From b5b141ebe7631c8c57ee54227a5a628471a8e2a5 Mon Sep 17 00:00:00 2001 From: Sankalp Gambhir <sankalp.gambhir47@gmail.com> Date: Thu, 22 Sep 2022 12:14:13 +0200 Subject: [PATCH] added subset definition axiom --- .../src/main/scala/lisa/settheory/SetTheoryZAxioms.scala | 2 ++ 1 file changed, 2 insertions(+) diff --git a/lisa-theories/src/main/scala/lisa/settheory/SetTheoryZAxioms.scala b/lisa-theories/src/main/scala/lisa/settheory/SetTheoryZAxioms.scala index ecf2c80c..824498f5 100644 --- a/lisa-theories/src/main/scala/lisa/settheory/SetTheoryZAxioms.scala +++ b/lisa-theories/src/main/scala/lisa/settheory/SetTheoryZAxioms.scala @@ -17,6 +17,7 @@ private[settheory] trait SetTheoryZAxioms extends SetTheoryDefinitions { final val extensionalityAxiom: Formula = forall(x, forall(y, forall(z, in(z, x) <=> in(z, y)) <=> (x === y))) final val pairAxiom: Formula = forall(x, forall(y, forall(z, in(z, pair(x, y)) <=> (x === z) \/ (y === z)))) final val unionAxiom: Formula = forall(x, forall(z, in(x, union(z)) <=> exists(y, in(x, y) /\ in(y, z)))) + final val subsetAxiom: Formula = forall(x, forall(y, subset(x, y) <=> forall(z, (in(z, x) ==> in(z, y))))) final val powerAxiom: Formula = forall(x, forall(y, in(x, powerSet(y)) <=> subset(x, y))) final val foundationAxiom: Formula = forall(x, !(x === emptySet()) ==> exists(y, in(y, x) /\ forall(z, in(z, x) ==> !in(z, y)))) @@ -27,6 +28,7 @@ private[settheory] trait SetTheoryZAxioms extends SetTheoryDefinitions { ("extensionalityAxiom", extensionalityAxiom), ("pairAxiom", pairAxiom), ("unionAxiom", unionAxiom), + ("subsetAxiom", subsetAxiom), ("powerAxiom", powerAxiom), ("foundationAxiom", foundationAxiom), ("comprehensionSchema", comprehensionSchema) -- GitLab