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Abstract

The Grad-Shafranov axisymmetric equilibrium solution for tokamak plasmas, ¥, does not depend
on the sign of the plasma current I, nor of the magnetic field By. In addition, the sign, amplitude
and shift of ¥ is not so important either, since the free sources depend on the normalized radial
coordinate. On the other hand, dp/di and dF?/dy, with F = RB,, need to be consistent to provide
the correct current density profile. Moreover, RF and CD codes (Radio Frequency heating and
Current Drive) need to know the exact sign convention and to take into account the effective sign of
I,, and By in order to calculate the co- or counter-CD component for example. As is shown in this
paper, there are at least 16 different cases and a new index COCOS is proposed to uniquely identify
the coordinate conventions assumed. Given the present worldwide efforts for codes integration, the
proposed new index COCOS defining uniquely the COordinate COnventionS required as input by
a given code or module is very useful. Since different codes use different conventions, equilibrium
codes should be able to have a specific convention as input and another convention as output of
the code. In addition, given two different conventions, it is relatively easy to transform from one

to another. The relevant transformations are described in detail as well.
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I. INTRODUCTION

The effective solution to the Grad-Shafranov equation [1-3] does not depend on the
sign of the plasma current I, nor on the sign of the magnetic field By, nor does the ideal
MHD stability in axisymmetric plasmas (no dependence on sign of toroidal mode number
for example) [4]. In general, axisymmetric tokamak equilibrium codes actually work in
normalized units (like Ry and By for CHEASE [5]), which means that I, and By are always
assumed to be positive. Moreover, many codes also assume ¢, the safety factor, to be positive

although this is not necessarily the case. The relative signs depend on several choices:

1. The choice of the “cylindrical” coordinate system representing the tokamak, the di-
rection of the toroidal angle ¢ and if the right-handed system is (R, ¢, Z) or (R, Z, ¢)
(R is assumed to be always directed outwards radially and Z upwards). The sign of

I,, and By in this system is also important.

2. The choice of the orientation of the coordinate system in the poloidal plane. Mainly
whether the poloidal angle is clockwise or counter-clockwise and whether (p/1, 0, )
is right-handed or if it is (p/%, ¢, #). In addition, whether ¢ in the poloidal coordinate
system has the same direction as the one in the cylindrical one. In this paper, we

assume it is always the case.
3. The sign of ) ~ &+ [ B - dS,,.

In this work, we refer to the view from the top of the tokamak to determine the toroidal
direction and, for the poloidal plane, looking at the poloidal cross-section at the right of
the major vertical axis (R = 0). In this way, a plasma current flowing counter-clockwise in
the toroidal direction (as seen from the top) leads to a poloidal magnetic field clockwise in
the poloidal plane. Since the usual “positive” mathematical direction for angles is “counter-
clockwise”, one sees that there is a difficulty either for the toroidal angle or for the poloidal
angle if one wants to follow the magnetic field line with the coordinate systems. This is the
main reason why there are many choices for the coordinate systems. It should be noted that
the sign of ¢ depends on this choice as well. In the examples given below, and if not stated
otherwise, the sign of g refers to the case where both I, and By are positive in the respective
coordinate system.

Three examples are shown in Fig. 1 to illustrate how this “difficulty” has been resolved:



Fig. 1(a) In the CHEASE code [5] (and in Hinton-Hazeltine [6], ONETWO [7] for exam-
ple), since the main plane for an axisymmetric toroidal equilibrium is the poloidal
plane, it was chosen to have 6 in the “positive” direction and the “natural” system
(p, 8, p) right-handed, and to have ¢ positive with I, and By positive. Therefore ¢ has
to be in the “negative” direction yielding (R, Z, ) right-handed.

Fig. 1(b) Both # and ¢ are kept in the geometrical “positive” direction (counter-clockwise).
In this case ¢ is negative (with I,, By in the same direction) and the right-handed
poloidal system becomes (p, ¢, §) in order to have the same ¢ direction in both systems.
This was chosen in Freidberg ([4]) and by the EU-ITM [8] up to 2011 for example, as

well as in http://www-fusion.ciemat.es/fusionwiki/index.php /Toroidal_coordinates.

Fig. 1(c) The cylindrical system is chosen to be the conventional one and then 6 is chosen
such that ¢ is positive while keeping the conventional right-handed system: (p, 0, ¢).
This leads to have 6 clockwise. This is standard for Boozer coordinates [9] and was

chosen for ITER [10].

There is no unique solution nor a “correct” solution. However the present authors think
that the third option is the less prone to errors since it keeps the conventional right-handed
orientations; it takes the usual choice for the right-handed cylindrical coordinate system
(R,p,Z); and it has ¢ positive when both I, and Bj have same sign. Therefore vector
calculus can be used with the conventional rules. This is probably why it is often the one
used for 3D calculations. Note that it is foreseen to be the ITER convention [10]. In this
paper, we first propose in Sect. II the new identifier COCOS which uniquely defines the
COordinate COnventionS used by a code or set of equations for both the cylindrical and
poloidal systems. In addition it defines the sign of the poloidal flux and if it is divided
by 27 or not. We then derive the transformation to a given choice of coordinate systems
in Sects. III and IV for a given reference equilibrium solution t,.¢. In Sec. V we discuss
how one can check the consistency of a COCOS equilibrium and how to determine the
COCOS value used by a code or a set of equations. In Sec. VI we provide, with Appendix
C, the general transformations from any cocos_in value to any cocos_out value, including
the discussion of the normalizations and how to only change the sign of I, and/or B,.

We then discuss differences between various COCOS' choices (Sect. VII) and derive the
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FIG. 1: Examples of cylindrical and poloidal coordinate systems: (a) CHEASE ([5], Fig. 1):
(R, Z,9)) ; (p,0,p), also used in [6]. (b) As in Freidberg ([4], Fig. 15): (R,¥),Z) ; (p,¢,0). (c)
As in Boozer ([9], Fig. 1): (R, ¢, Z) ; (p,0,¢).

corresponding generic Grad-Shafranov equation to show how the equilibrium sources should

be transformed as well (Sect. VIII). Conclusions are provided in Sect. IX.

II. COCOS INDEX: GENERIC DEFINITION OF B AND RELATED QUANTI-
TIES

In order to stay general we can write the magnetic field B as follows:

1
W VQO X Vwmf. (1)

B = F VQD + o Bp
Using the standard (p, 0, ¢) with 1, increasing with minor radius, and with sign(B-V#) =
sign(0y/0p), leads to op, = 1; and using (p, ¢, #) with ,.; decreasing with minor radius
yields o, = —1. In addition, the poloidal flux v,.; can be chosen as the effective poloidal

flux, yielding ep, = 1, or to the poloidal flux divided by 27, in which case the exponent is

zero: ep, = 0. The poloidal flux W, is thus defined by:

\I]pol = —0Bp /B . dSp, (2)

with dS;, in the direction of a magnetic field at the major vertical axis that would be driven
by a positive current in the relative ¢ direction. Note that it is in the direction of 6 near the

major axis with (p, 0, ¢) right-handed and opposite with (p, 0, ¢) left-handed. In this way,



dS,, can be defined for any (R, Z;,) point as the disc R < Ry, Z = Z, and the orientation just
mentioned. This allows ¥, to be well defined outside the last closed flux surface (LCFS),
across the LCFS and also on the low field-side (LFS) of the LCFS. It leads to:

Yref = —0Bp % /B - dSp. (3)

2m)(1=eBp

The minus sign expresses that the poloidal flux, in the standard right-handed system with
opp = +1, is minimum at the magnetic axis and maximum otherwise. This is important
since for example dp/di) is then negative as expected for an increasing ¢ “radial” coordinate.
Coordinate systems which have op, = —1, that is B, = V.. X Vo, have ¢ maximum at
the magnetic axis and thus dp/dy positive (when I, is positive). Eq. (3) also shows that
epp = 0 when the poloidal flux v,.s is already divided by 27 and ep, = 1 when it is not.

Another way to refer to the poloidal flux definition is through the vector potential A, in

particular the ¢ component which is related to the poloidal magnetic field:

_ wref o wref
ASO - O-Bp (27_[_)63 2 = AGO O-Bp (27_[_)6317 R7 (4>
which yields:
B,=VxA,=Vx(—op Ures V) = =22 Vo X Ve (5)
P ® D (271-)5317 (27].)631, rers

as defined in Eq. (1).
The toroidal flux is given by:

Dy = / B.dS, = / B,dS,, (6)

where dS,, is the poloidal cross-section inside of the specific flux surface ¥ = const in the
direction of the respective . Therefore it is always increasing with minor radius for positive
By.

The general definition of ¢ is given by the relative increase in toroidal angle per poloidal
angle, or in other words the number of toroidal turns for one poloidal turn made by the
equilibrium magnetic field line. It can be written as:

1 [B-Vy o8, / F
1= o0n / B V0 Gy | (™)

where we have introduced Eq. (1) and used J~! = (Vi X Vibep) - VO corresponding to the
Jacobian of (¢, 0, ¢). Defining 0,9, = 1 when (p, 8, ¢) is right-handed and —1 when it is
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left-handed, and taking into account that 1),.s increases/decreases with p for op, = £1, we

obtain:

e ®)
@m)t=eer J R Vibres|
Using Eq. (6) with B, = F)/R and dS, = op, &Lﬁ' dl,, with the op, factor reflecting the

fact that the toroidal flux is chosen to increase with minor radius (op, di..; > 0) and di,

being the arc length of the magnetic surface contour in the poloidal cross-section, we get:

OBp Opbp dq)tor
271')(1*6319) dwref ’

1= (9)

Note that sometimes ®,, is divided by 27 in Eq. (6) such as to avoid the 27 in Eq. (9). It
is important to note that the sign of ¢ is positive or negative depending on the orientation
of the poloidal coordinate system. This is recovered by Eq. (9) since op, dibes is always
positive. In many cases ¢ is assumed always positive by some codes, even if [, < 0 and
By > 0 with 0,9, = +1 for example, and this can lead to consistency problems.

One sees therefore that the sign(B,) depends on the cylindrical system (and thus the
effective sign(By)), the sign(t),.r) depends on the sign(op,) (and on sign(/,)), and the sign(q)
on the poloidal coordinate system (and signs of I, and By). We can now give the table of
the relative signs and directions for the various coordinate systems. For each cylindrical
coordinate orientation, one can have v increasing or decreasing from the magnetic axis
(0pp = £1 respectively) and 6 oriented counter-clockwise or clockwise, leading to g positive
or negative. We have therefore 2x2x2=8 cases. In addition, the poloidal flux can be already
divided by 27 or not, leading to cases 1 to 8 and 11 to 18 respectively, as detailed in Table
L.

Comparing Table I and Eq. (9), we see that we have:

For COCOS = 1/11 to 4/14

1 dq)tor
q= -
(271-)(1*631)) dires

(10)

For COCOS =5/15 to 8/18:

-1 dq)tor
q= .
(27]')(1_6317) dwref

(11)



COCOS|epp|opyp|cylind,or,z |poloid,ope,| ¢ from top | 6 from front Yrep  |sign(q) sign(j—i
1/11 |0/1| 41 |(R, ¢, Z),+1|(p,0,¢),+1|cnt-clockwise| clockwise |increasing| +1 -1
2/12 |0/1|+1| (R, Z,¢),-1 |(p,0,¢),+1| clockwise |cnt-clockwise|increasing| +1 -1
3/13 |0/1] -1 [(R,p,Z),+1| (p,¢,0),-1 |cnt-clockwise|cnt-clockwise|decreasing| -1 +1
4/14 10/1] -1 | (R, Z,¢),-1 | (p,¢,0),-1| clockwise clockwise |decreasing| -1 +1
5/15 |[0/1|+1 (R, ¢, Z),+1]| (p, ¢, 0),-1 |cnt-clockwise |cnt-clockwise | increasing | -1 -1
6/16 |0/1|+1| (R, Z,¢),-1| (p,¢,0),-1 | clockwise clockwise |increasing| -1 -1
7/17 |0/1| -1 (R, ¢, Z),+1|(p,0,¢),+1|cnt-clockwise| clockwise |decreasing| +1 +1
8/18 |0/1] -1 | (R, Z,¢),-1 |(p,0,p),+1| clockwise |cnt-clockwise|decreasing| +1 +1

TABLE I: Coordinate conventions for each COCOS index. COCOS < 8 refers to ¢ divided by
(2m) and thus with e, = 0 while COCOS > 11 refers to full poloidal flux with e, = 1. Otherwise
COCOS =i and COCOS = 10 + i have the same coordinate conventions. The cylindrical (with
the related or,z value) and poloidal (with o) right-handed coordinate systems are given as well.
The indications in the last three columns are assuming I, and By positive in the related coordinate

system, that is in the direction of the related ¢.

This comes from the fact that op, dSy is in the same direction as # near the major axis for
the first four cases, hence the poloidal flux has the usual sign, while for the last four cases 6
is chosen with the opposite direction. We also see from Table I, for I, and By in the same
direction, ¢ is positive when (p, 0, ) is right-handed and negative otherwise.

Ultimately, one would like to have a consistent magnetic field from the equilibrium solu-
tion. The best is to check the B and Bz components yielding B, in (R, ¢, Z) or (R, Z, ¢)

coordinates. This is how one can obtain Bg and By from v,.s(R, Z):

(R, ¢, Z) right-handed cylindrical coordinate system :

lawref
R 07
0Bp OBp
B, = Vo X Ve = 20 , 12
? T G Y T Gy | 0 "
L ref
R OR



(R, Z, ¢) right-handed cylindrical coordinate system :

1 8wref
R 0Z
— UBp — O—Bp 1 ad)ref
BP - (27r)eBp VSD X v¢7‘6f - (27_[_)6317 R “OR . (13)
0

In each case, of course, one has: B, = F/R, that is B, = F' V. From the above equations,
one can see that if there is a plasma current in the ¢ direction (I, > 0), then if ¢),.s is
increasing with minor radius, 0¢,.;/OR > 0 at the LFS and B, points downwards in the
(R, ¢, Z) case and upwards in the (R, Z, ¢) as expected, with op, = +1. This is why if ¢,.f
is decreasing with minor radius, one needs op, = —1 to obtain the same Br and B values.
We do not discuss here the case where the ¢ direction is opposite in the cylindrical and the

poloidal systems, since we think this case should not be used.

III. TRANSFORMATIONS OF OUTPUTS OF AN EQUILIBRIUM CODE FOR
ANY COORDINATE CONVENTION

It is easier to first discuss how to transform the solution of a specific equilibrium code
using a specific COCOS value. Let us take the case COCOS = 2 with the example of the
CHEASE [5] code with ¥ef = ©chease,2, defining the subscript “reqse2” as being in CHEASE
units and with the CHEASE index COCOS = 2. In addition, equilibrium codes usually
work in normalized variables with distances normalized using a value l; and magnetic fields
using [p as basic units. For example, CHEASE uses l; = Ry the geometrical axis and
lp = By the vacuum field at R = Ry. In such a case, the equilibrium code automatically
assumes [, and By positive since it works in positive normalized units.

For example, let us say we want an output following the ITER coordinate convention,
COCOS = 1 or 11, with the flux in Webers/radian or in Webers, respectively. Taking
the standard ITER case with negative I, and By in the (R, ¢, Z) system, it corresponds to
positive I, and By in the system with (R, Z, ¢) right-handed as assumed by COCOS = 2
(e.g. CHEASE). First one needs to determine the relation between physical quantities in SI
units (physical units) and code quantities (CHEASE or another code). They are given by



([5], p- 236 with Ry = [y and By = lp):

Dsi

Fsi
dp
d
dF

st

F

st

[si

jsi

Bchease,Q lBa
Rchease,2 ld;
Zchease,Q lda
wchease,Q l?{ lBa
Pchease,2 ZQB////Oy (14)

Fchease,2 ld ZB7

dp 2
@ chease,2 lB/(,U() ld)7

dF
Fchease,2 B
dl/) chease,2

Ichease,? ld lB/MOa

jchease,2 lB/(/vLO ld))

We can now define the various transformation to the values in the new coordinate system,

defining the subscript “s cocos” as being in SI units and with the assumptions given in Table

I for the given COCOS index:

o Ip
0By
wsi ,COCOS

CI)si,cocos
dp
dip

Fsi cocos E
) di/)

Bsi,cocos

S1,C0C08

St1,c0C08

Fsi,cocos
]si,cocos
jsi,cocos

qCOCOS

Sign(‘[p>a
sign(By),
O1pOBp (27r)6Bp 7vZ}chease,2 l?l le

0B, cI)chease,Q l?j lBa
OIp OBp @
(27’(’)6317 dl/] chease,2

OIp OBp dF
(27_(_)6317 chease,2 @

0By Bchease,Z lBu

lB/(:u’O l(g):

15
chease,2 ( )
0By Fchease,Z ld lBa

Orp ]chease,Q ld lB/MOu

OIp jchease,Q lB/(,uO ld)7

O1p OBy Opfp chease,2,

with g = 471077, Rsi cocoss Zsicocos a1 Psi cocos are the same as Ry, Zg; and pg; given in

Eq. (14), since they do not depend on the COCOS index. Other quantities can easily be
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transformed using Eq. (15) and the following method, for example for dV/dy:
av dv;i,cocos . d‘/::hease,Q l?l o OI1p OBp d_v ld

% S1,C0C08 - dqu)si,cocos - O'[p O'Bp (27T)€BP dwchease,Q Z?I lB (27T>eBP d¢ chease,2 E7

Taking the case of ITER with COCOS =11, o7, = —1 and op, = —1 so that I, and B,

(16)

are physically the same as in the COCOS = 2 system with I, chease,2 and By chease,2 POsitive,
we have for COCOS = 11 from Table I: op, = +1 and ep, = 1. Therefore we obtain:

¢iter,11 = =27 wchease,Q R(% BO' (17>

Thus titer,11 Will be maximum at the magnetic axis and decreasing with minor radius. This

yields for example from Eq. (12):

l 8witer, 11

BZ,iter,ll = _R OR (18)

This gives Bzter11 > 0 at the LFS, which is consistent with I, < 0 in the (R, ¢, Z) system.
Note that within CHEASE system, one has to use Eq. (13):

1 awchease 2
Bzchease2 = 5 — 55— 19
Zehease2 = |~ op (19)

Since Yehease2 1S increasing with minor radius, it also gives Bz cheqse,2 > 0 as it should.
In the coordinate systems defined by the COCOS value and the related values in Table
I, the magnetic field should be computed as follows:

ORyZ OBp 1 awsi,cocos

Bp = -
BT @Qn)emw R 07
ORypZ OBp 1 87psi,cocos
B; = — — 20
’ @r)» R OR (20)
Fsi,cocos
B, = PR

where the signs of Bg and Bz depend whether (R, ¢, Z) is right-handed or not. These can

be used to check the output 1 cocos and Fy; cocos are as expected.

IV. TRANSFORMATIONS OF INPUTS FROM ANY COORDINATE CONVEN-
TION

We can now use the inverse transformation of Eq. (15) to determine the correct inputs

within a given code coordinate system (CHEASE in our example) for any assumed input

10



coordinate system cocos_in. Given a coordinate cocos_in as defined in Table I and assuming
values are in SI units, we have, given ly, I, Berease2 = Bsi/lp, Reneases = Rsifla and
Zehease2 = Zsi/la (for CHEASE [, = Ry and lp = By) and imposing ¥cpease 2(edge) = 0:

OIp OBp 1
(27’(‘)631’ l?l ZB,

77Z}chease,2 = (7»/}51’,00(:05 - 77Z)si,cocos ( 6dge ))

dp dp tho 1
e d
— = — o1 0y (2m)°Br —2, (21)
dw chease,2 d’(b 8%,C0COS B
dF dF b 1
Fchease,2 = 1L'si,cocos ] OIp OBp (27T> P,
dl/) chease,2 dl/) 81,c0C08 lB
Ho
Ip,chease,2 = [p,si,cocos Ulpl I )
d'B
. y fio la
Jchease,2 = Jsi,cocos OIp =7
lp
Gchease,2 = YGcocos TIp OBy O pbyps

and the plasma boundary is normalized by ;. Since CHEASE assumes (R, Z, ¢) and (p, 6, @)

right-handed and I,,, By positive, we check the input consistency with:

WYehease,2 © should be minimum at magnetic axis,

L, chease2 : should be positive,
dp

di) | chease2

Qehease,2 © should be positive.

: should be negative, (22)

A similar check of the final input values will apply to any code other than CHEASE. Note
that the sign of ¢ may not be consistent with the other quantities since it is often given as
abs(q). Therefore a warning should be issued if ¢ is not consistent but the input should not
be rejected.

If the input is an eqdsk file as described in [5] (p. 236), then we also have:

JBO
Fchease,Q - Fsi,cocos s
lalp

_ Ho
Pchease,2 = psi,cocoslTa
B

with the check that Fipeqse 2 should be positive and Fipeqse 2(edge)= +1 (since in this example
Fii(edge) = RoBy = lalp). The value of pepeqse2(edge) is typically used to impose the edge

pressure.
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V. CHECKING THE CONSISTENCY OF EQUILIBRIUM QUANTI-
TIES/ASSUMPTION WITH A COCOS INDEX

Let us obtain conditions of consistency of an input equilibrium with a specific COCOS
index, generalizing Eq. (22). For this, it is easier to use Eq. (21) and to note that since with
the CHEASE normalization we have I, and By positive, we should have I, and F' positive,
Wehease INCreasing, dp/dipepeqse negative and ¢ positive (from Table I, COCOS = 2 line).

Thus, using Eq. (21) we should have for any cocos equilibrium:

orp = sign(lp),

op, = sign(By),

Sign(Fcocos) = 0By,
Slgn( cocos) = 0By,
Sign [wcocos (edge) wcocos aXlS)] = O_Ip UBp,cocos; (23)
dp
Szgn(dw cocos) = — OIp OBp,cocos;
Slgn<.]cocos) = OJp,
SZgn(Qcocos) = OIp OBy Ophyp;

with 05y cocoss Tpo, given in Table I for the related cocos value. Note that the sign of dp/dy
being —o1,0Bp.cocos Should be understood as the “main” sign(dp/dy) following the fact that
pressure is usually much larger on axis than at the edge. To be more precise one could
replace this relation by szgn(zedge ap A1/))

It should be noted that Eq. (23) can also be used to determine the COCOS used in
a code or set of equations. Usually, one starts by checking if ¢ is increasing or decreasing
from magnetic axis to the edge. Then, depending on sign(Ip), one can obtain the value of
O Bp,cocos- Another way is if B, ~ Vo x Vi, thus op) cocos = +1 or B, ~ Vi) x Vi, yielding
OBp.cocos = —1. Then one can check with the sign of dp/dip. The next step is to determine
ORez, either from the comparison of the sign of I, and B, with the effective direction of I,
and By if it is known, or by comparing the definition of Bpg, for example, with Egs. (12) and
(13) and taking into account the value of op,. Then, the effective sign of ¢ gives the value
of 0,9,. Finally, ep, is obtained from the factor 2w appearing either in the definition of B,,

Eq. (1), giving ep, = 1 or in the definition of ¢, Eq. (9), yielding eg, = 0. Note that if a

12



specific sign of I, or By is used, it should be used in Eq. (23) to infer the COCOS value.
In particular, some codes (Table IV) use a different sign for I, and By, yielding a different

effective sign of q.

VI. TRANSFORMATIONS FROM ANY INPUT cocos-in TO ANY OUTPUT

cocos_out

The above transformations, Eqs. (15) and (21), are generic however represent the trans-
formation from COCOS = 2 to any cocos_out and from any cocos_in to COCOS = 2,
respectively. The easiest way to obtain the direct general transformation is to combine the
two transformations sequentially, replacing “si, cocos” in Eq. (15) by “si, cocos_out” and
the related parameters opp, €pp, la €tc by 0Bp.cocos.outs €Bp.cocos.outs ldout, €tc. Similarly, in
Eq. (21) one changes “si,cocos” with “si,cocos_in” and op,, epp, lg, etc With 05y cocos.ins
€Bp,cocos_ins ld,in, €tc. We can then eliminate Ycnease2; Ip,chease,2, €t¢ to obtain the transfor-
mation from an “input” equilibrium with COCOS = cocos_in to an “output” equilibrium
with COCOS = cocos_out, taking also into account any differences in normalization. At the
end, for the coordinate transformations, it gives similar equations to Eq. (15) with “cocos”

replaced by “cocos_out”, “chease,2” by “si,cocos_in” and with:

OBp — O Bp,cocos_out O Bp,cocos_in»
€Bp — €Bp,cocos_out — €Bp,cocos_in»
O pbhyp — O php,cocos_out T php,cocos_in (24)
OIp — O Ip,cocos_out T Ip,cocos_in»
OBy — 0 BO,cocos_out 0 B0,cocos_in.-

Note that the sign of I, for example should be transformed according to the rela-
tive directions of ¢ in the two coordinate systems, therefore depending on the sign of
(O RpZ.cocos.out TRpZcocosin)- Lhe values of the parameters for the various COCOS systems
are all given in Table I. In order to be more precise, we provide the explicit relations in
Appendix C for both the signs transformations and for the normalizations. In addition we
discuss the case of a mere transformation of coordinates and the case when a given sign of

I,, and/or By are required.
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VII. SIMILARITY BETWEEN COCOS =1 AND COCOS =2 AND EFFECTS OF
CHANGING SIGNS OF I, AND B

Looking at Table I, one sees that COCOS =1 and COCOS = 2 give the same values of
epp and op, and all the other parameters listed (similar remarks apply to COCOS pairs 11
and 12, 3 and 7, etc). This is the case for CHEASE-like and ITER-like assumptions. But
what does it mean and where is the difference between the two systems?

First, it means that they have the same B representation in terms of the same Eq. (1),
since it depends only on ep, and op,. However, in this case the respective ¢ are in opposite
direction. Therefore for a given real case, say a standard ITER case with I,, and B clockwise,
then o, and op, will be opposite (namely -1 for COCOS = 1 and +1 for COCOS = 2).
In addition, the equations to evaluate Bg and By are different since COCOS = 1 should
use Eq. (20) with og,z = +1, while COCOS = 2 has o,z = —1. This is how the final By
and Bz are the same at the end, since they should not depend on the coordinate system,
as discussed near Egs. (18-19). For the cases COCOS = 3 and COCOS = 7, there is
no difference in the cylindrical coordinate systems, therefore R, Z projections are the same.
The only difference is with respect to 6 such that B, is along 6 with COCOS = 7 (hence ¢ is
positive) and opposite to # with COCOS = 3 (hence ¢ is negative) with I, and By positive.
In this case, only the sign of ¢ differentiates the two systems. On the other hand, one often
provides only abs(q) in the output (since ¢ < 0 is unusual) and therefore it might be difficult
to know the effective assumed coordinate convention and the sign of the poloidal flux (hence
the usefulness of specifying the COCOS value). One way is to check the variations with
the signs of I, and By. In Table I, only the case with I, and By positive are given. However
it is good to check the variations when changing both o, and op,. For example, for the
first case, COCOS =1 or 11, Table II shows the effects of varying the experimental sign
of I, and/or B,. For the general case, COCOS = cosos, the relative signs of the main
equilibrium quantities are provided in Table III in terms of the effective signs of I, and/or

By.
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COCOS|orp|oBy|  VYres sign(q) |sign(dp/di)|sign(F) |sign(FdF/dy)
1/11 |41|+1 |increasing | positive| negative |positive X!
1/11 | -1 | +1 |decreasing|negative| positive |positive —11
1/11 |+1]| -1 |increasing |negative| negative |negative +14
1/11 | -1 | -1 |decreasing| positive| positive |negative —11

TABLE II: Signs of related quantities when I, or By change sign in the case of COCOS = 1 or
11. In the last column, the sign relative to the first case (ii = +1) is given. For other coordinate
systems, the effect of changing oy, on ,cf, q, dp/dip and FdF/di is similar, as well as changing

0B, on g and sign(F'). This can be deduced from Table I for the first line (with o7, = o, = +1)

and Eq. (15) for the other signs of I, and By.

COCOS |o1p|0B, |dref|sign(q)|sign(dp/di)|sign(F)|sign(FdF/dy)
cocos |+1|+1| oBp | Tpgp —0Bp +1 —0oBp il
cocos | -1 |+1|—0opp| —0pgy OBp +1 oBp i
cocos |+1| -1 | opp | —0p9p —0Bp -1 —0oBp it
cocos | -1 | -1 |—opp| Opgp O Bp -1 oBp il

TABLE III: Signs of related quantities when I, or By change sign in the general case of COCOS =

cocos. The respective values of op;, and 0,4, are given in Table I.
VIII. THE GRAD-SHAFRANOV EQUATION

It is also useful to rewrite the Grad-Shafranov equation in terms of the generic B of Eq.
(1), since it allows to transform the source terms correctly when changing to a new ¥s; cocos
definition. First we need to calculate j assuming F' = F'(¢,.f) and p = p(¢ref) and (R, ¢, Z)
right-handed (op,7z = +1 in Eq. (20)):

_ l dF 8¢ref
) ) R dyye; 0Z
I - —_ oB 1 B2'¢ref J 1 6¢r5f
J_MOVXB_MO (ZW)E%PE[ o7t + Ropnant] | (25)
l dF awref
R dpe; OR
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2
which can be re-written, with F' = dF/di,.; and A* = Ovres 4 g %lad)”f:

072 R OR
.1 (2m)°Br (2m)eBr 0B
- (A T g [ ey T8 Axy Y ) 2%
J /,1,0 ( O'Bp |: O'Bp (271-)631) w fj| 90 ( )

In the above, we have used the (R, ¢, Z) cylindrical system. If we have the (R, Z, ¢) system
with op,z = —1 in Eq. (20), we get:

1 OYre

1 1 R F 8Zf
j=— VxB=— _ 1 o Orey , 27
" o 1 825 g o 19¢ )

oB ref ref
@n°Br ' (57" + Ropront]
which also gives:

| ( (2m)cBr (2m)eBr 0B
- = (Y T gy FF 4+ 782 pAxy v ) 28
] Lo TBp [ OBp (2 )eBr Urer Vi (28)

We now use the static equilibrium equation, Vp = j x B, and introduce Eqs. (26, 28)
and (1):

1 (2m)eBr OB OB
'V ref — T FF,+—pA* ref | VO - L_(V X Vibye ) 29
P Ve = [ P Gy Y Ve (%)631)( P X Vibres) (29)
which yields, using o, = 1:
A*rep = — pio (2m)*B R* p' — (2m)*P» FF' = op, (27)°P" g R ji,. (30)

We see that indeed it does not depend anymore on op,, nor on o, nor if it is (R, ¢, Z) or
(R, Z, ) which is right-handed. Taking 1,.; = ¢1_g with ep, = 0, that is COCOS =1 to

8, we have the usual Grad-Shafranov equation:
A*py_g = — pig R>p' — FF' =0p, iy R j,, (31)

with p’ = dp/diy;_g and similarly for F’. If we would now use 1 135 = 27 1_g, we have

dp/diyy_g = 2w dp/di11_1s and introducing it with ¢ _g = ¥11_15/27 we get:
A*w11—18 = — ,u() R2 (271')2])/ — (27’(’)2 FF/ = O'Bp 271' ,u() R j(p, (32)

with this time p’ = dp/dir1-1s and similarly for F” and we recover Eq. (30) with ep, = 1.
Thus it does not depend on ep, either except that 1) might be rescaled as well as the source

functions p’ and F'F".
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IX. CONCLUSIONS

We have defined a new single parameter COCOS to determine the coordinate systems
used for the cylindrical and poloidal coordinates, the sign of the poloidal flux and whether
¥ is divided by (27) or not. This is defined in Table I. This allows a generic definition
of the magnetic field B (Eq. (1)) using only two new parameters: op, and ep,. These
parameters are also defined uniquely by the parameter COCOS in Table I. This COCOS
parameter is useful to define the assumptions used by a specific code. All the various options
are contained within the 16 cases defined in Table I. It should be emphasized that there are
“only” 16 cases because we have assumed Z upwards in the cylindrical system and ¢ in the
same direction for the cylindrical and poloidal coordinate systems.

We have also defined the procedure to transform input values from any of the 16 cases
of Table I to a given code assumptions, in our example for COCOS = 2 case, in order to
provide the code with self-consistent input values (Sec. IV, Eq. (21)). Similarly, Sec. III
defines the transformations required for a code with COCOS = 2 to provide output values
consistent with any of the 16 cases defined in Table I. In this case, not only the value of
cocos_out needs to be specified, but also ly, g, o7, and op, as given by Eq. (15). This
allowed us to define consistency checks of an equilibrium with a given cocos value and to
propose a procedure to determine the cocos index assumed in a code or a set of equations
(Sec. V).

The general equilibrium transformations from any cocos_in to any cocos_out convention
is given in Sec. VI and Appendix C, including the transformation of the normalizations and
how to simply change the sign of I, and/or By.

The correct definitions of Bgr, Bz and B, are given in Eq. (20), of ¢ with respect to
toroidal flux in Eqgs. (10) and (11) and of the sources and the Grad-Shafranov equation in
Egs. (31) and (32). The effect of changing the signs of I, and/or By are provided in Table
IT for ITER (COCOS = 11) and in Table III for the general case.

As mentioned above, Table I can be used to define the coordinate conventions of a given
code or set of equations. For example, CHEASE [5] and ONETWO [7] use COCOS = 2,
ITER [10] should use COCOS = 11, the EU-ITM [8] was using COCOS = 13 up to the
end of 2011 and the TCV tokamak is using COCOS = 7 and 17 [11], [12]. The code ORB5
[13] uses COCOS = 3 but, to have ¢ positive, normalizes the plasma current such that it
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is negative. This is another way to resolve the “problem” mentioned in the Introduction.
The Table in Appendix A shall keep track of the known COCOS choices and the various
ways the authors of these codes have resolved the relation between cylindrical and poloidal
coordinate systems. On the other hand, the choice of the poloidal angle “6” is not discussed
here, for example if straight-field line coordinates are assumed. We shall also keep track of
the assumed coordinate conventions for the various tokamaks and other magnetic devices
when relevant. These are provided in Appendix B. Note that this is also important for
diagnostics which might be related to a given sign convention of the coordinate systems, like
the toroidal and poloidal rotations, as discussed near Eq. (48),

The main aim of this paper is to contribute to establishing well-defined interfaces and
providing useful reference information in support of the current world-wide ITER Integrating
Modelling efforts.
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Appendix A: Known COCOS values for codes and set of equations

The Table below shall keep track of the known COCOS values and an up-to-date version
shall be maintained on the CHEASE website [14]. This applies to axisymmetric cases, but

can be useful for 3D as well.
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cocCcoSs codes, papers, books, etc
1 psitbx(various options) [11]
11 ITER [10], Boozer[9]
2 |CHEASE [5, ONETWO [7], Hinton-Hazeltine [6], LION [15], XTOR [16], MEUDAS [17],
MARS [25]
12 GENE [18]
3 Freidberg* [4], [19], CAXE and KINX* [20], GRAY [21],
with o7, = —1,0p0 = +1: ORB5 [13], GBS [22]
with o7, = —1,0p9 = —1: GT5D [23]
13 EU-ITM up to end of 2011 [8]
4
14
5 TORBEAM [24]
15
6
16
7
17 LIUQE* [12], psitbx(TCV standard output) [11]
8
18

TABLE IV: For each coordinate conventions index COCQO.S, this table lists known codes, papers,

books that explicitely use it. The * marks that in these cases abs(q) is effectively used (since ideal

axisymmetric MHD does not depend on its sign). Most codes use normalized units and therefore

use typically I, and By positive, as discussed in the paper for CHEASE [5]. This is not mentioned

in this table. Some codes normalize such that I, and/or By is negative. This is marked explicitely

in this table. This table shall be maintained and available at [14]. Send an email for a new entry.
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Appendix B: Known Tokamak coordinate conventions and relation to COCOS val-

ues

The Table below shall keep track of the known coordinate conventions assumed by the
various tokamaks. This means in particular the direction of a positive toroidal current,
magnetic field and poloidal current in the coils for example. This should also help to check
if, for example, the direction of positive toroidal and poloidal velocities are in the same
direction as positive toroidal and poloidal currents. We also give the COCOS values which
are compatible with the related assumptions. Since there is 2 choices for the cylindrical
coordinate convention and 2 for the poloidal direction, there are 4 different cases and thus

4 COCOS values compatible for each case. An up-to-date version of this table shall be
maintained on the CHEASE website [14].

cylind,or,z |poloid,opg, | ¢ from top | 6 from front | COCOS Tokamaks

(R, ¢,2Z),+1|(p, 0, ¢),+1|cnt-clockwise| clockwise |1/11, 7/17|TCV-magnetics, ITER [10]
(R, 0, Z),+1| (p,,0),-1 |cnt-clockwise |cnt-clockwise|3/13, 5/15

(R, Z,¢),-1 |(p,0,9),+1| clockwise |cnt-clockwise|2/12, 8/18

(R, Z,¢),-1| (p,p,0),-1 | clockwise clockwise |4/14, 6/16

TABLE V: Known Tokamak coordinate conventions and relation to COCOS values.
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Appendix C: Equilibrium transformations: new COCOS, new I, or By sign, new

normalization

There are three kinds of transformation that one might want to apply to a given equi-
librium. First, of course, the transformation of an equilibrium obtained within a given
COCOS = cocos_in convention into an equilibrium consistent with a new COCOS =
cocos_out equilibrium. Since the solution of the Grad-Shafranov equation is independent of
the COCOS value, as seen in Sec. VIII, one can easily transform from one to another. Two
examples have been given to and from any COCOS from and to COCOS = 2, respectively,
in Egs. (15) and (21). The second typical transformation is to obtain a specific sign of I,
and/or By. Finally, one might want to normalize in one way or another as also discussed
near Egs. (15) and (21).

Let us first describe the detailed transformations from cocos_in to cocos_out. Following
Sec. VI, we use Eq. (15) for the cocos_out values and Eq. (21) for the cocos_in cases and

we can rewrite the first relation in each as follows:

e ’ 2
wsi,cocos,out = OJp,out 9 Bp,cocos_out (27T) Bp,cocos-out wchease,Q ld,out lB,out;
o O Ip,in O Bp,cocos_in 1
wchease,Q — en ; wsi,cocos,in P) . (33>
(2ﬂ') p,cocosin ld’,Ln lB7Zn

Eliminating ¥ cheqse,2 We obtain:

¢si,cocos,out = (Ulp,outolp,in) (O'Bp,cocos,outUBp,cocos,in) (277') [EB%COCO&OM76Bp7cocosjn] (34)

2
ld,out ZB:OUt

’lvbsi,cocos,in l2 l 9 (35>
d,in "Byin
which can be rewritten in a generic form exactly similar to Eq. (15):
,lvbsi,cocos,out = 5[p 5Bp (27T)éBp 77057,’,000054'71 ZZ ZB- (36)

Thus we only need to define the * parameters to be used in Eq. (15). Comparing Eqs. (34)

and (36), we have already the main parameters. Similarly we should have:
6'RgoZ = ORyZ,cocos_out T RpZ cocos_in (37)
&pecp = O pfp,cocos_out 9 pbp,cocos_in - (38)

The parameter in Eq. (37) does not appear explicitly in the transformations, Eq. (15),

however it relates directly the effective sign of I, or By in one system to the other. Indeed,
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if the ¢ directions in the two systems are opposite, then the effective sign should change.
We can see that in Eq. (34) we have labelled the I, sign as oy out instead of o7, cocos.out-
This is done on purpose to emphasize the fact that the I, sign is not necessarily related to
the coordinate convention, but could be just requested in output. For example, some codes
request a specific sign of I, and By, being positive or negative, as seen in table IV. Therefore

we have:

Orpin ORpz  if a specific o, oyt 18 NOt requested
OIp,out = (39)

OIpout otherwise

Including this into &1, = 01p.0ut0r1p.in and using Eq. (37), we can define directly:

O RypZ,cocos.out ORpZ,cocosin 1 & Specific oy oyt 1s NOt requested

Omp = . (40)
Olp,in OlIp,out otherwise
Similarly we have:
~ O RpZ,cocos-out ORpZ,cocosin 1 & specific 0 ous 18 NOt requested
opo — . (41)
O B0,in 0 BO,out otherwise
And the other parameters are defined by:
O0Bp = O Bp,cocos-outO Bp,cocos_in
€Bp = E€Bp,cocos_out — €Bp,cocos_in (42>
Opdp = Ophp,cocos_out O pbyp,cocos_in- (43)

For the normalizations, it is a bit more complicated since we have the term g, which
disappears with normalized units. The best way is to compare with the Grad-Shafranov
equation written in a generic form, inspired by Eq. (30), or with < g j,/R >, related to
dI,(v)/dy with I(3)) the toroidal current within the ¢ flux surface, since one of these two

equations is usually well defined within a given code related to equilibrium quantities:

A%y = — (2m)%Br R? ug p' — (27m)%8r FF (44)
< HoJo/R> = —op, (2m)% (" p + FF' <1/R*>). (45)

Typically, one has e,0 = 0 for codes using normalized units and e,y = 1. To check the

dimensions, one can note that from B, ~ Vi x V1, the natural dimension of [¢/] is [I3 5]
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and from Maxwell’s equation V x B ~ p, j, we have [u,j] ~ [lg/ls]. It follows that the
“natural” dimensions for the source terms are [u,p'] = [I/I2] and [FF'] = [I5].

We can now define Uy, {5 in, €u0,in as the characteristic length and magnetic field strength
and gy exponent of the input equilibrium and g out, [ outs €u0,0ut Of the output equilibrium
(lachease = 1,1Bchease = 1,€u0chease = 0 in the case of CHEASE and l; = Ro,lps =
By, e,0,51 = 1 in the case of standard SI units with F'(edge) = R¢By) and the corresponding

tilde values:

7 ld,out

[ = et
ld,in

7 lB out

Ip = 7, (46)
lB,in

éuO = €u0,0ut — €uo,in,

Using Eqs. (40, 41, 42) and (46) we have the general transformation from an input equilib-

rium to an output equilibrium given by:

~  ~ é 727
wcocos,out = OI1pO0Bp (27T> Br ¢cocos,in ld lB7
~ 27
(I)cocos,out = 0By (I)cocos,in ld lB )
@ . 6-Ip 6'Bp d_p ZB/(ILLé‘LO ZQ)
dw cocos_out (27T)eBP dw cocos_in 0 Tdp
- dF G1pGhp dF ; )
cocos_out ~3 - = ; cocos_in “7 ;- B
d¢ cocos_out (27T )eBp dQ/J cocos_in ’
Bcocos,out = 5-Bo Bcocos,in lBa
F cocos_out — &Bo F cocos_in ld lB y

_ = 77 €uo
Icocos,out = 0Ojp Icocos,in ld ZB/,U() P

. ~ . 7 €uo 7
Jecocos_out = Ofp Jecocos_in lB/(MOH ld)’

Qcocos_out = OIp OBy Oply Geocos_in -

These relations allow a general transformation for the three kinds of transformation dis-
cussed at the beginning of this Appendix. The sign of I, and/or By in output results from
the coordinate conventions transformation or can be specified explicitly. Similarly, the trans-
formation with different assumptions for the normalization, for example “si” on one hand
and “normalized” on the other hand can be obtained as well. As an example, Eq. (15) is

recovered by setting cocos_in = 2, o1pin = 0poin = 1, lgin = 1, lpsn = 1 and e 0, = 0

corresponding to the CHEASE assumptions, and taking any cocos and si units in output.

26



Similarly, Eq. (21) is obtained from Eq. (47) by setting cocos_out = 2, 01y out = OBo.out = 1,
liout =1, Ipowt = 1 and ey oyt = 0 since we want the CHEASE assumptions in output.
Note that plasma parameters might be related to a given sign convention of the coordinate
systems. For example the toroidal and poloidal rotation should be positive in the direction
of ¢ and 0 respectively. Thus if the direction of ¢ changes, the effective sign of v, should
change as well, following Gr,z. Since the effective direction of 6 depends on oryz cocos Tpoe,

we have:

Vp,out = ORpZ Vp,in,

Vo,out = 5—R¢Z 5—,0990 Vg, in - (48)
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