list of smaller formulas using a connector label
<(z,7) A =(x,5)
or finally from a variable and a smaller formula using a binder

3o (<(2,7) A >(z,5))

'In a very traditional presentation of first order logic, we would only have variables,
i.e. schematic terms of arity 0, and schematic terms of higher arity would only appear in
second order logic. We defer to Part II Section 3.1 the explanation of why our inclusion
of schematic function symbols doesn’t fundamentally move us out of First Order Logic.
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Connectors and predicates, like terms, can exist in either constant or
schematic forms. Note that connectors and predicates vary only in the type
of arguments they take and hence connectors and predicates of arity 0 are
the same thing. Hence, in LISA, we don’t permit connectors of arity 0 and
ask to use predicates instead. A contrario to schematic terms of arity 0,
schematic predicates of arity 0 can’t be bound, but they still play a special
role sometimes, and hence we introduce a special notation for them

FormulaVar(Id) = SchematicPredicateLabel(Id, 0)

Moreover in LISA, A contrario to constant predicates and term symbols,
which can be freely created, there is only the following finite set of constant
connector symbols in LISA:

Neg(—,1) | Implies(—, 2) | Iff(+<+,2) | And(A, —1) | Or(V, —1)

Moreover, connectors (And and Or) are allowed to have an unrestricted
arity, represented by the value —1. This means that a conjunction or a
disjunction can have any finite number of children. Similarly, there are only
the following 3 binder labels:

Forall(V) | Exists(3) | ExistsOne(3!)
We also introduce a special constant predicate symbol, equality:
Equal(=)

In this document, as well as in the code documentation, we often write
terms and formula in a more conventional way, generally hiding the arity
of labels and representing the label with its identifier only, preceded by an
interrogation mark ? if the symbol is schematic. When the arity is relevant,
we write it with an superscript, for example:

fg(as, y,z) = Fun(f, 3)(List(Var(x), Var(y), Var(z)))

and
Va.¢ = Binder(V, Var(x), ¢)

We also use other usual representations such as symbols in infix position,
omitting parenthesis according to usual precedence rules, etc.

Finally, note that we use subscript to emphasize that a variable is pos-
sibly free in a term or formula:

tl,y,Z’ be,y,z
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Convention Throughout this document, and in the code base, we adopt
the following conventions: We use 7, s, t, u to denote arbitrary terms, a,
b, ¢ to denote constant term symbols of arity 0 and f, g, h to denote term
symbols of arity non-0. We precede those with an interogation mark, such
as 7f to denote schematic symbols. Moreover, we also use z, y, z to denote
variables (schematic terms of order 0).

For formulas, we use greek letters such as ¢, 1, 7 to denote arbitrary
formula, v, u to denote formula variables. We use capital letters like P, @, R
to denote predicate symbols, preceding them similarly with an interrogation
mark ? for schematic predicates. Schematic connectors are rarer, but when
they appear, we precede them by 2 interrogation marks, for example 77c.
Sets or sequences of formula are denoted with capital greek letters II, X, T',
A, etc.

1.1.2 Substitution

On top of basic building blocks of terms and formulas, there is one impor-
tant type of operations: substitution of schematic symbols, which has to
be implemented in a capture-avoiding way. We start with the subcase of
variable substitution:

Definition 3 (Capture-avoiding Substitution of variables). Given a base
term t, a variable x and another term 7, the substitution of by r inside ¢
is denoted t[r/z] and simply consists of replacing all occurences of x by r.

Given a formula ¢, the substitution of z by r inside ¢ is defined re-
cursively in the obvious way for connectors and predicates, and for binders
as

(Vy.¢)[r/z] = Vy.(¢[r/x])

if y does not appear in r and

(Vy)[r/z] = Vz.(¢[2/y][r/z])
with any fresh variable z (which is not free in r and ¢) otherwise.

This definition of substitution is justified by the notion of alpha equiva-
lence: two formulas which are identical up to renaming of bound variables
are considered equivalent. In practice, this means that the free variables
inside r will never get caught when substituted.

We can now define “lambda terms”.

Definition 4 (Lambda Terms). A lambda term is a meta expression (mean-
ing that it is not part of FOL itself) consisting in a term with “holes” that
can be filled by other terms. This is represented with specified variables as
arguments, similar to lambda calculus. For example, for a functional term
with two arguments, we write
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L = Lambda(Var(x), Var(y))(tz,y)

It comes with an instantiation operation: given terms r, s,

L(r,s) = t[r/x, s/y]

Those expressions are a generalization of terms, and would be part of
our logic if we used Higher Order Logic rather than First Order Logic. For
conciseness and familiarity, in this document and in code documentation,
we represent those expressions as lambda expressions:

Ar.y. t

They are useful because as variables can be substituted by terms, schematic
terms labels of arity greater than 0 can be substituted by such functional
terms. As the definition of such substitution is rather convoluted to describe,
we prefer to show examples and redirect the reader to the source code of
LISA for a technical definition. 2

Example 1 (Functional terms substitution in terms).

Base term Substitution Result
7£(0,3) ?f — Avyx+ty 0+3
7£(0,3) f = Ayxax—y 3—0
70(0,3) | 7f — Aryyty—10 3+3-10
10x ?2g(z) | 79 — Az.2? 10 x 22
10 x ?7g(50) | 7g — Ax.7f(z+2,2) 10 x 7f(50 + 2, z)
flz,x+y) | 7f — Azy.cos(x —y)*xy | cos(z — (x+y))* (z+y)

The definition extends to substitution of schematic terms inside formulas,
with capture free substitution for bound variables. For example:

Example 2 (Functional terms substitution in formulas).
Base formula Substitution Result
7£(0,3) =7f(z,x) 7f = Alzwyao+ty 0+3=x+=x
Va.?7f(0,3) =7f(x,x) | 7f — Xrwax+y| YVe0+3=z+2x
Jy.7f(y) <?£(5) f = dra+ty Iy +y<s5+y

Note that if the lambda expression contains free variables (such as y
in the last example), then appropriate alpha-renaming of variables may be
needed.

We similarly define functional formulas, except that these can take either
term arguments of formulas arguments. Specifically, we use LambdaTermTerm,
LambdaTermFormula, LambdaFormulaFormula to indicate functional ex-
pressions that take terms or formulas as arguments and return a term or
formula.

2Note that in lambda calculus, this would simply be iterated beta-reduction.
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Example 3 (Typical functional expressions).

LambdaTermTerm(Var(z), Var(y))(z+y) = lzyz+y
LambdaTermFormula(Var(x),Var(y))(z =y) = Xzyxz=y
LambdaFormulaFormula(FormulaVar(v), FormulaVar(u)) = Av.p.vAp

Note that in the last case, we use FormulaVar to represent the arguments
of the lambda formula. Substitution of functional formulas is completely
analogous to (capture free!) substitution of functional terms.

1.1.3 The Equivalence Checker

While proving theorems, trivial syntactical transformations such as p A ¢ =
q N p significantly increase the length of proofs, which is desirable neither
for the user nor the machine. Moreover, the proof checker will very often
have to check whether two formulas that appear in different sequents are the
same. Hence, instead of using pure syntactical equality, LISA implements a
powerful equivalence checker able to detect a class of equivalence-preserving
logical transformations. As an example, two formulas p A ¢ and g A p would
be naturally treated as equivalent.

For soundness, the relation decided by the algorithm should be contained
in the «<= “if and only if” relation of first order logic. It is well known
that this relationship is in general undecidable however, and even the <=
relation for propositional logic is coNP-complete. So, for practicality, we
need a relation that is efficiently computable.

The decision procedure implemented in LISA takes time log-linear in the
size of the formula, which means that it is only marginally slower than syn-
tactic equality checking. It is based on an algorithm that decides the word
problem for Orthocomplemented Bisemilattices [?]. Informally, the theory
of Orthocomplemented Bisemilattices is the same as that of Propositional
Logic, but without the distributivity law. Figure 1.1 shows the axioms of
this theory and the logical transformations LISA is able to automatically
figure out. Moreover, the implementation in LISA also takes into account
symmetry and reflexivity of equality as well as alpha-equivalence, by which
we mean renaming of bound variables.

1.2 Proofs in Sequent Calculus

1.2.1 Sequent Calculus

The deductive system used by LISA is an extended version of Gentzen’s
Sequent Calculus.

Definition 5. A sequent is a pair of (possibly empty) sets of formula,
noted:

¢17 ¢27 ) ¢m F ¢17¢27 771Z)n
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L1: rVy=yVz L1 rTANy=yAx
L2: zV(yVz)=(xVy)Vz L2: xA(yAz)=(xAy) Az
L3: rVr=uz L3 TANr==z

L4: zVv1=1 L4’ zAN0=0

L5: zV0=ux L5 zANl==x

L6: - =z L6 same as L6
L7: xV-x=1 L7 zAN—-x=0
L8: —(zVy)=—-xzA-y L8 —(xAy)=—-zV -y
L9: T = y=-2Vy

L10: z+y=(xVy A(-yVz)

L11l: 3z P=FJyVo.(zr=y) < P

Table 1.1: Laws LISA’s equivalence checker automatically accounts for.
LISA’s equivalence-checking algorithm is complete (and log-linear time) with
respect to laws L1-L11 and L1’-L§&’.

The intended semantic of such a sequent is:

((251/\¢2A.../\(Z5m) e (1/)1\/1/12\/...\/1/)n) (1.6)

A sequent ¢ F 1 is logically but not conceptually equivalent to a se-
quent - ¢ — 1. The distinction is similar to the distinction between meta-
implication and inner implication in Isabelle, for example. Typically, a the-
orem or a lemma should have its various assumptions on the left handside
of the sequent and its single conclusion on the right. During proofs however,
there may be multiple elements on the right side. 3

A deduction rule, also called a proof step, has (in general) between zero
and two prerequisite sequents (which we call premises of the rule) and one
conclusion sequent, and possibly take some arguments that describe how
the deduction rule is applied. The basic deduction rules used in LISA are
shown in Figure 1.1.

Since we work on first order logic with equality and accept axioms, there
are also rules for equality reasoning, which include reflexivity of equality.
Moreover, we include equal-for-equal and equivalent-for-equivalent substi-
tutions in Figure 1.2. While those substitution rules are deduced steps, and
hence could technically be omitted, simulating them can sometimes take a
high number of steps, so they are included as base steps for efficiency.

There are also some special proof steps used to organise proofs, shown
in Figure 1.3.

3In a strict description of Sequent Calculus, this is in particular needed to make double
negation elimination.
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Li=tbA — _ RightRefl
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Figure 1.1: Strict set of deduction rules for sequent calculus.
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L, o[s/7f]F A Tk ¢ls/?f], A .
Tos—to[t/7f]F A LeftSubstEq Tos—th ot/7f]. A RightSubstEq
L, ¢la/Tp] F A I+ ¢la/?p], A .
TFA A
F[w(ﬁ)/?p} - A[lﬁ(ﬁ)/?p] InstPredSchema F[T(U)/?f] - A[r(ﬁ)/{?ﬂ InstFunSchema

Figure 1.2: Additional deduction rules for substitution and instantiation.

RewriteTrue

A : _

Rewrite T[T

TEA L. Subproof
r-A

Figure 1.3: Bonus and structural proof steps. Rewrite allows to deduce a
sequent equivalent from a previous sequent by OCBSL laws and sequent
interpretation. Subproof hide a part of a proof tree inside a single proof

step.
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Hypothesis
_oFo RightWeakening
__ 9P 9Y  RigntImplies Hypothesis
F 0.0 =) oFo | .
eftImplies
(0~ 2oFo L. .
ightImplies
F{0—=9)—=9) =9

Figure 1.4: A proof of Pierce’s law in Sequent Calculus. The bottommost
sequent (root) is the conclusion.

1.2.2 Proofs

Proof steps can be composed into a directed acyclic graph. The root of
the proof shows the conclusive statement, and the leaves are assumptions or
tautologies (instances of the Hypothesis rule). Figure 1.4 shows an example
of a proof tree for Pierce’s Law in strict Sequent Calculus.

In the Kernel, proof steps are organised linearly, in a list, to form ac-
tual proofs. Each proof step refers to its premises using numbers, which
indicate the place of the premise in the proof. Moreover, proofs are condi-
tional: they can carry an explicit set of assumed sequents, named “imports”,
which give some starting points to the proof. Typically, these imports will
contain previously proven theorems, definitions, or axioms (More on that
in section 1.3). For a proof step to refer to an imported sequent, one uses
negative integers. —1 corresponds to the first sequent of the import list of
the proof, —2 to the second, etc.

Formally, a proof is a pair made of a list of proof steps and a list of
sequents:

Proof(steps: List [ProofStep|, imports:List [Sequent])

We call the bottommost sequent of the last proof step of the proof the
“conclusion” of the proof. For the proof to be the linearization of a rooted
directed acyclic graph, we require that proof steps must only refer to num-
bers smaller then their own in the proof. Indeed, using topological sorting,
it is always possible to order the nodes of a directed acyclic graph such that
for any node, its predecessors appear earlier in the list. The linearization of
our proof of Pierce’s Law is shown in Figure 1.5.

1.2.3 Proof Checker

In LISA, a proof object has no guarantee to be correct. It is perfectly
possible to write a wrong proof. LISA contains a proof checking function,
which, given a proof, will verify if it is correct. To be correct, a proof must
satisfy the following conditions:

1. No proof step must refer to itself or a posterior proof step as a premise.
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Hypothesis ¢+ ¢

RightWeakening(0) ¢+ ¢,
RightImplies(1) F &, (¢ — 1)
Hypothesis ¢+ ¢

LeftImplies(2,3) (¢ =) = ok ¢
RightImplies(4) F ((¢ — ) = ¢) — &

T = W NN = O

Figure 1.5: Linearization of the proof of Pierce’s Law as represented in LISA.

2. Every proof step must be correctly constructed, with the bottom se-
quent correctly following from the premises by the type of the proof
step and its arguments.

Given some proof p, the proof checker will verify these points. For most
proof steps, this typically involve verifying that the premises and the con-
clusion match according to a transformation specific to the deduction rule.
Note that for most cases where there is an intuitive symmetry in arguments,
such as RightAnd or LeftSubstIff for example, permutations of those ar-
guments don’t matter.

Hence, most of the proof checker’s work consists in verifying that some
formulas, or subformulas thereof, are identical. This is where the equivalence
checker comes into play. By checking equivalence rather than strict syntactic
equality, a lot of steps become redundant and can be merged. That way,
LeftAnd, RightOr, LeftIff become instances of the Weakening rules, and
RightImplies an instance of RightAnd.

LeftNot, RightNot, LeftImplies, RightImplies, LeftRefl, RightRefl,
LeftExistsOne, RightExists0One can be omitted altogether. This gives an
intuition of how useful the equivalence checker is to cut proof length. It also
combines very well with substitution steps.

While most proof steps are oblivious to formula transformations allowed
by the equivalence checker, they don’t allow transformations of the whole
sequent: to easily rearrange sequents according to the sequent semantics
(1.6), one should use the Rewrite step.

The proof checking function will output a judgement:

SCValidProof(proof: SCProof)
or
SClInvalidProof(proof: SCProof, path: Seq[Int], message: String)

SClInvalidProof indicates an erroneous proof. The second argument point
to the faulty proofstep (through subproofs), and the third argument is an
error message hinting towards why the step is faulty.
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1.3 Theorems and Theories

In mathematics as a discipline, theorems don’t exist in isolation. They de-
pend on some agreed upon set of axioms, definitions, and previously proven
theorems. Formally, theorems are developed within theories. A theory is
defined by a language, which contains the symbols allowed in the theory,
and by a set of axioms, which are assumed to hold true within it.

In LISA, a theory is a mutable object that starts as the pure theory
of predicate logic: It has no known symbols and no axioms. Then we can
introduce into it elements of Set Theory (symbols €, (), |J and set theory
axioms, see Chapter 2) or of any other theory.

To conduct a proof inside a Theory, using its axioms, the proof should
be normally constructed and the needed axioms specified in the imports of
the proof. Then, the proof can be given to the Theory to check, along with
justifications for all imports of the proof. A justification is either an axiom,
a previously proven theorem, or a definition. The Theory object will check
that every import of the proof is properly justified by an axiom introduced
in the theory, i.e. that the proof is in fact not conditional in the theory.
Then, it will pass the proof to the proof checker. If the proof is correct,
it will return a Theorem encapsulating the sequent. This sequent will be
allowed to be used in all further proofs exactly like an axiom.

1.3.1 Definitions

The user can also introduce definitions in the Theory. LISA’s kernel allows
to define two kinds of objects: Function (or Term) symbols and Predicate
symbols. It is important to remember that in the context of Set Theory,
function symbols are not the usual mathematical functions and predicate
symbols are not the usual mathematical relations. Indeed, on one hand a
function symbol defines an operation on all possible sets, but on the other
hand it is impossible to use the symbol alone, without applying it to argu-
ments, or to quantify over function symbol.

Actual mathematical functions on the other hand, are proper sets which
contains the graph of a function on some domain. Their domain must be
restricted to a proper set, and it is possible to quantify over such set-like
functions or to use them without applications. These set-like functions are
represented by constant symbols. For example “f is derivable” cannot be
stated about a function symbol. We will come back to this in Chapter 2, but
for now let us remember that (non-constant) function symbols are suitable
for intersection ([1)) between sets but not for, say, the Riemann ¢ function.

Figure 1.6 shows how to define and use new function and predicate sym-
bols. To define a predicate on n variables, we must provide a formula along
with n distinguished free variables. Then, this predicate can be freely used
and at any time substituted by its definition. Functions are slightly more
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A definition in LISA is one of those two kinds of objects:

PredicateDefinition (
label: ConstantPredicateLabel
expression: LambdaTermFormula

7

Corresponding to “let p" (%) := ¢z

FunctionDefinition (
label: ConstantFunctionLabel ,
out: VariableLabel ,
expression: LambdaTermFormula

Corresponding to “let f(Z) be the unique element s.t. ¢[f(Z)/y]”

Figure 1.6: Definitions in LISA.

complicated: to define a function f, one must first prove a statement of the
form

H!y'¢y7rl7'“amk
Then we obtain for free the property

vy(f(.%'l, cey .Z'k) = y) « ¢y,a)1,...,xk

from which we can deduce in particular ¢[f(x1,...,xx)/y]. The special case
where n = 0 defines constant symbols. The special case where ¢ is of the
form y = t, with possibly the x’s free in t lets us recover a more simple
definition by alias, i.e. where f is simply a shortcut for a more complex
term ¢t. This mechanism is typically called extension by definition, and
allows us to extend the theory without changing what is or isn’t provable.
For detailed explanation, see part II chapter ?77?.

The Theory object is responsible of keeping track of all symbols which
have been defined so that it can detect and refuse conflicting definitions. As
a general rule, definitions should have a unique identifier and can’t contain
free schematic symbols.

Once a definition has been introduced, future theorems can refer to those
definitional axioms by importing the corresponding sequents in their proof
and providing justification for those imports when the proof is verified, just
like with axioms.

Figure 1.7 shows the types of justification in a theory (Theorem, Axiom,
Definition). Figure 1.8 shows how to introduce new justifications as well
as symbols in the theory. Figure 1.9 shows how to obtain various types of
information from the theory.
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Explanation

Data Type

A proven theorem

An axiom of the theory

A predicate definition

A function definition

Theorem (
name: String ,
proposition: Sequent

)

Axiom (
name: String
ax: Formula

)

PredicateDefinition (
label: ConstantPredicateLabel
expression: LambdaTermFormula
)

FunctionDefinition (
label: ConstantFunctionLabel ,
out: VariableLabel ,
expression: LambdaTermFormula

)

Figure 1.7: The different types of justification in a Theory object.
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Explanation

Function

Add a new theorem
to the theory

Add a new axiom
to the theory

Make a new
predicate definition

Make a new
function definition

Add a new symbol
without definition

Add all symbols of a
formula without definition

Add all symbols of a
sequent without definition

makeTheorem (
name: String,
statement: Sequent,
proof: SCProof,
justs: Seq[Justification |

)
addAxiom (

name: String,
f: Formula

)

makePredicateDefinition (
label: ConstantPredicateLabel,
expression: LambdaTermFormula

)

makeFunctionDefinition (
proof: SCProof,
justifications: Seq[Justification],
label: ConstantFunctionLabel ,
out: VariableLabel ,
expression: LambdaTermFormula

)

addSymbol(s: ConstantLabel)

makeFormulaBelongToTheory (phi: Formula)

makeSequentBelongToTheory (s: Sequent)

Figure 1.8: The mutable interface of a Theory object.
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Explanation

Function

Check if all symbols in a
formula, term or sequent
belong to the theory.

Return the list of symbols
and definitions in the theory

Check if a label is
a symbol of the theory

Check if a label is not
already a symbol of the theory

Return the list of
axioms in the theory

Check if a formula is
an axiom of the theory

Return the Axiom matching
the given name or formula,
if it exists

Return the Definition
of a given Label, if defined

Return the Theorem object with

the given name, if it is one.

belongsToTheory (phi: Formula)
belongsToTheory (t: Term)
belongsToTheory(s: Sequent)

language ()

isSymbol(label: ConstantLabel)

isAvailable (label: ConstantLabel)

axiomsList ()

isAxiom (f: Formula)

getAxiom (f:
get Axiom (name:

Formula)
String)

getDefinition (label: ConstantLabel)

getTheorem (name: String)

Figure 1.9: The static interface of a Theory object.
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1.4 Kernel Supplements and Utilities

The kernel itself is a logical core, whose main purpose is to attest correctness
of mathematical developments and proofs. In particular, it is not intended to
use directly to formalise a large library, but rather as either a foundation for
LISA’s user interface and automation, or as a tool to write and verify formal
proofs produced by other programs. Nonetheless, LISA’s kernel comes with
a set of utilities and features that make the kernel more usable. LISA
provides a set of utilities and a Domain Specific Language (DSL) to ease
and organise the writing of proofs. This is especially directed to people
who want to build understanding and intuition regarding formal proofs in
Sequent Calculus.

1.4.1 Printer and Parser

This feature is under active development.

1.4.2 Writing theory files

LISA provides a canonical way of writing and organizing Kernel proofs by
mean of a set of utilities and a DSL made possible by some of Scala 3’s
features such as string interpolation, extension and implicits. The way to
write a new theory file to mathematical development is:

object MyTheoryName extends lisa .Main {

}

and that’s it! To write a theorem, the recommended syntax is:

object MyTheoryName extends lisa .Main {
THEOREM(” theoremName” ) of ”desired._conclusion” PROOF
?777: Proof

} using (listOfJustifications)
show

show is optional and prints the last proven theorem. We can similarily make
the definition:




24 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

object MyTheoryName extends lisa .Main {

val myFunction =
DEFINE (”symbol”, x, y) as definition (x,y)
show

}

This works for definitions of function and predicate symbols with a direct
definition. for indirect definitions (via 3!), use the following:

object MyTheoryName extends lisa .Main {

val testdef =
DEFINE(”symbol”, x, y) asThe z suchThat {
?777:Formula
} PROOF {
?777:Proof
} using (listOfJustifications)
show

—======= [t is important to note that when multiple such files are
developed, they all use the same underlying RunningTheory. This makes
it possible to use results proved previously by means of a simple import
statement as one would import a regular object. Similarly, one should also
import as usual automation and tactics developed alongside. It is expected
in the medium term that lisa .Main will come with basic automation.

To check the result of a developed file, and verify that the proofs contain
no error, it is possible to run such a library object. All imported theory
objects will be run through as well, but only the result of the selected one
will be printed.

It is possible to refer to a theorem or axiom that has been previously
proven or added using its name. The syntax is thm‘‘theoremName” or
ax ‘“‘axiomName”’. This makes it possible to write, for example, thm‘‘theoremName’’.show
and ... using (ax‘‘comprehensionSchema’) Figure 1.10 shows a typical ex-
ample of set theory development.
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object MyTheoryName extends lisa .Main {
THEOREM(” russelParadox”) of
Vx. (x€?7y)+ —(xex)F PROOF {
val y = VariableLabel ("y”)
val x = VariableLabel ("x”)
val s0 = RewriteTrue(in(y, y) < lin(y, y) |—())
val sl = LeftForall(
forall (x, in(x, y) < lin(x, x)) |[— (),
0, in(x, y) <> lin(x, x), x, y
)
Proof(s0, sl)

} using ()
thm” russelParadox” . show

THEOREM(” unorderedPair_symmetry”) of
"HYy, x. {x, y} = {y, x}” PROOF {

} using (ax”extensionalityAxiom”, ax”pairAxiom”)
show

val oPair =
DEFINE(”” , x, y) as pair(pair(x, y), pair(x, x))

Figure 1.10: Example of library development in LISA Kernel
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Chapter 2

Set Theory

LISA is based on set theory. More specifically, it is based on ZF with (still
not decided) an axiom of choice, of global choice, or Tarski’s universes.

ZF Set Theory stands for Zermelo-Fraenkel Set Theory. It contains a
set of initial predicate symbols and function symbols, as shown in Figure
2.1. It also contains the 7 axioms of Zermelo (Figure 2.2), which are techni-
cally sufficient to formalize a large portion of mathematics, plus the axiom
of replacement of Fraenkel (Figure 2.3), which is needed to formalize more
complex mathematical theories. In a more typical mathematical introduc-
tion to Set Theory, ZF would naturally only contain the set membership
symbol €. Axioms defining the other symbols would then only express the
existence of functions or predicates with those properties, from which we
could get the same symbols using extensions by definitions.

In a very traditional sense, an axiomatization is any possibly infinite
semi-recursive set of axioms. Hence, in its full generality, Axioms should be
any function producing possibly infinitely many formulas. This is however
not a convenient definition. In practice, all infinite axiomatizations are
schematic, meaning that they are expressable using schematic variables.
Axioms Z8 (comprehension schema) and ZF1 (replacement schema) are such
examples of axiom schema, and motivates the use of schematic variables in

LISA.

27
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Math symbol | LISA Kernel
Set Membership predicate € in(s,t)
Subset predicate C subset(s,t)
Empty Set constant 0 emptyset()
Unordered Pair constant (,°) pair(s,t)
Power Set function P powerSet(s)
Set Union/Flatten function U union(x)

Figure 2.1: The basic symbols of ZF.

Z1 (empty set). Va.z ¢ ()
Z2 (extensionality). Vz,y.(Vz.z € x <= z€vy) < (z=vy)
Z3 (extensionality). Vz,y.x Cy <= Vz.z €zxiffz €y

Z4 (pair). Vz,y,2.(z € (z,y)) <= (z€y)V (y € 2))

N

5 (union). Vz,z.(z € U(z)) <= (Jy.(r €y) A (y € 2))

N

6 (power). Vx,y.(x € P(y)) < (z Cy)
Z7 (foundation). Vz.(z #0) = (Jy.(y € z) A (Vz.z € x))
(

Z8 (comprehension schema). Vz,0.3y.Ve.(z € y) <= ((z € 2) AN ¢(z, 2, 7))

Figure 2.2: Axioms for Zermelo set theory.

ZF1 (replacement schema).
Va.(Vx.(x € a) = 1Fy.¢(a, 0, x,y)) =

(FbVz.(x € a) = (Fy.(y € b) A ¢(a,V,x,y)))

Figure 2.3: Axioms for Zermelo-Fraenkel set theory.
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Chapter 3

Set Theory and
Mathematical Logic

3.1 First Order Logic with Schematic Variables

3.2 Extension by Definition

An extension by definition is the formal way of introducing new symbols in
a mathematical theory. Theories can be extended into new ones by adding
new symbols and new axioms to it. We're interested in a special kind of
extension, called conservative extension.

Definition 6 (Conservative Extension). A theory 7z is a conservative ex-
tension of a theory 7 if:

e i CTs
e For any formula ¢ in the language of 71, if 72 F ¢ then 71 F ¢

An extension by definition is a special kind of extension obtained by
adding a new symbol and an axiom defining that symbol to a theory. If
done properly, it should be a conservative extension.

Definition 7 (Extension by Definition). A theory 7z is an extension by
definition of a theory 77 if:

e L(T2) = L(T2) U{S}, where S is a single new function or predicate
symbol, and

e 75 contains all the axioms of 77, and one more of the following form:

— If S'is a predicate symbol, then the axiom is of the form ¢, ., <=
S(z1,...,x), where ¢ is any formula with free variables among
T1yeeey Tk
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— If S'is a function symbol, then the axiom is of the form ¢y 4z, .. -, <=
y = S(x1,...,x%), where ¢ is any formula with free variables
among vy, x1, ..., Tx. Moreover, in that case we require that

H!y'¢y,{£1,...,2k
is a theorem of 77.

We also say that a theory 7 is an extension by definition of a theory 7;
if there exists a chain 7Ty, 72, ... , Ti of extensions by definitions.

For function definition, it is common in logic textbooks to only require
the existence of y and not its uniqueness. The axiom one would then obtain
would only be ¢[f(z1,...,2,)/y] This also leads to conservative extension,
but it turns out not to be enough in the presence of axiom schemas (axioms
containing schematic symbols).

Lemma 1. In ZF, an extension by definition without uniqueness doesn’t
necessarily yield a conservative extension if the use of the mew symbol is
allowed in axiom schemas.

Proof. In ZF, consider the formula ¢, := V. 3y.(x # ) = y € = express-
ing that nonempty sets contain an element, which is provable in ZFC.

Use this formula to introduce a new unary function symbol choice such
that choice(x) € x. Using it within the axiom schema of replacement we
can obtain for any A

{(z, choice(z)) | x € A}

which is a choice function for any set A. Hence using the new symbol we
can prove the axiom of choice, which is well known to be independent of ZF,
so the extension is not conservative. O

Note that this example wouldn’t work if the definition required unique-
ness on top of existence. For the definition with uniqueness, there is a
stronger result than only conservativity.

Definition 8. A theory 75 is a fully conservative extension over a theory

71 if:
e it is conservative, and

e for any formula ¢o with free variables x1, ..., x; in the language of 7T,
there exists a formula ¢; in the language of 77 with free variables
among x1, ..., Ty such that

To b Vry..xp.(d1 < ¢2)

Theorem 1. An extension by definition with uniqueness is fully conserva-
tive.
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The proof is done by induction on the height of the formula and isn’t
difficult, but fairly tedious.

Theorem 2. If an extension T of a theory T1 with axiom schemas is fully
conservative, then for any instance of the axiom schemas containing a new
symbol a, I' = a where I' contains no axiom schema instantiated with new
symbols.

Proof. Suppose
a = aole/7p]

Where ¢ has free variables among 1, ..., z,, and contains a defined function
symbol f. By the previous theorem, there exists 1 such that

FYA wy,...,wy, x.¢ <> 1)

or equivalently, as in a formula and its universal closure are deducible from
each other,

OB
which reduces to
oY/ F a

Since ag[y/?p] is an axiom of 77, we reach the conclusion. O]



