diff --git a/src/decentralizepy/communication/TCP.py b/src/decentralizepy/communication/TCP.py
index c6096994b4fdc937649515b75d1479ef6cc97d89..58cc55d443a56a6fa658c778a4f0ced36472a38a 100644
--- a/src/decentralizepy/communication/TCP.py
+++ b/src/decentralizepy/communication/TCP.py
@@ -134,6 +134,8 @@ class TCP(Communication):
                 meta_len = len(
                     pickle.dumps(data["indices"])
                 )  # ONLY necessary for the statistics
+            else:
+                meta_len = 0
             if "params" in data:
                 data["params"] = self.compressor.compress_float(data["params"])
             output = pickle.dumps(data)
diff --git a/src/decentralizepy/sharing/FFT.py b/src/decentralizepy/sharing/FFT.py
index ba7b8418603ef1c8e119402dcfe982a2462a6a82..17650c1dd49aa220eeeeb9ff2526555b1797cf14 100644
--- a/src/decentralizepy/sharing/FFT.py
+++ b/src/decentralizepy/sharing/FFT.py
@@ -159,7 +159,6 @@ class FFT(PartialModel):
         if self.alpha >= self.metadata_cap:  # Share fully
             data = self.pre_share_model_transformed
             m["params"] = data.numpy()
-            self.total_data += len(self.communication.encrypt(m["params"]))
             if self.model.accumulated_changes is not None:
                 self.model.accumulated_changes = torch.zeros_like(
                     self.model.accumulated_changes
@@ -200,11 +199,6 @@ class FFT(PartialModel):
             m["indices"] = indices.numpy().astype(np.int32)
             m["send_partial"] = True
 
-            self.total_data += len(self.communication.encrypt(m["params"]))
-            self.total_meta += len(self.communication.encrypt(m["indices"])) + len(
-                self.communication.encrypt(m["alpha"])
-            )
-
         return m
 
     def deserialized_model(self, m):
diff --git a/src/decentralizepy/sharing/PartialModel.py b/src/decentralizepy/sharing/PartialModel.py
index 1f1fecaf7736f344e0fc770e0940724f4bccc907..3111e82ce9af9ad8c6aba27311219c823df6e135 100644
--- a/src/decentralizepy/sharing/PartialModel.py
+++ b/src/decentralizepy/sharing/PartialModel.py
@@ -82,7 +82,6 @@ class PartialModel(Sharing):
         self.dict_ordered = dict_ordered
         self.save_shared = save_shared
         self.metadata_cap = metadata_cap
-        self.total_meta = 0
         self.accumulation = accumulation
         self.save_accumulated = conditional_value(save_accumulated, "", False)
         self.change_transformer = change_transformer
diff --git a/src/decentralizepy/sharing/Sharing.py b/src/decentralizepy/sharing/Sharing.py
index 22b4de9025c8ebdbb034a29484db94a9bb621e2d..7dc8852797af138fb13d0c02ef0dd1e0d1dd6f19 100644
--- a/src/decentralizepy/sharing/Sharing.py
+++ b/src/decentralizepy/sharing/Sharing.py
@@ -46,7 +46,6 @@ class Sharing:
         self.dataset = dataset
         self.communication_round = 0
         self.log_dir = log_dir
-        self.total_data = 0
 
         self.peer_deques = dict()
         self.my_neighbors = self.graph.neighbors(self.uid)
@@ -99,8 +98,9 @@ class Sharing:
         m = dict()
         for key, val in self.model.state_dict().items():
             m[key] = val.numpy()
-            self.total_data += len(self.communication.encrypt(m[key]))
-        return m
+        data = dict()
+        data["params"] = m
+        return data
 
     def deserialized_model(self, m):
         """
@@ -118,7 +118,7 @@ class Sharing:
 
         """
         state_dict = dict()
-        for key, value in m.items():
+        for key, value in m["params"].items():
             state_dict[key] = torch.from_numpy(value)
         return state_dict
 
diff --git a/src/decentralizepy/sharing/SharingCentrality.py b/src/decentralizepy/sharing/SharingCentrality.py
index 580ce2aacc6505d7c713cfab763540c7484cd609..f933a0e6e002b7064eccbaa88f92280bdff3f488 100644
--- a/src/decentralizepy/sharing/SharingCentrality.py
+++ b/src/decentralizepy/sharing/SharingCentrality.py
@@ -46,7 +46,6 @@ class Sharing:
         self.dataset = dataset
         self.communication_round = 0
         self.log_dir = log_dir
-        self.total_data = 0
 
         self.peer_deques = dict()
         my_neighbors = self.graph.neighbors(self.uid)
@@ -101,7 +100,6 @@ class Sharing:
         m = dict()
         for key, val in self.model.state_dict().items():
             m[key] = val.numpy()
-            self.total_data += len(self.communication.encrypt(m[key]))
         return m
 
     def deserialized_model(self, m):
diff --git a/src/decentralizepy/sharing/SubSampling.py b/src/decentralizepy/sharing/SubSampling.py
index f8c8f50e7ac24fa3eca7d9a89199deb864c47594..b51cb07ce0345ee339be0fe2e338ffd9ab61b63e 100644
--- a/src/decentralizepy/sharing/SubSampling.py
+++ b/src/decentralizepy/sharing/SubSampling.py
@@ -72,7 +72,6 @@ class SubSampling(Sharing):
         self.dict_ordered = dict_ordered
         self.save_shared = save_shared
         self.metadata_cap = metadata_cap
-        self.total_meta = 0
 
         # self.random_seed_generator = torch.Generator()
         # # Will use the random device if supported by CPU, else uses the system time
@@ -216,12 +215,6 @@ class SubSampling(Sharing):
             m["alpha"] = alpha
             m["params"] = subsample.numpy()
 
-            # logging.info("Converted dictionary to json")
-            self.total_data += len(self.communication.encrypt(m["params"]))
-            self.total_meta += len(self.communication.encrypt(m["seed"])) + len(
-                self.communication.encrypt(m["alpha"])
-            )
-
             return m
 
     def deserialized_model(self, m):
diff --git a/src/decentralizepy/sharing/Synchronous.py b/src/decentralizepy/sharing/Synchronous.py
index 29d7f62a7ea0872d4c3c0b5b8bdf3bf121a977b3..2c2d5e76cfa328260b14fcb9cbf2614e7101c751 100644
--- a/src/decentralizepy/sharing/Synchronous.py
+++ b/src/decentralizepy/sharing/Synchronous.py
@@ -46,7 +46,6 @@ class Synchronous:
         self.dataset = dataset
         self.communication_round = 0
         self.log_dir = log_dir
-        self.total_data = 0
 
         self.peer_deques = dict()
         self.my_neighbors = self.graph.neighbors(self.uid)
@@ -104,7 +103,6 @@ class Synchronous:
         m = dict()
         for key, val in self.model.state_dict().items():
             m[key] = val - self.init_model[key]  # this is -lr*gradient
-        self.total_data += len(self.communication.encrypt(m))
         return m
 
     def serialized_model(self):
@@ -120,7 +118,6 @@ class Synchronous:
         m = dict()
         for key, val in self.model.state_dict().items():
             m[key] = val.clone().detach()
-        self.total_data += len(self.communication.encrypt(m))
         return m
 
     def deserialized_model(self, m):
diff --git a/src/decentralizepy/sharing/TopKParams.py b/src/decentralizepy/sharing/TopKParams.py
index 02531f164d37eb49158b839aed230be3beb17761..f1881798e91ff7cacb114f4071acc97ba81530e7 100644
--- a/src/decentralizepy/sharing/TopKParams.py
+++ b/src/decentralizepy/sharing/TopKParams.py
@@ -68,7 +68,6 @@ class TopKParams(Sharing):
         self.dict_ordered = dict_ordered
         self.save_shared = save_shared
         self.metadata_cap = metadata_cap
-        self.total_meta = 0
 
         if self.save_shared:
             # Only save for 2 procs: Save space
@@ -171,10 +170,6 @@ class TopKParams(Sharing):
             #    m[key] = json.dumps(m[key])
 
             logging.info("Converted dictionary to json")
-            self.total_data += len(self.communication.encrypt(m["params"]))
-            self.total_meta += len(self.communication.encrypt(m["indices"])) + len(
-                self.communication.encrypt(m["offsets"])
-            )
 
             return m
 
diff --git a/src/decentralizepy/sharing/Wavelet.py b/src/decentralizepy/sharing/Wavelet.py
index b864f1ff875268a2a6867b78ad774d38cf68a7f2..91c97d0a5d71f20c9eac79405b066f97f087f0bc 100644
--- a/src/decentralizepy/sharing/Wavelet.py
+++ b/src/decentralizepy/sharing/Wavelet.py
@@ -181,7 +181,6 @@ class Wavelet(PartialModel):
         if self.alpha >= self.metadata_cap:  # Share fully
             data = self.pre_share_model_transformed
             m["params"] = data.numpy()
-            self.total_data += len(self.communication.encrypt(m["params"]))
             if self.model.accumulated_changes is not None:
                 self.model.accumulated_changes = torch.zeros_like(
                     self.model.accumulated_changes