diff --git a/eval/run_all.sh b/eval/run_all.sh
index 1afdf0291386cbcf17343e83014f33fb4680adfd..c9e5714e9cc163948cc528cd62f8bd5576409316 100755
--- a/eval/run_all.sh
+++ b/eval/run_all.sh
@@ -18,7 +18,7 @@ ip_machines=$nfs_home/configs/ip_addr_6Machines.json
 
 m=`cat $ip_machines | grep $(/sbin/ifconfig ens785 | grep 'inet ' | awk '{print $2}') | cut -d'"' -f2`
 export PYTHONFAULTHANDLER=1
-tests=("step_configs/config_celeba.ini" "step_configs/config_celeba_100.ini" "step_configs/config_celeba_fft.ini" "step_configs/config_celeba_wavelet.ini"
+tests=("step_configs/config_celeba_partialmodel.ini" "step_configs/config_celeba_sharing.ini" "step_configs/config_celeba_fft.ini" "step_configs/config_celeba_wavelet.ini"
 "step_configs/config_celeba_grow.ini" "step_configs/config_celeba_manualadapt.ini" "step_configs/config_celeba_randomalpha.ini"
 "step_configs/config_celeba_randomalphainc.ini" "step_configs/config_celeba_roundrobin.ini" "step_configs/config_celeba_subsampling.ini"
 "step_configs/config_celeba_topkrandom.ini" "step_configs/config_celeba_topkacc.ini" "step_configs/config_celeba_topkparam.ini")
diff --git a/eval/step_configs/config_celeba.ini b/eval/step_configs/config_celeba_partialmodel.ini
similarity index 100%
rename from eval/step_configs/config_celeba.ini
rename to eval/step_configs/config_celeba_partialmodel.ini
diff --git a/eval/step_configs/config_celeba_100.ini b/eval/step_configs/config_celeba_sharing.ini
similarity index 100%
rename from eval/step_configs/config_celeba_100.ini
rename to eval/step_configs/config_celeba_sharing.ini
diff --git a/eval/step_configs/config_femnist.ini b/eval/step_configs/config_femnist_partialmodel.ini
similarity index 100%
rename from eval/step_configs/config_femnist.ini
rename to eval/step_configs/config_femnist_partialmodel.ini
diff --git a/eval/step_configs/config_femnist_100.ini b/eval/step_configs/config_femnist_sharing.ini
similarity index 100%
rename from eval/step_configs/config_femnist_100.ini
rename to eval/step_configs/config_femnist_sharing.ini
diff --git a/eval/testing.py b/eval/testing.py
index b9c40814c47bb4fc3aaded502dc6c38a2b7bea15..abd6333e2710f05e66a72afc617fffaafaa9ba5a 100644
--- a/eval/testing.py
+++ b/eval/testing.py
@@ -65,4 +65,3 @@ if __name__ == "__main__":
             args.reset_optimizer,
         ],
     )
-    print("after spawn")
diff --git a/src/decentralizepy/node/Node.py b/src/decentralizepy/node/Node.py
index 463f57f7da696dfcea78624f3764283a2b52e806..7854c38d2bd32832bf641c30c87a7d5d0855d2e4 100644
--- a/src/decentralizepy/node/Node.py
+++ b/src/decentralizepy/node/Node.py
@@ -481,4 +481,3 @@ class Node:
         )
 
         self.run()
-        logging.info("Node finished running")
diff --git a/src/decentralizepy/sharing/FFT.py b/src/decentralizepy/sharing/FFT.py
index e0e67fd0db45fc8f77212b8494f11e38b10d8093..0c0172f5ce27739165b6c22f98461b6839d6d515 100644
--- a/src/decentralizepy/sharing/FFT.py
+++ b/src/decentralizepy/sharing/FFT.py
@@ -27,6 +27,7 @@ def change_transformer_fft(x):
     """
     return fft.rfft(x)
 
+
 class FFT(PartialModel):
     """
     This class implements the fft version of model sharing
@@ -51,7 +52,7 @@ class FFT(PartialModel):
         change_based_selection=True,
         save_accumulated="",
         accumulation=True,
-        accumulate_averaging_changes=False
+        accumulate_averaging_changes=False,
     ):
         """
         Constructor
@@ -94,8 +95,22 @@ class FFT(PartialModel):
 
         """
         super().__init__(
-            rank, machine_id, communication, mapping, graph, model, dataset, log_dir, alpha, dict_ordered, save_shared,
-            metadata_cap, accumulation, save_accumulated, change_transformer_fft, accumulate_averaging_changes
+            rank,
+            machine_id,
+            communication,
+            mapping,
+            graph,
+            model,
+            dataset,
+            log_dir,
+            alpha,
+            dict_ordered,
+            save_shared,
+            metadata_cap,
+            accumulation,
+            save_accumulated,
+            change_transformer_fft,
+            accumulate_averaging_changes,
         )
         self.change_based_selection = change_based_selection
 
@@ -113,7 +128,9 @@ class FFT(PartialModel):
 
         logging.info("Returning fft compressed model weights")
         with torch.no_grad():
-            tensors_to_cat = [v.data.flatten() for _, v in self.model.state_dict().items()]
+            tensors_to_cat = [
+                v.data.flatten() for _, v in self.model.state_dict().items()
+            ]
             concated = torch.cat(tensors_to_cat, dim=0)
             flat_fft = self.change_transformer(concated)
             if self.change_based_selection:
@@ -123,7 +140,10 @@ class FFT(PartialModel):
                 )
             else:
                 _, index = torch.topk(
-                    flat_fft.abs(), round(self.alpha * len(flat_fft)), dim=0, sorted=False
+                    flat_fft.abs(),
+                    round(self.alpha * len(flat_fft)),
+                    dim=0,
+                    sorted=False,
                 )
 
         return flat_fft[index], index
@@ -233,7 +253,9 @@ class FFT(PartialModel):
             for i, n in enumerate(self.peer_deques):
                 degree, iteration, data = self.peer_deques[n].popleft()
                 logging.debug(
-                    "Averaging model from neighbor {} of iteration {}".format(n, iteration)
+                    "Averaging model from neighbor {} of iteration {}".format(
+                        n, iteration
+                    )
                 )
                 data = self.deserialized_model(data)
                 params = data["params"]
@@ -257,7 +279,9 @@ class FFT(PartialModel):
             std_dict = {}
             for i, key in enumerate(self.model.state_dict()):
                 end_index = start_index + self.lens[i]
-                std_dict[key] = reverse_total[start_index:end_index].reshape(self.shapes[i])
+                std_dict[key] = reverse_total[start_index:end_index].reshape(
+                    self.shapes[i]
+                )
                 start_index = end_index
 
         self.model.load_state_dict(std_dict)
diff --git a/src/decentralizepy/sharing/PartialModel.py b/src/decentralizepy/sharing/PartialModel.py
index dca5c75a95f2e5332fbe0534b6e949568df9b6a0..97c702b9b334f05273063ba25aaa7df4472ab27e 100644
--- a/src/decentralizepy/sharing/PartialModel.py
+++ b/src/decentralizepy/sharing/PartialModel.py
@@ -30,10 +30,10 @@ class PartialModel(Sharing):
         dict_ordered=True,
         save_shared=False,
         metadata_cap=1.0,
-        accumulation = False,
+        accumulation=False,
         save_accumulated="",
-        change_transformer = identity,
-        accumulate_averaging_changes = False
+        change_transformer=identity,
+        accumulate_averaging_changes=False,
     ):
         """
         Constructor
@@ -100,9 +100,11 @@ class PartialModel(Sharing):
                 tensors_to_cat.append(t)
             self.init_model = torch.cat(tensors_to_cat, dim=0)
             if self.accumulation:
-                self.model.accumulated_changes = torch.zeros_like(self.change_transformer(self.init_model))
+                self.model.accumulated_changes = torch.zeros_like(
+                    self.change_transformer(self.init_model)
+                )
                 self.prev = self.init_model
-                
+
         if self.save_accumulated:
             self.model_change_path = os.path.join(
                 self.log_dir, "model_change/{}".format(self.rank)
@@ -295,7 +297,9 @@ class PartialModel(Sharing):
             self.init_model = post_share_model
             if self.accumulation:
                 if self.accumulate_averaging_changes:
-                    self.model.accumulated_changes += self.change_transformer(self.init_model - self.prev)
+                    self.model.accumulated_changes += self.change_transformer(
+                        self.init_model - self.prev
+                    )
                 self.prev = self.init_model
             self.model.model_change = None
         if self.save_accumulated:
@@ -336,4 +340,4 @@ class PartialModel(Sharing):
         Saves the change and the gradient values for every iteration
 
         """
-        self.save_vector(self.model.model_change, self.model_change_path)
\ No newline at end of file
+        self.save_vector(self.model.model_change, self.model_change_path)
diff --git a/src/decentralizepy/sharing/Sharing.py b/src/decentralizepy/sharing/Sharing.py
index c998f404b55bec287fdf6382018fe98a21584888..3fe189c14c94fdcc740fb0046bce5c78ebc36e25 100644
--- a/src/decentralizepy/sharing/Sharing.py
+++ b/src/decentralizepy/sharing/Sharing.py
@@ -147,7 +147,9 @@ class Sharing:
             for i, n in enumerate(self.peer_deques):
                 degree, iteration, data = self.peer_deques[n].popleft()
                 logging.debug(
-                    "Averaging model from neighbor {} of iteration {}".format(n, iteration)
+                    "Averaging model from neighbor {} of iteration {}".format(
+                        n, iteration
+                    )
                 )
                 data = self.deserialized_model(data)
                 weight = 1 / (max(len(self.peer_deques), degree) + 1)  # Metro-Hastings
diff --git a/src/decentralizepy/sharing/Wavelet.py b/src/decentralizepy/sharing/Wavelet.py
index e41bd24ab0f40076ddb091806b2d81aa382c7766..363a487d098c76b36a388c20f09f5c618a2868a5 100644
--- a/src/decentralizepy/sharing/Wavelet.py
+++ b/src/decentralizepy/sharing/Wavelet.py
@@ -10,27 +10,29 @@ import torch
 
 from decentralizepy.sharing.PartialModel import PartialModel
 
-def change_transformer_wavelet(x, wavelet, level):
-        """
-        Transforms the model changes into wavelet frequency domain
 
-        Parameters
-        ----------
-        x : torch.Tensor
-            Model change in the space domain
-        wavelet : str
-            name of the wavelet to be used in gradient compression
-        level: int
-            name of the wavelet to be used in gradient compression
+def change_transformer_wavelet(x, wavelet, level):
+    """
+    Transforms the model changes into wavelet frequency domain
+
+    Parameters
+    ----------
+    x : torch.Tensor
+        Model change in the space domain
+    wavelet : str
+        name of the wavelet to be used in gradient compression
+    level: int
+        name of the wavelet to be used in gradient compression
+
+    Returns
+    -------
+    x : torch.Tensor
+        Representation of the change int the wavelet domain
+    """
+    coeff = pywt.wavedec(x, wavelet, level=level)
+    data, coeff_slices = pywt.coeffs_to_array(coeff)
+    return torch.from_numpy(data.ravel())
 
-        Returns
-        -------
-        x : torch.Tensor
-            Representation of the change int the wavelet domain
-        """
-        coeff = pywt.wavedec(x, wavelet, level=level)
-        data, coeff_slices = pywt.coeffs_to_array(coeff)
-        return torch.from_numpy(data.ravel())
 
 class Wavelet(PartialModel):
     """
@@ -58,7 +60,7 @@ class Wavelet(PartialModel):
         change_based_selection=True,
         save_accumulated="",
         accumulation=False,
-        accumulate_averaging_changes = False
+        accumulate_averaging_changes=False,
     ):
         """
         Constructor
@@ -107,9 +109,22 @@ class Wavelet(PartialModel):
         self.level = level
 
         super().__init__(
-            rank, machine_id, communication, mapping, graph, model, dataset, log_dir, alpha, dict_ordered, save_shared,
-            metadata_cap, accumulation, save_accumulated, lambda x : change_transformer_wavelet(x, wavelet, level),
-            accumulate_averaging_changes
+            rank,
+            machine_id,
+            communication,
+            mapping,
+            graph,
+            model,
+            dataset,
+            log_dir,
+            alpha,
+            dict_ordered,
+            save_shared,
+            metadata_cap,
+            accumulation,
+            save_accumulated,
+            lambda x: change_transformer_wavelet(x, wavelet, level),
+            accumulate_averaging_changes,
         )
 
         self.change_based_selection = change_based_selection
@@ -132,13 +147,11 @@ class Wavelet(PartialModel):
 
         """
 
-        logging.info("Returning dwt compressed model weights")
+        logging.info("Returning wavelet compressed model weights")
         tensors_to_cat = [v.data.flatten() for _, v in self.model.state_dict().items()]
         concated = torch.cat(tensors_to_cat, dim=0)
         data = self.change_transformer(concated)
-        logging.info("produced wavelet representation of current model")
         if self.change_based_selection:
-            logging.info("changed based selection")
             diff = self.model.model_change
             _, index = torch.topk(
                 diff.abs(),
@@ -146,7 +159,6 @@ class Wavelet(PartialModel):
                 dim=0,
                 sorted=False,
             )
-            logging.info("finished change based selection")
         else:
             _, index = torch.topk(
                 data.abs(),
@@ -167,7 +179,6 @@ class Wavelet(PartialModel):
             Model converted to json dict
 
         """
-        logging.info("serializing wavelet model")
         if self.alpha > self.metadata_cap:  # Share fully
             return super().serialized_model()
 
@@ -175,7 +186,6 @@ class Wavelet(PartialModel):
             topk, indices = self.apply_wavelet()
 
             self.model.rewind_accumulation(indices)
-            logging.info("finished rewind")
             if self.save_shared:
                 shared_params = dict()
                 shared_params["order"] = list(self.model.state_dict().keys())
@@ -230,7 +240,6 @@ class Wavelet(PartialModel):
             state_dict of received
 
         """
-        logging.info("deserializing wavelet model")
         if self.alpha > self.metadata_cap:  # Share fully
             return super().deserialized_model(m)
 
@@ -265,7 +274,9 @@ class Wavelet(PartialModel):
             for i, n in enumerate(self.peer_deques):
                 degree, iteration, data = self.peer_deques[n].popleft()
                 logging.debug(
-                    "Averaging model from neighbor {} of iteration {}".format(n, iteration)
+                    "Averaging model from neighbor {} of iteration {}".format(
+                        n, iteration
+                    )
                 )
                 data = self.deserialized_model(data)
                 params = data["params"]
@@ -296,8 +307,9 @@ class Wavelet(PartialModel):
             std_dict = {}
             for i, key in enumerate(self.model.state_dict()):
                 end_index = start_index + self.lens[i]
-                std_dict[key] = reverse_total[start_index:end_index].reshape(self.shapes[i])
+                std_dict[key] = reverse_total[start_index:end_index].reshape(
+                    self.shapes[i]
+                )
                 start_index = end_index
 
         self.model.load_state_dict(std_dict)
-
diff --git a/src/decentralizepy/utils.py b/src/decentralizepy/utils.py
index f91946844e0519d4e8a3a70b6b4fd9f744348c16..82f206820ea032f89d3a6fd32d2ef5ddae8b2968 100644
--- a/src/decentralizepy/utils.py
+++ b/src/decentralizepy/utils.py
@@ -109,6 +109,7 @@ def write_args(args, path):
     with open(os.path.join(path, "args.json"), "w") as of:
         json.dump(data, of)
 
+
 def identity(obj):
     """
     Identity function
@@ -121,4 +122,4 @@ def identity(obj):
      obj
         The same object
     """
-    return obj
\ No newline at end of file
+    return obj