diff --git a/config.ini b/config.ini index c97844e1b92fe50a2c5f8b6aabb2274f36b9f257..492a4c423d5b35efe0d236bef5de870f2645c881 100644 --- a/config.ini +++ b/config.ini @@ -16,7 +16,7 @@ lr = 0.01 [TRAIN_PARAMS] training_package = decentralizepy.training.Training training_class = Training -epochs_per_round = 4 +epochs_per_round = 1 batch_size = 1024 shuffle = True loss_package = torch.nn diff --git a/src/decentralizepy/datasets/Femnist.py b/src/decentralizepy/datasets/Femnist.py index 8cc09f9687176c6f10a311bc559489b57666efee..ccafb16c2e42d38737a6b23362373f1696e9c9ca 100644 --- a/src/decentralizepy/datasets/Femnist.py +++ b/src/decentralizepy/datasets/Femnist.py @@ -272,7 +272,7 @@ class Femnist(Dataset): total_pred[label] += 1 total_predicted += 1 - logging.debug("Predicted on the test set") + logging.info("Predicted on the test set") for key, value in enumerate(correct_pred): if total_pred[key] != 0: @@ -283,7 +283,7 @@ class Femnist(Dataset): accuracy = 100 * float(total_correct) / total_predicted logging.info("Overall accuracy is: {:.1f} %".format(accuracy)) - logging.debug("Evaluating complete.") + logging.info("Evaluating complete.") class LogisticRegression(nn.Module): diff --git a/src/decentralizepy/node/Node.py b/src/decentralizepy/node/Node.py index 9643496e30a6b3b29099c570a79bb2ebb4c865e9..5e15bbae896901a13794d87c10b551930d7f40dc 100644 --- a/src/decentralizepy/node/Node.py +++ b/src/decentralizepy/node/Node.py @@ -159,7 +159,9 @@ class Node: self.trainer.train(self.dataset) self.sharing.step() - self.optimizer = optimizer_class(self.model.parameters(), **optimizer_params) # Reset optimizer state + self.optimizer = optimizer_class( + self.model.parameters(), **optimizer_params + ) # Reset optimizer state self.trainer.reset_optimizer(self.optimizer) rounds_to_test -= 1 diff --git a/src/decentralizepy/sharing/PartialModel.py b/src/decentralizepy/sharing/PartialModel.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/decentralizepy/training/Training.py b/src/decentralizepy/training/Training.py index 31daa65b9a33df516e8bfc46373ef33d683d27a3..4f4095cc08712a0d0f968ff893bc83a4ed6553be 100644 --- a/src/decentralizepy/training/Training.py +++ b/src/decentralizepy/training/Training.py @@ -45,7 +45,6 @@ class Training: def reset_optimizer(self, optimizer): self.optimizer = optimizer - def train(self, dataset): """ diff --git a/testing.py b/testing.py index 0d27c9b7071bea6e0620d836ee3f78ec12a9de2f..5a50a3b21450c45dcbf70347525f414604752d01 100644 --- a/testing.py +++ b/testing.py @@ -42,5 +42,5 @@ if __name__ == "__main__": mp.spawn( fn=Node, nprocs=procs_per_machine, - args=[m_id, l, g, my_config, 20, "results", logging.INFO], + args=[m_id, l, g, my_config, 20, "results", logging.DEBUG], )