[DATASET] dataset_package = decentralizepy.datasets.Shakespeare dataset_class = Shakespeare random_seed = 97 model_class = LSTM train_dir = /mnt/nfs/shared/leaf/data/shakespeare_sub96/per_user_data/train test_dir = /mnt/nfs/shared/leaf/data/shakespeare_sub96/data/test ; python list of fractions below sizes = [OPTIMIZER_PARAMS] optimizer_package = torch.optim optimizer_class = SGD lr = 0.1 [TRAIN_PARAMS] training_package = decentralizepy.training.Training training_class = Training rounds = 10 full_epochs = False batch_size = 16 shuffle = True loss_package = torch.nn loss_class = CrossEntropyLoss [COMMUNICATION] comm_package = decentralizepy.communication.TCP comm_class = TCP addresses_filepath = ip_addr_6Machines.json [SHARING] sharing_package = decentralizepy.sharing.Wavelet sharing_class = Wavelet change_based_selection = True alpha = 0.1 wavelet=sym2 level= 4 accumulation = True accumulate_averaging_changes = True