Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lisa
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
LARA
lisa
Commits
6e355f4d
Commit
6e355f4d
authored
2 years ago
by
Katja Goltsova
Committed by
Viktor Kunčak
2 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Prove in Peano that x+Sy = Sx+y
parent
96085809
No related branches found
Branches containing commit
No related tags found
3 merge requests
!54
Front integration
,
!53
Front integration
,
!52
Front integration
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/main/scala/lisa/proven/mathematics/Peano.scala
+145
-1
145 additions, 1 deletion
src/main/scala/lisa/proven/mathematics/Peano.scala
with
145 additions
and
1 deletion
src/main/scala/lisa/proven/mathematics/Peano.scala
+
145
−
1
View file @
6e355f4d
...
...
@@ -4,8 +4,8 @@ import lisa.kernel.fol.FOL.*
import
lisa.kernel.proof.RunningTheory
import
lisa.kernel.proof.SCProof
import
lisa.kernel.proof.SequentCalculus.
*
import
lisa.proven.tactics.ProofTactics.
*
import
lisa.proven.PeanoArithmeticsLibrary
import
lisa.proven.tactics.ProofTactics.
*
import
lisa.utils.Helpers.
{
_
,
given
}
import
lisa.utils.Library
...
...
@@ -19,6 +19,19 @@ object Peano {
def
main
(
args
:
Array
[
String
])
:
Unit
=
{}
/////////////////////////////////////////////////////////////////////
def
instantiateForallAxiom
(
ax
:
Axiom
,
t
:
Term
)
:
SCProof
=
{
val
formula
=
ax
.
ax
require
(
formula
.
isInstanceOf
[
BinderFormula
]
&&
formula
.
asInstanceOf
[
BinderFormula
].
label
==
Forall
)
val
forall
=
ax
.
ax
.
asInstanceOf
[
BinderFormula
]
instantiateForall
(
SCProof
(
IndexedSeq
(),
IndexedSeq
(
ax
)))
val
tempVar
=
VariableLabel
(
freshId
(
formula
.
freeVariables
.
map
(
_
.
id
),
"x"
))
val
instantiated
=
instantiateBinder
(
forall
,
t
)
val
p1
=
Hypothesis
(
instantiated
|-
instantiated
,
instantiated
)
val
p2
=
LeftForall
(
formula
|-
instantiated
,
0
,
instantiateBinder
(
forall
,
tempVar
),
tempVar
,
t
)
val
p3
=
Cut
(()
|-
instantiated
,
-
1
,
1
,
formula
)
Proof
(
IndexedSeq
(
p1
,
p2
,
p3
),
IndexedSeq
(
ax
))
}
THEOREM
(
"x + 0 = 0 + x"
)
of
"∀x. plus(x, zero) === plus(zero, x)"
PROOF
{
val
refl0
:
SCProofStep
=
RightRefl
(()
|-
s
(
x
)
===
s
(
x
),
s
(
x
)
===
s
(
x
))
val
subst1
=
RightSubstEq
((
x
===
plus
(
zero
,
x
))
|-
s
(
x
)
===
s
(
plus
(
zero
,
x
)),
0
,
(
x
,
plus
(
zero
,
x
))
::
Nil
,
LambdaTermFormula
(
Seq
(
y
),
s
(
x
)
===
s
(
y
)))
...
...
@@ -127,4 +140,135 @@ object Peano {
)
}
using
(
ax
"ax4plusSuccessor"
,
ax
"ax3neutral"
,
ax
"ax7induction"
)
show
THEOREM
(
"switch successor"
)
of
"∀y. ∀x. plus(x, s(y)) === plus(s(x), y)"
PROOF
{
//////////////////////////////////// Base: x + S0 = Sx + 0 ///////////////////////////////////////////////
val
base0
=
{
// x + 0 = x
val
xEqXPlusZero0
=
SCSubproof
(
instantiateForallAxiom
(
ax
"ax3neutral"
,
x
),
IndexedSeq
(-
1
))
// Sx + 0 = Sx
val
succXEqSuccXPlusZero1
=
SCSubproof
(
instantiateForallAxiom
(
ax
"ax3neutral"
,
s
(
x
)),
IndexedSeq
(-
1
))
// x + S0 = S(x + 0)
val
xPlusSuccZero2
=
SCSubproof
(
instantiateForall
(
instantiateForallAxiom
(
ax
"ax4plusSuccessor"
,
x
),
zero
),
IndexedSeq
(-
2
))
// ------------------- x + 0 = x, Sx + 0 = Sx, x + S0 = S(x + 0) |- Sx + 0 = x + S0 ---------------------
val
succX3
=
RightRefl
(()
|-
s
(
x
)
===
s
(
x
),
s
(
x
)
===
s
(
x
))
val
substEq4
=
RightSubstEq
(
Set
(
s
(
x
)
===
plus
(
s
(
x
),
zero
),
x
===
plus
(
x
,
zero
))
|-
plus
(
s
(
x
),
zero
)
===
s
(
plus
(
x
,
zero
)),
3
,
(
s
(
x
),
plus
(
s
(
x
),
zero
))
::
(
VariableTerm
(
x
),
plus
(
x
,
zero
))
::
Nil
,
LambdaTermFormula
(
Seq
(
y
,
z
),
y
===
s
(
z
))
)
val
substEq5
=
RightSubstEq
(
Set
(
s
(
x
)
===
plus
(
s
(
x
),
zero
),
x
===
plus
(
x
,
zero
),
s
(
plus
(
x
,
zero
))
===
plus
(
x
,
s
(
zero
)))
|-
plus
(
s
(
x
),
zero
)
===
plus
(
x
,
s
(
zero
)),
4
,
(
s
(
plus
(
x
,
zero
)),
plus
(
x
,
s
(
zero
)))
::
Nil
,
LambdaTermFormula
(
Seq
(
z
),
plus
(
s
(
x
),
zero
)
===
z
)
)
// -------------------------------------------------------------------------------------------------------
val
cut6
=
Cut
(
Set
(
s
(
x
)
===
plus
(
s
(
x
),
zero
),
x
===
plus
(
x
,
zero
))
|-
plus
(
s
(
x
),
zero
)
===
plus
(
x
,
s
(
zero
)),
2
,
5
,
s
(
plus
(
x
,
zero
))
===
plus
(
x
,
s
(
zero
)))
val
cut7
=
Cut
(
x
===
plus
(
x
,
zero
)
|-
plus
(
s
(
x
),
zero
)
===
plus
(
x
,
s
(
zero
)),
1
,
6
,
s
(
x
)
===
plus
(
s
(
x
),
zero
))
val
cut8
=
Cut
(()
|-
plus
(
s
(
x
),
zero
)
===
plus
(
x
,
s
(
zero
)),
0
,
7
,
x
===
plus
(
x
,
zero
))
SCSubproof
(
SCProof
(
IndexedSeq
(
xEqXPlusZero0
,
succXEqSuccXPlusZero1
,
xPlusSuccZero2
,
succX3
,
substEq4
,
substEq5
,
cut6
,
cut7
,
cut8
),
IndexedSeq
(
ax
"ax3neutral"
,
ax
"ax4plusSuccessor"
)
),
IndexedSeq
(-
1
,
-
2
)
)
}
val
(
x1
,
y1
,
z1
)
=
(
VariableLabel
(
"x1"
),
VariableLabel
(
"y1"
),
VariableLabel
(
"z1"
))
/////////////// Induction step: ∀y. (x + Sy === Sx + y) ==> (x + SSy === Sx + Sy) ////////////////////
val
inductionStep1
=
{
// x + SSy = S(x + Sy)
val
moveSuccessor0
=
SCSubproof
(
instantiateForall
(
instantiateForallAxiom
(
ax
"ax4plusSuccessor"
,
x
),
s
(
y
)),
IndexedSeq
(-
2
))
// Sx + Sy = S(Sx + y)
val
moveSuccessor1
=
SCSubproof
(
instantiateForall
(
instantiateForallAxiom
(
ax
"ax4plusSuccessor"
,
s
(
x
)),
y
),
IndexedSeq
(-
2
))
// ----------- x + SSy = S(x + Sy), x + Sy = Sx + y, S(Sx + y) = Sx + Sy |- x + SSy = Sx + Sy ------------
val
middleEq2
=
RightRefl
(()
|-
s
(
plus
(
x
,
s
(
y
)))
===
s
(
plus
(
x
,
s
(
y
))),
s
(
plus
(
x
,
s
(
y
)))
===
s
(
plus
(
x
,
s
(
y
))))
val
substEq3
=
RightSubstEq
(
Set
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
|-
s
(
plus
(
x
,
s
(
y
)))
===
s
(
plus
(
s
(
x
),
y
)),
2
,
(
plus
(
x
,
s
(
y
)),
plus
(
s
(
x
),
y
))
::
Nil
,
LambdaTermFormula
(
Seq
(
z1
),
s
(
plus
(
x
,
s
(
y
)))
===
s
(
z1
))
)
val
substEq4
=
RightSubstEq
(
Set
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
),
plus
(
x
,
s
(
s
(
y
)))
===
s
(
plus
(
x
,
s
(
y
))))
|-
plus
(
x
,
s
(
s
(
y
)))
===
s
(
plus
(
s
(
x
),
y
)),
3
,
(
plus
(
x
,
s
(
s
(
y
))),
s
(
plus
(
x
,
s
(
y
))))
::
Nil
,
LambdaTermFormula
(
Seq
(
z1
),
z1
===
s
(
plus
(
s
(
x
),
y
)))
)
val
substEq5
=
RightSubstEq
(
Set
(
plus
(
x
,
s
(
s
(
y
)))
===
s
(
plus
(
x
,
s
(
y
))),
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
),
s
(
plus
(
s
(
x
),
y
))
===
plus
(
s
(
x
),
s
(
y
)))
|-
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)),
4
,
(
s
(
plus
(
s
(
x
),
y
)),
plus
(
s
(
x
),
s
(
y
)))
::
Nil
,
LambdaTermFormula
(
Seq
(
z1
),
plus
(
x
,
s
(
s
(
y
)))
===
z1
)
)
// -------------------------------------------------------------------------------------------------------
val
cut6
=
Cut
(
Set
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
),
s
(
plus
(
s
(
x
),
y
))
===
plus
(
s
(
x
),
s
(
y
)))
|-
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)),
0
,
5
,
plus
(
x
,
s
(
s
(
y
)))
===
s
(
plus
(
x
,
s
(
y
))))
val
cut7
=
Cut
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
)
|-
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)),
1
,
6
,
s
(
plus
(
s
(
x
),
y
))
===
plus
(
s
(
x
),
s
(
y
)))
val
implies8
=
RightImplies
(()
|-
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
))),
7
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
),
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))
val
forall9
=
RightForall
(
()
|-
forall
(
y
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))),
8
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
))),
y
)
SCSubproof
(
SCProof
(
IndexedSeq
(
moveSuccessor0
,
moveSuccessor1
,
middleEq2
,
substEq3
,
substEq4
,
substEq5
,
cut6
,
cut7
,
implies8
,
forall9
),
IndexedSeq
(
ax
"ax3neutral"
,
ax
"ax4plusSuccessor"
)
),
IndexedSeq
(-
1
,
-
2
)
)
}
val
inductionOnY2
=
Rewrite
(()
|-
(
sPhi
(
zero
)
/\
forall
(
y
,
sPhi
(
y
)
==>
sPhi
(
s
(
y
))))
==>
forall
(
y
,
sPhi
(
y
)),
-
3
)
val
inductionInstance3
=
InstPredSchema
(
()
|-
((
plus
(
s
(
x
),
zero
)
===
plus
(
x
,
s
(
zero
)))
/\
forall
(
y
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))))
==>
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
)),
2
,
Map
(
sPhi
->
LambdaTermFormula
(
Seq
(
y
),
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
)))
)
val
inductionPremise4
=
RightAnd
(
()
|-
(
plus
(
x
,
s
(
zero
))
===
plus
(
s
(
x
),
zero
))
/\
forall
(
y
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))),
Seq
(
0
,
1
),
Seq
(
plus
(
x
,
s
(
zero
))
===
plus
(
s
(
x
),
zero
),
forall
(
y
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))))
)
val
conclusion5
=
hypothesis
(
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
)))
val
inductionInstanceOnTheLeft6
=
LeftImplies
(
((
plus
(
s
(
x
),
zero
)
===
plus
(
x
,
s
(
zero
)))
/\
forall
(
y
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))))
==>
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
|-
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
)),
4
,
5
,
(
plus
(
x
,
s
(
zero
))
===
plus
(
s
(
x
),
zero
))
/\
forall
(
y
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))),
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
)
val
inductionResult7
=
Cut
(
()
|-
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
)),
3
,
6
,
((
plus
(
x
,
s
(
zero
))
===
plus
(
s
(
x
),
zero
))
/\
forall
(
y
,
(
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
==>
(
plus
(
x
,
s
(
s
(
y
)))
===
plus
(
s
(
x
),
s
(
y
)))))
==>
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))
)
val
addForall8
=
RightForall
(()
|-
forall
(
x
,
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
))),
7
,
forall
(
y
,
plus
(
x
,
s
(
y
))
===
plus
(
s
(
x
),
y
)),
x
)
val
proof
:
SCProof
=
Proof
(
IndexedSeq
(
base0
,
inductionStep1
,
inductionOnY2
,
inductionInstance3
,
inductionPremise4
,
conclusion5
,
inductionInstanceOnTheLeft6
,
inductionResult7
,
addForall8
),
IndexedSeq
(
ax
"ax3neutral"
,
ax
"ax4plusSuccessor"
,
ax
"ax7induction"
)
)
proof
}
using
(
ax
"ax3neutral"
,
ax
"ax4plusSuccessor"
,
ax
"ax7induction"
)
show
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment