Newer
Older
outfile ='';
outfile ='/marconi_scratch/userexternal/ahoffman/HeLaZ/results/Marconi_DGGK_eta_0.6_nu_1e+00/150x75_L_70_P_10_J_5_eta_0.6_nu_1e+00_DGGK_CLOS_0_mu_8e-04/out.txt';
BASIC.RESDIR = load_marconi(outfile);
end
%%
% JOBNUM = 0; load_results;
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
compile_results
load_params
%% Retrieving max polynomial degree and sampling info
Npe = numel(Pe); Nje = numel(Je); [JE,PE] = meshgrid(Je,Pe);
Npi = numel(Pi); Nji = numel(Ji); [JI,PI] = meshgrid(Ji,Pi);
Ns5D = numel(Ts5D);
Ns2D = numel(Ts2D);
% renaming and reshaping quantity of interest
Ts5D = Ts5D';
Ts2D = Ts2D';
Si00 = squeeze(Sipj(1,1,:,:,:));
Se00 = squeeze(Sepj(1,1,:,:,:));
%% Build grids
Nkr = numel(kr); Nkz = numel(kz);
[KZ,KR] = meshgrid(kz,kr);
Lkr = max(kr)-min(kr); Lkz = max(kz)-min(kz);
dkr = Lkr/(Nkr-1); dkz = Lkz/(Nkz-1);
KPERP2 = KZ.^2+KR.^2;
Lk = max(Lkr,Lkz);
dr = 2*pi/Lk; dz = 2*pi/Lk;
Nr = max(Nkr,Nkz); Nz = Nr;
r = dr*(-Nr/2:(Nr/2-1)); Lr = max(r)-min(r);
z = dz*(-Nz/2:(Nz/2-1)); Lz = max(z)-min(z);
[ZZ,RR] = meshgrid(z,r);
%% Analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Analysis :')
disp('- iFFT')
% IFFT (Lower case = real space, upper case = frequency space)
ne00 = zeros(Nr,Nz,Ns2D); % Gyrocenter density
ni00 = zeros(Nr,Nz,Ns2D);
np_i = zeros(Nr,Nz,Ns5D); % Ion particle density
si00 = zeros(Nr,Nz,Ns5D);
phi = zeros(Nr,Nz,Ns2D);
drphi = zeros(Nr,Nz,Ns2D);
dr2phi = zeros(Nr,Nz,Ns2D);
dzphi = zeros(Nr,Nz,Ns2D);
for it = 1:numel(Ts2D)
NE_ = Ne00(:,:,it); NI_ = Ni00(:,:,it); PH_ = PHI(:,:,it);
ne00(:,:,it) = real(fftshift(ifft2((NE_),Nr,Nz)));
ni00(:,:,it) = real(fftshift(ifft2((NI_),Nr,Nz)));
phi (:,:,it) = real(fftshift(ifft2((PH_),Nr,Nz)));
drphi(:,:,it) = real(fftshift(ifft2(1i*KR.*(PH_),Nr,Nz)));
dr2phi(:,:,it)= real(fftshift(ifft2(-KR.^2.*(PH_),Nr,Nz)));
dzphi(:,:,it) = real(fftshift(ifft2(1i*KZ.*(PH_),Nr,Nz)));
end
for it = 1:numel(Ts5D)
[~, it2D] = min(abs(Ts2D-Ts5D(it)));
si00(:,:,it) = real(fftshift(ifft2(squeeze(Si00(:,:,it)),Nr,Nz)));
Np_i = zeros(Nkr,Nkz); % Ion particle density in Fourier space
for ij = 1:Nji
Kn = (KPERP2/2.).^(ij-1) .* exp(-KPERP2/2)/(factorial(ij-1));
Np_i = Np_i + Kn.*squeeze(Nipj(1,ij,:,:,it));
end
np_i(:,:,it) = real(fftshift(ifft2(squeeze(Np_i(:,:)),Nr,Nz)));
end
% Post processing
disp('- post processing')
E_pot = zeros(1,Ns2D); % Potential energy n^2
E_kin = zeros(1,Ns2D); % Kinetic energy grad(phi)^2
ExB = zeros(1,Ns2D); % ExB drift intensity \propto |\grad \phi|
GFlux_ri = zeros(1,Ns2D); % Gyrocenter flux Gamma = <ni drphi>
GFlux_zi = zeros(1,Ns2D); % Gyrocenter flux Gamma = <ni dzphi>
GFlux_re = zeros(1,Ns2D); % Gyrocenter flux Gamma = <ne drphi>
GFlux_ze = zeros(1,Ns2D); % Gyrocenter flux Gamma = <ne dzphi>
PFlux_ri = zeros(1,Ns5D); % Particle flux
Ne_norm = zeros(Npe,Nje,Ns5D);% Time evol. of the norm of Napj
Ni_norm = zeros(Npi,Nji,Ns5D);% .
Se_norm = zeros(Npe,Nje,Ns5D);% Time evol. of the norm of Sapj
Si_norm = zeros(Npi,Nji,Ns5D);% .
Sne00_norm = zeros(1,Ns2D); % Time evol. of the amp of e nonlin term
Sni00_norm = zeros(1,Ns2D); %
Ddr = 1i*KR; Ddz = 1i*KZ; lapl = Ddr.^2 + Ddz.^2;
for it = 1:numel(Ts2D) % Loop over 2D arrays
NE_ = Ne00(:,:,it); NI_ = Ni00(:,:,it); PH_ = PHI(:,:,it);
E_pot(it) = pi/Lr/Lz*sum(sum(abs(NI_).^2))/Nkr/Nkr; % integrate through Parseval id
E_kin(it) = pi/Lr/Lz*sum(sum(abs(Ddr.*PH_).^2+abs(Ddz.*PH_).^2))/Nkr/Nkr;
ExB(it) = max(max(max(abs(phi(3:end,:,it)-phi(1:end-2,:,it))/(2*dr))),max(max(abs(phi(:,3:end,it)-phi(:,1:end-2,it))'/(2*dz))));
GFlux_ri(it) = sum(sum(ni00(:,:,it).*dzphi(:,:,it)))*dr*dz/Lr/Lz;
GFlux_zi(it) = sum(sum(-ni00(:,:,it).*drphi(:,:,it)))*dr*dz/Lr/Lz;
GFlux_re(it) = sum(sum(ne00(:,:,it).*dzphi(:,:,it)))*dr*dz/Lr/Lz;
GFlux_ze(it) = sum(sum(-ne00(:,:,it).*drphi(:,:,it)))*dr*dz/Lr/Lz;
end
E_kin_KZ = mean(mean(abs(Ddr.*PHI(:,:,it)).^2+abs(Ddz.*PHI(:,:,it)).^2,3),2);
E_kin_KR = mean(mean(abs(Ddr.*PHI(:,:,it)).^2+abs(Ddz.*PHI(:,:,it)).^2,3),2);
dEdt = diff(E_pot+E_kin)./dt2D;
for it = 1:numel(Ts5D) % Loop over 5D arrays
[~, it2D] = min(abs(Ts2D-Ts5D(it)));
Ne_norm(:,:,it)= sum(sum(abs(Nepj(:,:,:,:,it)),3),4)/Nkr/Nkz;
Ni_norm(:,:,it)= sum(sum(abs(Nipj(:,:,:,:,it)),3),4)/Nkr/Nkz;
Se_norm(:,:,it)= sum(sum(abs(Sepj(:,:,:,:,it)),3),4)/Nkr/Nkz;
Si_norm(:,:,it)= sum(sum(abs(Sipj(:,:,:,:,it)),3),4)/Nkr/Nkz;
Sne00_norm(it) = sum(sum(abs(Se00(:,:,it))))/Nkr/Nkz;
Sni00_norm(it) = sum(sum(abs(Si00(:,:,it))))/Nkr/Nkz;
% Particle flux
PFlux_ri(it) = sum(sum(np_i(:,:,it).*dzphi(:,:,it2D)))*dr*dz/Lr/Lz;
end
%% Compute growth rate
disp('- growth rate')
% Find max value of transport (end of linear mode)
[~,itmax] = max(GFlux_ri);
tstart = 0.1 * Ts2D(itmax); tend = 0.9 * Ts2D(itmax);
g_ = zeros(Nkr,Nkz);
[~,ikr0KH] = min(abs(kr-KR0KH));
for ikr = 1:Nkr
for ikz = 1:Nkz
g_(ikr,ikz) = LinearFit_s(Ts2D,squeeze(abs(Ni00(ikr,ikz,:))),tstart,tend);
end
end
[gmax,ikzmax] = max(g_(1,:));
kzmax = abs(kz(ikzmax));
Bohm_transport = ETAB/ETAN*gmax/kzmax^2;
%% PLOTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
default_plots_options
disp('Plots')
FMT = '.fig';
if 1
%% Time evolutions and growth rate
fig = figure; FIGNAME = ['t_evolutions',sprintf('_%.2d',JOBNUM)];
set(gcf, 'Position', [100, 100, 900, 800])
subplot(221);
for ip = 1:Npe
for ij = 1:Nje
plt = @(x) squeeze(x(ip,ij,:));
plotname = ['$N_e^{',num2str(Pe(ip)),num2str(Je(ij)),'}$'];
clr = line_colors(min(ip,numel(line_colors(:,1))),:);
lstyle = line_styles(min(ij,numel(line_styles)));
semilogy(Ts5D,plt(Ne_norm),'DisplayName',plotname,...
'Color',clr,'LineStyle',lstyle{1}); hold on;
end
end
grid on; ylabel('$\sum_{k_r,k_z}|N_e^{pj}|$');
subplot(222)
for ip = 1:Npi
for ij = 1:Nji
plt = @(x) squeeze(x(ip,ij,:));
plotname = ['$N_i^{',num2str(Pi(ip)),num2str(Ji(ij)),'}$'];
clr = line_colors(min(ip,numel(line_colors(:,1))),:);
lstyle = line_styles(min(ij,numel(line_styles)));
plot(Ts5D,plt(Ni_norm),'DisplayName',plotname,...
'Color',clr,'LineStyle',lstyle{1}); hold on;
end
end
grid on; ylabel('$\sum_{k_r,k_z}|N_i^{pj}|$');
subplot(223)
plot(kz,g_(1,:),'-','DisplayName','$\gamma$'); hold on;
grid on; xlabel('$k_z\rho_s$'); ylabel('$\gamma R/c_s$'); %legend('show');
subplot(224)
for ip = 1:Npi
for ij = 1:Nji
plt = @(x) squeeze(x(ip,ij,:));
plotname = ['$S_i^{',num2str(ip-1),num2str(ij-1),'}$'];
clr = line_colors(min(ip,numel(line_colors(:,1))),:);
lstyle = line_styles(min(ij,numel(line_styles)));
semilogy(Ts5D,plt(Si_norm),'DisplayName',plotname,...
'Color',clr,'LineStyle',lstyle{1}); hold on;
end
end
grid on; xlabel('$t c_s/R$'); ylabel('$\sum_{k_r,k_z}|S_i^{pj}|$'); %legend('show');
suptitle(['$\nu_{',CONAME,'}=$', num2str(NU), ', $\eta_B=$',num2str(ETAB)]);
save_figure
end
if 1
%% Space time diagramm (fig 11 Ivanov 2020)
fig = figure; FIGNAME = 'space_time_drphi';set(gcf, 'Position', [100, 100, 1200, 600])
subplot(311)
plot(Ts2D,GFlux_ri); hold on
plot(Ts2D,Bohm_transport*ones(size(Ts2D)),'--'); hold on
ylabel('$\Gamma_r$'); grid on
title(['$\eta=',num2str(ETAB),'\quad',...
'\nu_{',CONAME,'}=',num2str(NU),'$'])
legend(['$P=',num2str(PMAXI),'$, $J=',num2str(JMAXI),'$'],'$\eta\gamma_{max}/k_{max}^2$')
set(gca,'xticklabel',[])
subplot(312)
yyaxis left
plot(Ts2D,squeeze(max(max((phi)))))
ylabel('$\max \phi$')
yyaxis right
plot(Ts2D,squeeze(mean(max(dr2phi))))
ylabel('$s\sim\langle\partial_r^2\phi\rangle_z$'); grid on
set(gca,'xticklabel',[])
subplot(313)
[TY,TX] = meshgrid(r,Ts2D);
pclr = pcolor(TX,TY,squeeze(mean(drphi(:,:,:),2))'); set(pclr, 'edgecolor','none'); %colorbar;
xlabel('$t c_s/R$'), ylabel('$r/\rho_s$')
legend('$\langle\partial_r \phi\rangle_z$')
save_figure
end
if 0
%% Photomaton : real space
% FIELD = ni00; FNAME = 'ni';
% FIELD = ne00; FNAME = 'ne';
FIELD = phi; FNAME = 'phi';
tf = 200; [~,it1] = min(abs(Ts2D-tf));
tf = 600; [~,it2] = min(abs(Ts2D-tf));
tf =1000; [~,it3] = min(abs(Ts2D-tf));
tf =2000; [~,it4] = min(abs(Ts2D-tf));
fig = figure; FIGNAME = [FNAME,'_snaps']; set(gcf, 'Position', [100, 100, 1500, 400])
plt = @(x) x;%./max(max(x));
subplot(141)
DATA = plt(FIELD(:,:,it1));
pclr = pcolor((RR),(ZZ),DATA); set(pclr, 'edgecolor','none');pbaspect([1 1 1])
xlabel('$r/\rho_s$'); ylabel('$z/\rho_s$');set(gca,'ytick',[]);
title(sprintf('$t c_s/R=%.0f$',Ts2D(it1)));
subplot(142)
DATA = plt(FIELD(:,:,it2));
pclr = pcolor((RR),(ZZ),DATA); set(pclr, 'edgecolor','none');pbaspect([1 1 1])
xlabel('$r/\rho_s$');ylabel('$z/\rho_s$'); set(gca,'ytick',[]);
title(sprintf('$t c_s/R=%.0f$',Ts2D(it2)));
subplot(143)
DATA = plt(FIELD(:,:,it3));
pclr = pcolor((RR),(ZZ),DATA); set(pclr, 'edgecolor','none');pbaspect([1 1 1])
xlabel('$r/\rho_s$');ylabel('$z/\rho_s$');set(gca,'ytick',[]);
title(sprintf('$t c_s/R=%.0f$',Ts2D(it3)));
subplot(144)
DATA = plt(FIELD(:,:,it4));
pclr = pcolor((RR),(ZZ),DATA); set(pclr, 'edgecolor','none');pbaspect([1 1 1])
xlabel('$r/\rho_s$');ylabel('$z/\rho_s$'); set(gca,'ytick',[]);
title(sprintf('$t c_s/R=%.0f$',Ts2D(it4)));
% suptitle(['$\',FNAME,'$, $\nu_{',CONAME,'}=$', num2str(NU), ', $\eta_B=$',num2str(ETAB),...
% ', $P=',num2str(PMAXI),'$, $J=',num2str(JMAXI),'$']);
save_figure
end
%%
%% Show frame in kspace
tf = 0; [~,it2] = min(abs(Ts2D-tf)); [~,it5] = min(abs(Ts5D-tf));
fig = figure; FIGNAME = ['krkz_',sprintf('t=%.0f',Ts2D(it2))];set(gcf, 'Position', [100, 100, 700, 600])
subplot(221); plt = @(x) fftshift((abs(x)),2);
pclr = pcolor(fftshift(KR,2),fftshift(KZ,2),plt(PHI(:,:,it2))); set(pclr, 'edgecolor','none'); colorbar;
xlabel('$k_r$'); ylabel('$k_z$'); title(sprintf('$t c_s/R=%.0f$',Ts2D(it2))); legend('$|\hat\phi|$');
subplot(222); plt = @(x) fftshift(abs(x),2);
pclr = pcolor(fftshift(KR,2),fftshift(KZ,2),plt(Ni00(:,:,it2))); set(pclr, 'edgecolor','none'); colorbar;
xlabel('$k_r$'); ylabel('$k_z$'); legend('$|\hat n_i^{00}|$');
subplot(223); plt = @(x) fftshift((abs(x)),2); FIELD = squeeze(Nipj(1,2,:,:,:));
pclr = pcolor(fftshift(KR,2),fftshift(KZ,2),plt(FIELD(:,:,it5))); set(pclr, 'edgecolor','none'); colorbar;
xlabel('$k_r$'); ylabel('$k_z$'); legend('$|\hat n_i^{pj=01}|$');
subplot(224); plt = @(x) fftshift((abs(x)),2);
pclr = pcolor(fftshift(KR,2),fftshift(KZ,2),plt(Si00(:,:,it5))); set(pclr, 'edgecolor','none'); colorbar;
xlabel('$k_r$'); ylabel('$k_z$');legend('$\hat S_i^{00}$');
save_figure
end
%%
if 1
%% Ion moments max mode vs pj
% tf = Ts2D(end-3);
[~,it2] = min(abs(Ts2D-tf)); [~,it5] = min(abs(Ts5D-tf));
% it2 = it2 + 1;
fig = figure; FIGNAME = ['kmaxp_Nipj_',sprintf('t=%.2f',Ts2D(it2))];set(gcf, 'Position', [100, 100, 700, 600])
plt = @(x) squeeze(max(abs(x),[],4));
% plt = @(x) squeeze(max(fftshift(abs(x),2),[],4));
for ij_ = 1:numel(Ji)
subplot(100+numel(Ji)*10+ij_)
pclr = imagesc(kr,Pi,plt(Nipj(:,ij_,:,:,it5)));
xlabel('$k_r$');
if ij_ == 1
ylabel('$P$(max o. $k_z$)');
else
yticks([])
end
LEGEND = ['$|\hat n_i^{p',num2str(ij_-1),'}|$']; title(LEGEND);
end
save_figure
end
end
%%
t0 = 0;
[~, it02D] = min(abs(Ts2D-t0));
[~, it05D] = min(abs(Ts5D-t0));
DELAY = 0.02*skip_;
FRAMES_2D = it02D:skip_:numel(Ts2D);
FRAMES_5D = it05D:skip_:numel(Ts5D);
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
%% GIFS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if 0
%% Density ion
GIFNAME = ['ni',sprintf('_%.2d',JOBNUM)]; INTERP = 1;
FIELD = real(ni00); X = RR; Y = ZZ; T = Ts2D; FRAMES = FRAMES_2D;
FIELDNAME = '$n_i$'; XNAME = '$r/\rho_s$'; YNAME = '$z/\rho_s$';
create_gif
end
if 0
%% Density electron
GIFNAME = ['ne',sprintf('_%.2d',JOBNUM)]; INTERP = 1;
FIELD = real(ne00); X = RR; Y = ZZ; T = Ts2D; FRAMES = FRAMES_2D;
FIELDNAME = '$n_e$'; XNAME = '$r/\rho_s$'; YNAME = '$z/\rho_s$';
create_gif
end
if 0
%% Phi real space
GIFNAME = ['phi',sprintf('_%.2d',JOBNUM)];INTERP = 1;
FIELD = real(phi); X = RR; Y = ZZ; T = Ts2D; FRAMES = FRAMES_2D;
FIELDNAME = '$\phi$'; XNAME = '$r/\rho_s$'; YNAME = '$z/\rho_s$';
create_gif
end
if 0
%% Phi fourier
GIFNAME = ['FFT_phi',sprintf('_%.2d',JOBNUM)];INTERP = 0;
FIELD = ifftshift((abs(PHI)),2); X = fftshift(KR,2); Y = fftshift(KZ,2); T = Ts2D; FRAMES = FRAMES_2D;
FIELDNAME = '$|\tilde\phi|$'; XNAME = '$k_r\rho_s$'; YNAME = '$k_z\rho_s$';
create_gif
end
if 0
%% phi @ z = 0
GIFNAME = ['phi_r0',sprintf('_%.2d',JOBNUM)]; INTERP = 0;
FIELD =(squeeze(real(phi(:,1,:)))); linestyle = '-.'; FRAMES = FRAMES_2D;
X = (r); T = Ts2D; YMIN = -1.1; YMAX = 1.1; XMIN = min(r); XMAX = max(r);
FIELDNAME = '$\phi(r=0)$'; XNAME = '$r/\rho_s$';
create_gif_1D
end
%% Density ion frequency
GIFNAME = ['Ni00',sprintf('_%.2d',JOBNUM)]; INTERP = 0; FRAMES = FRAMES_2D;
FIELD =ifftshift((abs(Ni00)),2); X = fftshift(KR,2); Y = fftshift(KZ,2); T = Ts2D;
FIELDNAME = '$N_i^{00}$'; XNAME = '$k_r\rho_s$'; YNAME = '$k_z\rho_s$';
create_gif
end
if 0
%% Density ion frequency @ kr = 0
GIFNAME = ['Ni00_kr0',sprintf('_%.2d',JOBNUM)]; INTERP = 0;
FIELD =(squeeze(abs(Ni00(1,:,:)))); linestyle = 'o-.'; FRAMES = FRAMES_2D;
X = (kz); T = Ts2D; YMIN = -.1; YMAX = 1.1; XMIN = min(kz); XMAX = max(kz);
FIELDNAME = '$N_i^{00}(kr=0)$'; XNAME = '$k_r\rho_s$';
create_gif_1D
end
if 0
%% kr vs P Si
GIFNAME = ['Sip0_kr',sprintf('_%.2d',JOBNUM)]; INTERP = 0;
plt = @(x) squeeze(max((abs(x)),[],4));
FIELD =plt(Sipj(:,1,:,:,:)); X = kr'; Y = Pi'; T = Ts5D; FRAMES = FRAMES_5D;
FIELDNAME = '$N_i^{p0}$'; XNAME = '$k_{max}\rho_s$'; YNAME = '$P$';
create_gif_imagesc
end
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
if 1
%% maxkz, kr vs p, for all Nipj over time
GIFNAME = ['Nipj_kr',sprintf('_%.2d',JOBNUM)]; INTERP = 0;
plt = @(x) squeeze(max((abs(x)),[],4));
FIELD = plt(Nipj); X = kr'; Y = Pi'; T = Ts5D; FRAMES = FRAMES_5D;
FIELDNAME = 'N_i'; XNAME = '$k_r\rho_s$'; YNAME = '$P$, ${k_z}^{max}$';
create_gif_5D
end
if 1
%% maxkr, kz vs p, for all Nipj over time
GIFNAME = ['Nipj_kz',sprintf('_%.2d',JOBNUM)]; INTERP = 0;
plt = @(x) fftshift(squeeze(max((abs(x)),[],3)),3);
FIELD = plt(Nipj); X = sort(kz'); Y = Pi'; T = Ts5D; FRAMES = FRAMES_5D;
FIELDNAME = 'N_i'; XNAME = '$k_z\rho_s$'; YNAME = '$P$, ${k_r}^{max}$';
create_gif_5D
end
if 0
%% maxkz, kr vs p, for all Nepj over time
GIFNAME = ['Nepj_kr',sprintf('_%.2d',JOBNUM)]; INTERP = 0;
plt = @(x) squeeze(max((abs(x)),[],4));
FIELD = plt(Nepj); X = kr'; Y = Pi'; T = Ts5D; FRAMES = FRAMES_5D;
FIELDNAME = 'N_e'; XNAME = '$k_r\rho_s$'; YNAME = '$P$, ${k_z}^{max}$';
create_gif_5D
end
if 0
%% maxkz, kz vs p, for all Nepj over time
GIFNAME = ['Nepj_kz',sprintf('_%.2d',JOBNUM)]; INTERP = 0;
plt = @(x) fftshift(squeeze(max((abs(x)),[],3)),3);
FIELD = plt(Nepj); X = sort(kz'); Y = Pi'; T = Ts5D; FRAMES = FRAMES_5D;
FIELDNAME = 'N_e'; XNAME = '$k_z\rho_s$'; YNAME = '$P$, ${k_r}^{max}$';
create_gif_5D
end