
LISA Reference Manual (WIP)

Simon Guilloud
Laboratory for Automated Reasoning and Analysis, EPFL



2



Introduction

This document aims to give a complete documentation on LISA. Tentatively,
every chapter and section will explain a part or concept of LISA, and explains
both its implementation and its theoretical foundations. [1]

3



4



Part I

Reference Manual

5





Chapter 1

LISA’s trusted code: The
Kernel

LISA’s kernel is the starting point of LISA, formalising the foundations of
the whole theorem prover. It is the only trusted code base, meaning that
if it is bug-free then no further erroneous or malicious code can violate the
soundness property and prove invalid statements. Hence, the two main goals
of the kernel are to be efficient and trustworthy.

LISA’s foundations are based on very traditional (in the mathematical
community) foundational theory of all mathematics: First Order Logic,
expressed using Sequent Calculus (and augmented with schematic sym-
bols), with axioms of Set Theory. Interestingly, while LISA is built with
the goal of using Set Theory, the kernel is actually theory-agnostic and is
sound to use with any other set of axioms. Hence, we defer Set Theory to
chapter 2.

1.1 First Order Logic

1.1.1 Syntax

Definition 1 (Terms). In LISA, the set of terms T is defined by the fol-
lowing grammar:

T :=LTerm(List[T ]) (1.1)

Where LTerm is the set of term labels:

LTerm :=ConstantTermLabel(Id,Arity)

|SchematicTermLabel(Id,Arity)
(1.2)

A label can be either constant or schematic, and is made of an identifier
(a string) and the arity of the label (an integer). A term is made of a term

7



8 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

label and a list of children, whose length must be equal to the arity of the
label. A constant label of arity 0 is sometimes called just a constant, and a
schematic label of arity 0 a variable. We define the shortcut

Var(x) ≡ SchematicTermLabel(x, 0)

As the definition states, we have to kind of function symbols: Constant
ones and Schematic. Constant labels represent a fixed function symbol in
some language, for exemple the addition ”+” in peano arithmetic.

Schematic symbols on the other hand are uninterpreted: They can rep-
resent any possible term and hence can be substituted by any term. Their
use will become clearer in the next section when we introduce the concept
of deductions. Moreover, variables, which are schematic terms of arity 0,
can be bound in formulas as we explain bellow. 1

Definition 2 (Formulas). The set of Formulas F is defined similarly:

F :=LPredicate(List[T ])

|LConnector(List[F ])

|Binder(Id)(Var(Id),F)

(1.3)

Where LPredicate is the set of predicate labels:

LPredicate :=ConstantPredicateLabel(Id,Arity)

| SchematicPredicateLabel(Id,Arity)
(1.4)

and LConnector is the set of predicate labels:

LConnector :=ConstantConnectorLabel(Id,Arity)

|SchematicConnectorLabel(Id,Arity)
(1.5)

A formula can be constructed from a list of term with a predicate label:

≤(x, 7)

A formula can be constructed from a list of smaller formulas using a con-
nector label:

≤(x, 7) ∧ ≥(x, 5)

And finally a formula can be constructed from a variable and a smaller
formula using a binder:

∃x. (≤(x, 7) ∧ ≥(x, 5))

1In a very traditional presentation of first order logic, we would only have variables,
i.e. schematic terms of arity 0, and schematic terms of higher arity would only appear in
second order logic. We defer to Part II Section 3.1 the explanation of why our inclusion
of schematic function symbols doesn’t fundamentally move us out of First Order Logic.



1.1. FIRST ORDER LOGIC 9

Connectors and predicate, like terms, can exist in either constant or schematic
form. Note that Connectors and predicates vary only in the type of argu-
ments they take and hence Connectors and Predicates of arity 0 are the
same thing. Hence, in LISA, we don’t permit connectors of arity 0 and
ask to use predicates instead. A contrario to schematic terms of arity 0,
schematic predicates of arity 0 can’t be bound, but they still play a special
role sometimes, and hence we introduce the special notation for them

FormulaVar(Id) = SchematicPredicateLabel(Id, 0)

Moreover in LISA, A contrario to constant predicate and term symbols,
which can be freely created, there is only the following finite set of constant
connector symbols in LISA:

Neg(¬, 1) | Implies(→, 2) | Iff(↔, 2) | And(∧,−1) | Or(∨,−1)

Moreover, connectors (And and Or) are allowed to have an unrestricted arity,
represented by the value −1. This means that a conjunction or disjunction
can have any finite number of children. Similarly, there are only 3 binder
labels.

Forall(∀) | Exists(∃) | ExistsOne(∃!)

We also introduce a special constant predicate symbol, equality:

Equal(=)

In this document as well as in the code documentation, we often write
terms and formula in a more conventional way, generally hiding the arity
of labels and representing the label with it’s identifier only, preceded by an
interrogation mark ? if the symbol is schematic. When the arity is relevant,
we write it with an superscript, for example:

f3(x, y, z) ≡ Fun(f, 3)(List(Var(x),Var(y),Var(z)))

and
∀x.ϕ ≡ Binder(∀,Var(x), ϕ)

We also use other usual representations such as symbols in infix position,
omitting parenthesis according to usual precedence rules, etc. FInally, note
that we use subscript to emphasis that a variable is possibly free in a term
or formula:

tx,y,z, ϕx,y,z

Convention Throughout this book and in the code base we adopt the
following conventions. We use r, s, t, u to denote arbitrary terms, a, b, c to
denote constant term symbols of arity 0 and f , g, h to denote term symbols
of arity non-0. We preceede those with an interogation mark, sucha as ?f to



10 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

denote schematic symbols. Moreover, we also use x, y, z to denote variables
(schematic terms of order 0).

For formulas, we use greek letters such as ϕ, ψ, τ to denote arbitrary
formula, ν, µ to denote formula variables. We use capital letters like P , Q,
R to denote predicate symbols, precedding them with an interrogation mark
? for schematic predicates. Schematic connectors are rarer, but when they
appear, we preceede them by 2 interrogation marks, for example ??c. Sets
or sequences of formula are denoted with capital greek letters Π, Σ, Γ, ∆.

�

1.1.2 Substitution

On top of basic building of terms and formulas, there is one important type of
operations: substitution of schematic symbols, which has to be implemented
in a capture-avoiding way. We start with the subcase of variable substitution

Definition 3 (Capture-avoiding Substitution of variables). Given a base
term t, a variable x and another term r, the substitution of x by r inside t
is noted t[r/x] and simply consists in replacing all appearance of x by r.

Given a formula ϕ, the substitution of x by r inside ϕ is defined recur-
sively the obvious way for connectors and predicates, and for binders:

(∀y.ψ)[r/x] ≡ ∀y.(ψ[r/x])

if y does not appear in r and

(∀y.ψ)[r/x] ≡ ∀z.(ψ[z/y][r/x])

with any fresh variable z (which is not free in r and ϕ) otherwise.

This definition of substitution is justified by the notion of alpha equiva-
lence: Two formulas which are identical up to renaming of bound variables
are considered equivalent. In practice, this means that the free variables
inside r will never get caught when substituted.

We can now define “lambda terms”

Definition 4 (Lambda Terms). A lambda term is a meta expression (mean-
ing that it is not part of FOL itself) consisting in a term with ”holes” that
can be filled by other terms. This is represented with specified variables as
arguments, similar to lambda calculus. For example, for a functional term
with two arguments, we write

L = Lambda(Var(x),Var(y))(tx,y)

It comes with an instantiation operation: given terms r, s,

L(r, s) = t[r/x, s/y]



1.1. FIRST ORDER LOGIC 11

Those expressions are a generalization of terms, and would be part of
our logic if we used Higher Order Logic rather than First Order Logic. For
conciseness and familiarity, in this document and in code documentation,
we represent those expressions as lambda expressions:

λx.y.t

They are usefull because similarly as variables can be substituted by
terms, schematic terms labels of arity greater than 0 can be substituted
by such functional terms. As the definition of such substitution is rather
convoluted to describe, we prefer to show examples and redirect the reader
to the source code of LISA for a technical definition. 2

Example 1 (Functional terms substitution in terms).
Base term Substitution Result

?f(0, 3) ?f → λx.y.x+ y 0 + 3
?f(0, 3) ?f → λy.x.x− y 3− 0
?f(0, 3) ?f → λx.y.y + y − 10 3 + 3− 10

10× ?g(x) ?g → λx.x2 10× x2

10× ?g(50) ?g → λx.?f(x+ 2, z) 10× ?f(50 + 2, z)
?f(x, x+ y) ?f → λx.y. cos(x− y) ∗ y cos(x− (x+ y)) ∗ (x+ y)

Those definition extends to substitution of schematic terms inside for-
mulas, with capture free substitution for bound variables. For example:

Example 2 (Functional terms substitution in formulas).
Base formula Substitution Result

?f(0, 3) =?f(x, x) ?f → λx.y.x+ y 0 + 3 = x+ x
∀x.?f(0, 3) =?f(x, x) ?f → λx.y.x+ y ∀x.0 + 3 = x+ x

∃y.?f(y) ≤?f(5) ?f → λx.x+ y ∃y1.y1 + y ≤ 5 + y

Note that if the lambda expression contains free variables (such as y
in the last example), then appropriate alpha-renaming of variables may be
needed.

We similarly define functional formulas, except than those can take either
term arguments of formulas arguments. Specifically, we use LambdaTermTerm,
LambdaTermFormula, LambdaFormulaFormula to indicate functional ex-
pression that take terms or formulas as arguments and return a term or
formula.

Example 3 (Typical functional expressions).
LambdaTermTerm(V ar(x), V ar(y))(x+ y) = λx.y.x+ y

LambdaTermFormula(V ar(x), V ar(y))(x = y) = λx.y.x = y
LambdaFormulaFormula(FormulaVar(ν),FormulaVar(µ)) = λν.µ.ν ∧ µ
Not that in the last case, we use FormulaVar to represent the arguments

of the lambda formula. Substitution of functional formulas is completely
analog to (capture free!) substitution of functional terms.

2Note that in lambda calculus, this would simply be iterated beta-reduction.



12 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

1.1.3 The Equivalence Checker

While proving theorem, trivial syntactical transformations such as p ∧ q ≡
q ∧ p significantly increase the length of proofs, which is desirable neither
for the user nor the machine. Moreover, the proof checker will very often
have to check whether two formulas that appear in different sequents are the
same. Hence, instead of using pure syntactical equality, LISA implements a
powerful equivalence checker able to detect a class of equivalence-preserving
logical transformation. As an example, two formulas p ∧ q and q ∧ p would
be naturally treated as equivalent.

For soundness, the relation decided by the algorithm should be contained
in the ⇐⇒ ”if and only if“ relation of first order logic. It is well known that
this this relationship is in general undecidable however, and even the ⇐⇒
relation for propositional logic is coNP-complete. For practicality, we need
a relation that is efficiently computable

The decision procedure implemented in LISA takes time log-linear in the
size of the formula, which means that is is only marginally slower than syn-
tactic equality checking. It is based on an algorithm that decides the word-
problem for Orthocomplemented Bisemilattices [1]. Informally, the theory
of Orthocomplemented Bisemilattices is the same as that of Propositional
Logic, but without the distributivity law. Figure 1.1 shows the axioms of
this theory and the logical transformations LISA is able to automatically
figure out. Moreover, the implementation in LISA also takes into account
symmetry and reflexivity of equality as well as alpha-equivalence, by which
we mean renaming of bound variables.

L1: x ∨ y = y ∨ x L1’: x ∧ y = y ∧ x
L2: x ∨ (y ∨ z) = (x ∨ y) ∨ z L2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z
L3: x ∨ x = x L3’: x ∧ x = x
L4: x ∨ 1 = 1 L4’: x ∧ 0 = 0
L5: x ∨ 0 = x L5’: x ∧ 1 = x
L6: ¬¬x = x L6’: same as L6
L7: x ∨ ¬x = 1 L7’: x ∧ ¬x = 0
L8: ¬(x ∨ y) = ¬x ∧ ¬y L8’: ¬(x ∧ y) = ¬x ∨ ¬y
L9: x =⇒ y = ¬x ∨ y
L10: x↔ y = (¬x ∨ y) ∧ (¬y ∨ x)
L11: ∃!x.P = ∃y.∀x.(x = y) ↔ P

Table 1.1: Laws LISA’s equivalence checker authomatically account for.
LISA’s equivalence-checking algorithm is complete (and log-linear time) with
respect to laws L1-L11 and L1’-L8’.



1.2. PROOFS IN SEQUENT CALCULUS 13

1.2 Proofs in Sequent Calculus

1.2.1 Sequent Calculus

The deductive system used by LISA is an extended version of Gentzen’s
sequent Calculus.

Definition 5. A sequent is a pair of (possibly empty) sets of formula,
noted:

ϕ1, ϕ2, ..., ϕm ⊢ ψ1, ψ2, ..., ψn

The intended semantic of such a sequent is:

(ϕ1 ∧ ϕ2 ∧ ... ∧ ϕm) =⇒ (ψ1 ∨ ψ2 ∨ ... ∨ ψn) (1.6)

A sequent ϕ ⊢ ψ is logically but not conceptually equivalent to a se-
quent ⊢ ϕ→ ψ. The distinction is similar to the distinction between meta-
implication and inner implication in Isabelle, for example. Typically, a the-
orem or a lemma should have its various assumptions on the left handside
of the sequent and its single conclusion on the right. During proofs however,
there may be multiple elements on the right side. 3

A deduction rule, also called a proof step, has (in general) between zero
and two prerequisite sequents (which we call premises of the rule) and one
conclusion sequent, and possibly take some arguments that describe how
the deduction rule is applied. The basic deduction rules used in LISA are
shown in Figure 1.1.

Since we work on first order logic with equality and accept axioms,
there are also rules for equality reasoning, which include reflexivity of equal-
ity. Moreover, we include substitution of equal-for-equal and equivalent-for-
equivalent in Figure 1.2. While those substitution rules are deduced steps,
and hence could technically be omitted, simulating them can sometime take
a high number of steps so they are included as base steps for efficiency.

There are also some special proof steps used to either organise proofs,
shown in Figure 1.3.

3In a strict description of Sequent Calculus, this is in particular needed to make double
negation elimination.



14 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

Hypothesis
Γ, ϕ ⊢ ϕ,∆

Γ ⊢ ϕ,∆ Σ, ϕ ⊢ Π
Cut

Γ,Σ ⊢ ∆,Π

Γ, ϕ ⊢ ∆
LeftAnd

Γ, ϕ ∧ ψ ⊢ ∆

Γ ⊢ ϕ,∆ Σ ⊢ ψ,Π
RightAnd

Γ,Σ ⊢ ϕ ∧ ψ,∆,Π

Γ, ϕ ⊢ ∆ Σ, ψ ⊢ Π
LeftOr

Γ,Σ, ϕ ∨ ψ ⊢ ∆,Π

Γ ⊢ ϕ,∆
RightOr

Γ ⊢ ϕ ∨ ψ,∆

Γ ⊢ ϕ,∆ Σ, ψ ⊢ Π
LeftImplies

Γ,Σ, ϕ→ ψ ⊢ ∆,Π

Γ, ϕ ⊢ ψ,∆
RightImplies

Γ ⊢ ϕ→ ψ,∆

Γ, ϕ→ ψ ⊢ ∆
LeftIff

Γ, ϕ↔ ψ ⊢ ∆

Γ ⊢ ϕ→ ψ,∆ Σ ⊢ ψ → ϕ,Π
RightIff

Γ,Σ ⊢ ϕ↔ ψ,∆,Π

Γ ⊢ ϕ,∆
LeftNot

Γ,¬ϕ ⊢ ∆

Γ, ϕ ⊢ ∆
RightNot

Γ ⊢ ¬ϕ,∆

Γ, ϕ[t/x] ⊢ ∆
LeftForall

Γ, ∀x.ϕ ⊢ ∆

Γ ⊢ ϕ,∆
RightForall

Γ ⊢ ∀x.ϕ,∆

Γ, ϕ ⊢ ∆
LeftExists

Γ, ∃x.ϕ ⊢ ∆

Γ ⊢ ϕ[t/x],∆
RightExists

Γ ⊢ ∃x.ϕ,∆

Γ, ∃y∀x.(x = y) ↔ ϕ ⊢ ∆
LeftExistsOne

Γ,∃!x.ϕ ⊢ ∆

Γ ⊢ ∃y∀x.(x = y) ↔ ϕ,∆
RightExistsOne

Γ ⊢ ∃!x.ϕ,∆

Γ ⊢ ∆ LeftWeakening
Γ,Σ ⊢ ∆

Γ ⊢ ∆ RightWeakening
Γ ⊢ δ,∆

Γ, t = t ⊢ ∆
LeftRefl

Γ ⊢ ∆
RightRefl

⊢ t = t

Figure 1.1: Strict set of deduction rules for sequent calculus.



1.2. PROOFS IN SEQUENT CALCULUS 15

Γ, ϕ[s/?f ] ⊢ ∆
LeftSubstEq

Γ, s = t, ϕ[t/?f ] ⊢ ∆

Γ ⊢ ϕ[s/?f ],∆
RightSubstEq

Γ, s = t ⊢ ϕ[t/?f ],∆

Γ, ϕ[a/?p] ⊢ ∆
LeftSubstIff

Γ, a↔ b, ϕ[b/?p] ⊢ ∆

Γ ⊢ ϕ[a/?p],∆
RightSubstIff

Γ, a↔ b ⊢ ϕ[b/?p],∆

Γ ⊢ ∆
InstPredSchema

Γ[ψ(v⃗)/?p] ⊢ ∆[ψ(v⃗)/?p]
Γ ⊢ ∆

InstFunSchema
Γ[r(v⃗)/?f ] ⊢ ∆[r(v⃗)/?f ]

Figure 1.2: Additional deduction rules for substitution and instantiation

Γ ⊢ ∆
Rewrite

Γ ⊢ ∆
RewriteTrue

Γ ⊢ Γ... ... ... Subproof
Γ ⊢ ∆

Figure 1.3: Bonus and structural proof steps. Rewrite allows to deduce a
sequent equivalent from a previous sequent by OCBSL laws and sequent
interpretation. Subproof hide a part of a proof tree inside a single proof
step.



16 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

Hypothesis
ϕ ⊢ ϕ

RightWeakening
ϕ ⊢ ϕ, ψ

RightImplies
⊢ ϕ, (ϕ→ ψ)

Hypothesis
ϕ ⊢ ϕ

LeftImplies
(ϕ→ ψ) → ϕ ⊢ ϕ

RightImplies
⊢ ((ϕ→ ψ) → ϕ) → ϕ

Figure 1.4: A proof of Pierce’s law in sequent calculus. The bottom most
sequent (root) is the conclusion.

1.2.2 Proofs

Proof step can be composed into a Directed Acyclic Graph. The root of
the proof shows the conclusive statement, and the leaves are assumptions or
tautologies (instances of theHypothesis rule). Figure 1.4 shows an example
of a proof tree for Pierce’s Law in strict Sequent Calculus.

In the Kernel, proof steps are organised linearly, in a list, to form actual
proofs. Each proof step refer to it’s premises using numbers, which indicate
the place of the premise in the proof. Moreover, proofs are conditional: They
can carry an explicit set of assumed sequents, named ”imports“, which give
some starting points to the proof. Typically, these imports will contain pre-
viously proven theorems, definitions or axioms (More on that in section 1.3).
For a proof step to refer to an imported sequent, one use negative integers.
−1 corresponds to the first sequent of the import list of the proof, −2 to the
second, etc.

Formally, a proof is a pair made of a list of proof steps and a list of
sequents:

Proof(steps:List [ProofStep], imports:List [Sequent])

We call the bottom sequent of the last proof step of the proof the ”conclu-
sion” of the proof. For the proof to be the linearization of a rooted directed
acyclic graph, we require that proof steps must only refer to number smaller
then their own number in the proof. Indeed, using topological sorting, it is
always possible to order the nodes of a directed acyclic graph such that for
any node, its predecessors appear earlier in the list. The linearization of our
Pierce’s law proof is shown in Figure 1.5.

1.2.3 Proof Checker

In LISA, a proof object has no guarantee to be correct. It is perfectly
possible to wright a wrong proof. LISA contains a proof checking function,
which given a proof will verify if it is correct. To be correct, a proof must
satisfy the following conditions:

1. No proof step must refer to itself or a posterior proof step as a premise.



1.2. PROOFS IN SEQUENT CALCULUS 17

0 Hypothesis ϕ ⊢ ϕ
1 RightWeakening(0) ϕ ⊢ ϕ, ψ
2 RightImplies(1) ⊢ ϕ, (ϕ→ ψ)

3 Hypothesis ϕ ⊢ ϕ
4 LeftImplies(2, 3) (ϕ→ ψ) → ϕ ⊢ ϕ
5 RightImplies(4) ⊢ ((ϕ→ ψ) → ϕ) → ϕ

(1.7)

Figure 1.5: Linearization of the proof of Pierce’s Law as represented in LISA.

2. Every proof step must be correctly constructed, with the bottom se-
quent correctly following from the premises by the type of the proof
step and its arguments.

Given some proof p, the proof checker will verify these points. For most
proof steps, this typically involve verifying that the premises and the con-
clusion match according to a transformation specific to the deduction rule.
Not that for most case where there is an intuitive symmetry in arguments,
such as RightAnd or LeftSubstIff for example, permutations of those ar-
guments don’t matter.

Hence, most of the proof checker’s work consists in verifying that some
formulas, or subformulas thereof, are identical. This is where the equivalence
checker comes into play. By checking equivalence rather than strict syntactic
equality, a lot of steps become redundant and can be merged in a single step.
That way, LeftAnd, RightOr, LeftIff become instances of the Weakening

rule, and RightImplies an instance of RightAnd.
LeftNot, RightNot, LeftImplies, RightImplies, LeftRefl, RightRefl,

LeftExistsOne, RightExistsOne can be omitted altogether. This gives an
intuition of how usefull the equivalence checker is to cut proof length. It
also combine very well with substitution steps.

While most proof steps are oblivious to formula transformations allowed
by the equivalence checker, they don’t allow transformations of the whole
sequent: To easily rearrange sequents according to the semantic of 1.6, one
should use the Rewrite step. The proof checking function will output a
judgement :

SCValidProof(proof: SCProof)

or

SCInvalidProof(proof: SCProof, path: Seq[Int ], message: String)

SCInvalidProof indicates an erroneous proof. The second argument point
to the faulty proofstep (through subproofs), and the third argument is an
error message hinting towards the reason why the step is faulty.



18 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

1.3 Theorems and Theories

In mathematics as a discipline, theorems don’t exist in isolation. They
depend on some agreed uppon set of axioms, definitions, and previously
proven theorems. Formally, Theorems are developped within theories. A
theory is defined by a language, which contains the symbols allowed in the
theory, and by a set of axioms, which are assumed to hold true.

In LISA, a theory is a mutable object that starts by being the pure
theory of predicate logic: It has no known symbol and no axiom. Then we
can introduce into it symbols of set theory(∈, ∅,

⋃
and set theory axioms,

see Chapter 2) or of any other theory.

To conduct a proof inside a Theory, using its axioms, the proof should
be normally constructed and the needed axioms specified in the imports of
the proof. Then, the proof can be given to the Theory to check, along with
justifications for all imports of the proof. A justification is either an axiom,
a previously proven theorem, or a definition. The Theory object will check
that every import of the proof is properly justified by an axiom introduced
in the theory, i.e. that the proof is in fact not conditional in the theory.
Then it will pass the proof to the proof checker. If the proof is correct,
it will return a Theorem encapsulating the sequent. This sequent will be
allowed to be used in all further proofs exactly like an axiom.

1.3.1 Definitions

The user can also introduce definitions in the Theory. LISA’s kernel allows
to define two kinds of objects: Function (or Term) symbols and Predicate
symbols. It is important to remember that in the context of Set Theory,
function symbols are not the usual mathematical functions and predicate
symbols are not the usual mathematical relations. Indeed, on one hand a
function symbol defines an operation on all possible sets, but on the other
hand it is impossible to use the symbol alone, without applying it to argu-
ments, or to quantify over function symbol. Actual mathematical functions
on the other hand, are proper sets which contains the graph of a function
on some domain. Their domain must be restricted to a proper set, and it
is possible to quantify over such set-like functions or to use them without
applications. These set-like functions are represented by constant symbols.
For example ”f is derivable“ cannot be stated about a function symbol. We
will come back to this in Chapter 2, but for now let us remember that (non-
constant) function symbols are suitable for intersection

⋂
between sets but

not for, say, the Riemann ζ function.

Figure 1.6 shows how to define and use new function and predicate sym-
bols. To define a predicate on n variables, we must provide any formula
with n distinguished free variables. Then, this predicate can be freely used
and at any time substituted by its definition. Functions are slightly more



1.3. THEOREMS AND THEORIES 19

A definition in LISA is one of those two kinds of objects:

P r ed i c a t eDe f i n i t i o n (
l a b e l : ConstantPredicateLabel ,
e xp r e s s i on : LambdaTermFormula

)

Corresponding to ”let pn(x⃗) := ϕx⃗“

Funct i onDe f in i t i on (
l a b e l : ConstantFunctionLabel ,
out : Var iableLabel ,
e xp r e s s i on : LambdaTermFormula

)

Corresponding to ”let f(x⃗) be the unique element s.t. ϕ[f(x⃗)/y]“

Figure 1.6: Definitions in LISA

complicated: To define a function f , one must first prove a statement of the
form

∃!y.ϕy,x1,...,xk

Then we obtain for free the property that

∀y.(f(x1, ..., xk) = y) ↔ ϕy,x1,...,xk

from which we can deduce in particular ϕ[f(x1, ..., xk)/y] The special case
where n = 0 defines constant symbols. The special case where ϕ is of the
form y = t, with possibly the x’s free in t let us recover a more simple
definition by alias, i.e. where f is simply a shortcut for a more complex
term t. This mechanism is typically called Extension by Definition, and
allows to extend the theory without changing what is or isn’t provable. For
detailed explanation, see part II chapter chapt:definitions.

The Theory object is responsible of keeping track of all symbols which
have been defined so that it can detect and refuse conflicting definitions. As
a general rule, definitions should have a unique identifier and can’t contains
free schematic symbols.

Once a definition has been introduce, future theorem can refer to those
definitional axioms by importing the corresponding sequents in their proof
and providing justification for those imports when the proof is verified, just
like with axioms.

Figure 1.7 shows the types on Justification in a theory (Theorem, Axiom,
Definition). Figure 1.8 shows how to introduce new such justifications as
well as symbols in the theory. Figure 1.9 shows how to obtain various
informations from the theory.



20 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

Justifications:

Explanation Data Type

A proven theorem

Theorem(
name : Str ing ,
p r opo s i t i on : Sequent
)

An axiom of the theory

Axiom(
name : Str ing ,
ax : Formula
)

A predicate definition

Pr ed i c a t eDe f i n i t i o n (
l a b e l : ConstantPredicateLabel ,
e xp r e s s i on : LambdaTermFormula
)

A function definition

Funct i onDe f in i t i on (
l a b e l : ConstantFunctionLabel ,
out : Var iableLabel ,
e xp r e s s i on : LambdaTermFormula
)

Figure 1.7: The different type of justification in a Theory object.



1.3. THEOREMS AND THEORIES 21

Setters/Constructors:

Explanation Function

Add a new theorem
to the theory

makeTheorem(
name : Str ing ,
statement : Sequent ,
proo f : SCProof ,
j u s t s : Seq [ J u s t i f i c a t i o n ]
)

Add a new axiom
to the theory

addAxiom(
name : Str ing ,
f : Formula
)

Make a new
predicate definition

makePred i cateDe f in i t i on (
l a b e l : ConstantPredicateLabel ,
e xp r e s s i on : LambdaTermFormula
)

Make a new
function definition

makeFunct ionDef in i t ion (
proo f : SCProof ,
j u s t i f i c a t i o n s : Seq [ J u s t i f i c a t i o n ] ,
l a b e l : ConstantFunctionLabel ,
out : Var iableLabel ,
e xp r e s s i on : LambdaTermFormula
)

Add a new symbol
without definition

addSymbol ( s : ConstantLabel )

Add all symbols of a
formula without definition

makeFormulaBelongToTheory ( phi : Formula )

Add all symbols of a
sequent without definition

makeSequentBelongToTheory ( s : Sequent )

Figure 1.8: The mutable interface of a Theory object.



22 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

Getters:

Explanation Function

Check if all symbols in a
formula, term or sequent
belong to the theory.

belongsToTheory ( phi : Formula )
belongsToTheory ( t : Term)
belongsToTheory ( s : Sequent )

Return the list of symbols
and definitions in the theory

language ( )

Check if a label is
a symbol of the theory

isSymbol ( l a b e l : ConstantLabel )

Check if a label is not
already a symbol of the theory

i sAva i l a b l e ( l a b e l : ConstantLabel )

Return the list of
axioms in the theory

axiomsList ( )

Check if a formula is
an axiom of the theory

isAxiom ( f : Formula )

Return the Axiom matching
the given name or formula,
if it exists

getAxiom ( f : Formula )
getAxiom (name : S t r ing )

Return the Definition
of a given Label, if defined

g e tDe f i n i t i o n ( l a b e l : ConstantLabel )

Return the Theorem object with
the given name, if it is one.

getTheorem (name : S t r ing )

Figure 1.9: The static interface of a Theory object.



1.4. KERNEL SUPPLEMENTS AND UTILITIES 23

1.4 Kernel Supplements and Utilities

The Kernel itself is a logical core, whose main purpose is to attest correctness
of mathematical developments and proofs. In particular, it is not intended
to use directly to formalise large library, but rather as either a foundation for
LISA’s user interface and automation, or as a tool to write and verify formal
proofs produced by other programs. Nonetheless, LISA’s kernel comes with
a set of utilities and features that make the kernel more usable. LISA also
provides a set of utilities and a DSL4 to ease and organise the writing of
proofs. This is especially directed to people who want to build understanding
and intuition regarding formal proofs in sequent calculus.

1.4.1 Printer and Parser

This feature is under active development.

1.4.2 Writing theory files

LISA provides a canonical way of writing and organizing Kernel proofs by
mean of a set of utilities and a DSL5 made possible by some of scala 3 fea-
tures such as string interpolation, extension and implicits. This is especially
directed to people who want to build understanding and intuition regarding
formal proofs in sequent calculus. The way to write a new theory file to
mathematical development is:

object MyTheoryName extends l i s a . Main {

}

And that’s it! To write a theorem, the recommended syntax is (for example):

object MyTheoryName extends l i s a . Main {

THEOREM(”theoremName” ) o f ” d e s i r ed conc lu s i on ” PROOF {

??? : Proof

} us ing ( l i s t O f J u s t i f i c a t i o n s )
show

}

show is optional and prints the last proven theorem. We can similarily make
definition:

4Domain Specific Language
5Domain Specific Language



24 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL

object MyTheoryName extends l i s a . Main {

val myFunction =
DEFINE( ”symbol” , x , y ) as d e f i n i t i o n (x , y )

show
}

This works for definitions of function and predicate symbols with a direct
definition. for indirect definitions (via ∃!), use the following:

object MyTheoryName extends l i s a . Main {

val t e s t d e f =
DEFINE( ”symbol” , x , y ) asThe z suchThat {

??? : Formula
} PROOF {

??? : Proof
} us ing ( l i s t O f J u s t i f i c a t i o n s )
show

}

It is important to note that when multiple such files are developped, they
all use the same underlying RunningTHeory. This makes it possible to use
results proved previously by simple mean of an import statement as one
would import a regular object. Similarly one should also import as usual
automation and tactics developped aside. It is expecte in medium term that
lisa .Main will come with basic automation.

To check the result of a developped file, and verify that the proofs contain
no error, it is possible to run such a library object. All imported theory
objects will be run through as well, but only the result of the selected one
will be printed.

It is possible to refer to a theorem or axiom that has been previously
proven or added using it’s name. the syntax is thm”theoremName” or
ax”axiomName”. This makes it possible to write, for example, thm”theoremName”.show
and ... using (ax”comprehensionSchema”). Figure 1.10 shows a typical ex-
ample of set theory development.



1.4. KERNEL SUPPLEMENTS AND UTILITIES 25

object MyTheoryName extends l i s a . Main {
THEOREM(” russe lParadox ” ) o f

∀ x . ( x∈?y )↔ ¬( x∈x )⊢ PROOF {
val y = Var iab leLabe l ( ”y” )
val x = Var iab leLabe l ( ”x” )
val s0 = RewriteTrue ( in (y , y ) <=> ! in (y , y ) |=())
val s1 = Le f tFo r a l l (

f o r a l l (x , in (x , y ) <=> ! in (x , x ) ) |= ( ) ,
0 , in (x , y ) <=> ! in (x , x ) , x , y

)
Proof ( s0 , s1 )

} us ing ( )
thm” russe lParadox ” . show

THEOREM(”unorderedPair symmetry ” ) o f
”⊢∀y , x . {x , y} = {y , x}” PROOF {

. . .
} us ing ( ax” extens iona l i tyAxiom ” , ax”pairAxiom” )

show

val oPair =
DEFINE( ”” , x , y ) as pa i r ( pa i r (x , y ) , pa i r (x , x ) )

}

Figure 1.10: Example of library development in LISA Kernel



26 CHAPTER 1. LISA’S TRUSTED CODE: THE KERNEL



Chapter 2

Set Theory

LISA is based on set theory. More specifically, it is based on ZF with (still
not decided) an axiom of choice, of global choice, or Tarski’s universes.

ZF Set Theory stands for Zermelo-Frankel Set Theory. It contains a set
of initial predicate symbols and function symbols, shown in Figure 2.1. It
also contains the 7 axioms of Zermelo (Figure 2.2), which are technically suf-
ficient to formalize a large portion initial portion of mathematics, plus the
axiom of replacement of Frankel(Figure 2.3), which is needed to formalize
more complex mathematical theories. In a more typical mathematical intro-
duction to Set Theory, ZF would naturally only contain the set membership
symbol ∈. Axioms defining the other symbols would then only express the
existence of functions or predicates with those properties, from which we
could get the same symbols using extensions by definitions.

In a very traditional sense, an axiomatization is any possibly infinite
semi-recursive set of axioms. Hence, in it’s full generality, Axioms should be
any function producing possibly infinitely many formulas. This is however
not a convenient definition. In practice, all infinite axiomatizations are
schematic, meaning that they are expressable using schematic variables.
Axioms Z8 (comprehension schema) and ZF1 (replacement schema) are such
examples of axiom schema, and motivates the use of schematic variables in
LISA.

27



28 CHAPTER 2. SET THEORY

Math symbol LISA Kernel

Set Membership predicate ∈ in(s , t)
Subset predicate ⊂ subset(s , t)
Empty Set constant ∅ emptyset()
Unordered Pair constant (·, ·) pair(s , t)
Power Set function P powerSet(s)
Set Union/Flatten function

⋃
union(x)

Figure 2.1: The basic symbols of ZF

Z1 (empty set). ∀x.x /∈ ∅

Z2 (extensionality). ∀x, y.(∀z.z ∈ x ⇐⇒ z ∈ y) ⇐⇒ (x = y)

Z3 (extensionality). ∀x, y.x ⊂ y ⇐⇒ ∀z.z ∈ xiffz ∈ y

Z4 (pair). ∀x, y, z.(z ∈ (x, y)) ⇐⇒ ((x ∈ y) ∨ (y ∈ z))

Z5 (union). ∀x, z.(x ∈ U(z)) ⇐⇒ (∃y.(x ∈ y) ∧ (y ∈ z))

Z6 (power). ∀x, y.(x ∈ P(y)) ⇐⇒ (x ⊂ y)

Z7 (foundation). ∀x.(x ̸= ∅) =⇒ (∃y.(y ∈ x) ∧ (∀z.z ∈ x))

Z8 (comprehension schema). ∀z, v⃗.∃y.∀x.(x ∈ y) ⇐⇒ ((x ∈ z)∧ϕ(x, z, v⃗))

Figure 2.2: Axioms for Zermelo set theory.

ZF1 (replacement schema).

∀a.(∀x.(x ∈ a) =⇒ !∃y.ϕ(a, v⃗, x, y)) =⇒

(∃b.∀x.(x ∈ a) =⇒ (∃y.(y ∈ b) ∧ ϕ(a, v⃗, x, y)))

Figure 2.3: Axioms for Zermelo-Fraenkel set theory.



Part II

Selected Theoretical Topics

29





Chapter 3

Set Theory and
Mathematical Logic

3.1 First Order Logic with Schematic Variables

3.2 Extension by Definition

An extension by definition is the formal way of introducing new symbols in
a mathematical theory. Theories can be extended into new ones by adding
new symbols and new axioms to it. We’re interested in a special kind of
extension, called conservative extension.

Definition 6 (Conservative Extension). A theory T2 is a conservative ex-
tension over a theory T1 if:

� T1 ⊂ T2

� For any formula ϕ in the language of T1, if T2 ⊢ ϕ then T1 ⊢ ϕ

An extension by definition is a special kind of extension obtained by
adding a new symbol and an axiom defining that symbol to a theory. If
done properly, it should be a conservative extension.

Definition 7 (Extension by Definition). A theory T2 is an extension by
definition of a theory T1 if:

� L(T2) = L(T2) ∪ {S}, where S is a single new function or predicate
symbol, and

� T2 contains all the axioms of T1, and one more of the following form:

– If S is a predicate symbol, then the axiom is of the form ϕx1,...,xk
⇐⇒

S(x1, ..., xk), where ϕ is any formula with free variables among
x1, ..., xk.

31



32 CHAPTER 3. SET THEORY AND MATHEMATICAL LOGIC

– If S is a function symbol, then the axiom is of the form ϕy,x1,...,xk
⇐⇒

y = S(x1, ..., xk), where ϕ is any formula with free variables
among y, x1, ..., xk. Moreover, in that case we require that

∃!y.ϕy,x1,...,xk

is a theorem of T1

We also say that a theory Tk is an extension by definition of a theory T1
if there exists a chain T1, T2, ... , Tk of extensions by definitions.

For function definition, it is common in logic textbooks to only require
the existence of y and not its uniqueness. The axiom one would then obtain
would only be ϕ[f(x1, ..., xn)/y] This also leads to conservative extension,
but it turns out not to be enough in the presence of axiom schemas (axioms
containing schematic symbols).

Lemma 1. In ZF, an extension by definition without uniqueness doesn’t
necessarily yields a conservative extension if the use of the new symbol is
allowed in axiom schemas.

Proof. In ZF, consider the formula ϕc := ∀x.∃y.(x ̸= ∅) =⇒ y ∈ x express-
ing that nonempty sets contain an element, which is provable in ZFC.

Use this formula to introduce a new unary function symbol choice such
that choice(x) ∈ x. Using it within the axiom schema of replacement we
can obtain for any A

{(x, choice(x)) | x ∈ A}

which is a choice function for any set A. Hence using the new symbol we
can prove the axiom of choice, which is well known to be independent of ZF,
so the extension is not conservative.

Note that this example wouldn’t work if the definition required unique-
ness on top of existence. For the definition with uniqueness, there is a
stronger result than only conservativity.

Definition 8. A theory T2 is a fully conservative extension over a theory
T1 if:

� It is conservative

� For any formula ϕ2 with free variables x1, ..., xk in the language of
T2, there exists a formula ϕ1 in the language of T1 with free variables
among x1, ..., xk such that

T2 ⊢ ∀x1...xk.(ϕ1 ↔ ϕ2)

Theorem 1. An extension by definition with uniqueness is fully conserva-
tive.



3.2. EXTENSION BY DEFINITION 33

The proof is done by induction on the height of the formula and isn’t
difficult, but fairly tedious.

Theorem 2. If an extension T2 of a theory T1 with axiom schemas is
fully conservative, then for any instance of the axiom schemas of an ax-
iom schemas α containing a new symbol, Γ ⊢ α where Γ contains no axiom
schema instantiated with new symbols.

Proof. Suppose
α = α0[ϕ/?p]

Where ϕ has free variables among x1, ..., xn and contains a defined function
symbol f . By the previous theorem, there exists ψ such that

⊢ ∀A,w1, ..., wn, x.ϕ↔ ψ

or equivalently, as in a formula and its universal closure are deducible from
each other,

⊢ ϕ↔ ψ

which reduces to
α0[ψ/?p] ⊢ α

Since α0[ψ/?p] is an axiom of T1, we reach the conclusion.



34 CHAPTER 3. SET THEORY AND MATHEMATICAL LOGIC



Bibliography

[1] Simon Guilloud and Viktor Kuncak. Equivalence checking for orthocom-
plemented bisemilattices in log-linear time. In Dana Fisman and Grigore
Rosu, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II,
volume 13244 of Lecture Notes in Computer Science, pages 196–214.
Springer, 2022.

35


