[GRAPH] package = decentralizepy.graphs.SmallWorld graph_class = SmallWorld [DATASET] dataset_package = decentralizepy.datasets.Femnist dataset_class = Femnist model_class = CNN n_procs = 6 train_dir = leaf/data/femnist/data/train test_dir = leaf/data/femnist/data/test ; python list of fractions below sizes = [OPTIMIZER_PARAMS] optimizer_package = torch.optim optimizer_class = Adam lr = 0.01 [TRAIN_PARAMS] training_package = decentralizepy.training.Training training_class = Training epochs_per_round = 5 batch_size = 512 shuffle = True loss_package = torch.nn loss_class = CrossEntropyLoss [COMMUNICATION] comm_package = decentralizepy.communication.TCP comm_class = TCP addresses_filepath = ip_addr.json [SHARING] sharing_package = decentralizepy.sharing.Sharing sharing_class = Sharing