Newer
Older
module geometry
! computes geometrical quantities
! Adapted from B.J.Frei MOLIX code (2021)
use prec_const
use model
use grid
use array
use fields
use basic
Antoine Cyril David Hoffmann
committed
use calculus, ONLY: simpson_rule_z
use miller, ONLY: set_miller_parameters, get_miller
implicit none
Antoine Cyril David Hoffmann
committed
PRIVATE
! Geometry input parameters
Antoine Cyril David Hoffmann
committed
CHARACTER(len=16), &
PUBLIC, PROTECTED :: geom
REAL(dp), PUBLIC, PROTECTED :: q0 = 1.4_dp ! safety factor
REAL(dp), PUBLIC, PROTECTED :: shear = 0._dp ! magnetic field shear
REAL(dp), PUBLIC, PROTECTED :: eps = 0.18_dp ! inverse aspect ratio
REAL(dp), PUBLIC, PROTECTED :: alpha_MHD = 0 ! shafranov shift effect alpha = -q2 R dbeta/dr
! parameters for Miller geometry
REAL(dp), PUBLIC, PROTECTED :: kappa = 1._dp ! elongation
REAL(dp), PUBLIC, PROTECTED :: s_kappa = 0._dp ! r normalized derivative skappa = r/kappa dkappa/dr
REAL(dp), PUBLIC, PROTECTED :: delta = 0._dp ! triangularity
REAL(dp), PUBLIC, PROTECTED :: s_delta = 0._dp ! '' sdelta = r/sqrt(1-delta2) ddelta/dr
REAL(dp), PUBLIC, PROTECTED :: zeta = 0._dp ! squareness
REAL(dp), PUBLIC, PROTECTED :: s_zeta = 0._dp ! '' szeta = r dzeta/dr
! GENE unused additional parameters for miller_mod
REAL(dp), PUBLIC, PROTECTED :: edge_opt = 0 ! meant to redistribute the points in z
REAL(dp), PUBLIC, PROTECTED :: major_R = 1 ! major radius
REAL(dp), PUBLIC, PROTECTED :: major_Z = 0 ! vertical elevation
REAL(dp), PUBLIC, PROTECTED :: dpdx_pm_geom = 0 ! amplitude mag. eq. pressure grad.
REAL(dp), PUBLIC, PROTECTED :: C_y = 0 ! defines y coordinate : Cy (q theta - phi)
REAL(dp), PUBLIC, PROTECTED :: C_xy = 0 ! defines x coordinate : B = Cxy Vx x Vy
! Geometrical auxiliary variables
LOGICAL, PUBLIC, PROTECTED :: SHEARED = .false. ! flag for shear magn. geom or not
Antoine Cyril David Hoffmann
committed
! Curvature
REAL(dp), PUBLIC, DIMENSION(:,:,:,:), ALLOCATABLE :: Ckxky ! dimensions: kx, ky, z, odd/even p
! Jacobian
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: Jacobian ! dimensions: z, odd/even p
COMPLEX(dp), PUBLIC, PROTECTED :: iInt_Jacobian ! Inverse integrated Jacobian
! Metric
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: gxx, gxy, gxz, gyy, gyz, gzz ! dimensions: z, odd/even p
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: dxdr, dxdZ, Rc, phic, Zc
! derivatives of magnetic field strength
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: gradxB, gradyB, gradzB
! Relative magnetic field strength
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: hatB, hatB_NL
Antoine Cyril David Hoffmann
committed
! Relative strength of major radius
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: hatR, hatZ
! Some geometrical coefficients
REAL(dp), PUBLIC, DIMENSION(:,:) , ALLOCATABLE :: gradz_coeff ! 1 / [ J_{xyz} \hat{B} ]
! Array to map the index of mode (kx,ky,-pi) to (kx+2pi*s*ky,ky,pi) for sheared periodic boundary condition

Antoine Cyril David Hoffmann
committed
INTEGER, PUBLIC, DIMENSION(:,:), ALLOCATABLE :: ikx_zBC_L, ikx_zBC_R
Antoine Cyril David Hoffmann
committed
! Functions
PUBLIC :: geometry_readinputs, geometry_outputinputs,&
eval_magnetic_geometry, set_ikx_zBC_map
Antoine Cyril David Hoffmann
committed
CONTAINS
SUBROUTINE geometry_readinputs
! Read the input parameters
IMPLICIT NONE
NAMELIST /GEOMETRY/ geom, q0, shear, eps,&
kappa, s_kappa,delta, s_delta, zeta, s_zeta ! For miller
Antoine Cyril David Hoffmann
committed
READ(lu_in,geometry)
IF(shear .NE. 0._dp) SHEARED = .true.
Antoine Cyril David Hoffmann
committed
END SUBROUTINE geometry_readinputs
subroutine eval_magnetic_geometry
Antoine Cyril David Hoffmann
committed
! evalute metrix, elementwo_third_kpmaxts, jacobian and gradient
implicit none
COMPLEX(dp), DIMENSION(izs:ize) :: integrant
INTEGER :: fid
Antoine Cyril David Hoffmann
committed
! Allocate arrays
CALL geometry_allocate_mem
IF( (Ny .EQ. 1) .AND. (Nz .EQ. 1)) THEN !1D perp linear run
IF( my_id .eq. 0 ) WRITE(*,*) '1D perpendicular geometry'
call eval_1D_geometry
ELSE
Antoine Cyril David Hoffmann
committed
SELECT CASE(geom)
CASE('s-alpha')
IF( my_id .eq. 0 ) WRITE(*,*) 's-alpha-B geometry'
call eval_salphaB_geometry
CASE('Z-pinch')
IF( my_id .eq. 0 ) WRITE(*,*) 'Z-pinch geometry'
call eval_zpinch_geometry

Antoine Cyril David Hoffmann
committed
SHEARED = .FALSE.
CASE('miller')
IF( my_id .eq. 0 ) WRITE(*,*) 'Miller geometry'
call set_miller_parameters(kappa,s_kappa,delta,s_delta,zeta,s_zeta)
call get_miller(eps,major_R,major_Z,q0,shear,alpha_MHD,edge_opt,&
C_y,C_xy,dpdx_pm_geom,gxx,gyy,gzz,gxy,gxz,gyz,&
gradxB,gradyB,hatB,jacobian,gradzB,hatR,hatZ,dxdR,dxdZ,&
Ckxky,gradz_coeff)
Antoine Cyril David Hoffmann
committed
CASE DEFAULT
STOP 'geometry not recognized!!'
Antoine Cyril David Hoffmann
committed
END SELECT
! Evaluate perpendicular wavenumber
! k_\perp^2 = g^{xx} k_x^2 + 2 g^{xy}k_x k_y + k_y^2 g^{yy}
! normalized to rhos_
Antoine Cyril David Hoffmann
committed
DO eo = 0,1
DO iz = izgs,izge
DO iky = ikys, ikye
ky = kyarray(iky)
DO ikx = ikxs, ikxe
kx = kxarray(ikx)
kparray(iky, ikx, iz, eo) = &
SQRT( gxx(iz,eo)*kx**2 + 2._dp*gxy(iz,eo)*kx*ky + gyy(iz,eo)*ky**2)/hatB(iz,eo)
! there is a factor 1/B from the normalization; important to match GENE
Antoine Cyril David Hoffmann
committed
ENDDO
! Factor in front of the nonlinear term
hatB_NL(izgs:izge,0:1) = Jacobian(izgs:izge,0:1)&
*(gxx(izgs:izge,0:1)*gyy(izgs:izge,0:1) - gxy(izgs:izge,0:1)**2)/hatB(izgs:izge,0:1)
! set the mapping for parallel boundary conditions
CALL set_ikx_zBC_map
Antoine Cyril David Hoffmann
committed
two_third_kpmax = 2._dp/3._dp * MAXVAL(kparray)
!
! Compute the inverse z integrated Jacobian (useful for flux averaging)
integrant = Jacobian(izs:ize,0) ! Convert into complex array
CALL simpson_rule_z(integrant,iInt_Jacobian)
iInt_Jacobian = 1._dp/iInt_Jacobian ! reverse it
END SUBROUTINE eval_magnetic_geometry
!
!--------------------------------------------------------------------------------
!
SUBROUTINE eval_salphaB_geometry
! evaluate s-alpha geometry model
implicit none
REAL(dp) :: z, kx, ky, Gx, Gy
alpha_MHD = 0._dp
Antoine Cyril David Hoffmann
committed
parity: DO eo = 0,1
zloop: DO iz = izgs,izge
Antoine Cyril David Hoffmann
committed
z = zarray(iz,eo)
Antoine Cyril David Hoffmann
committed
gxx(iz,eo) = 1._dp
gxy(iz,eo) = shear*z - alpha_MHD*SIN(z)
gxz(iz,eo) = 0._dp
gyy(iz,eo) = 1._dp + (shear*z - alpha_MHD*SIN(z))**2
gyz(iz,eo) = 1._dp/eps
gzz(iz,eo) = 0._dp
dxdR(iz,eo)= COS(z)
dxdZ(iz,eo)= SIN(z)
! Relative strengh of radius
Antoine Cyril David Hoffmann
committed
hatR(iz,eo) = 1._dp + eps*COS(z)
hatZ(iz,eo) = 1._dp + eps*SIN(z)
! toroidal coordinates
Rc (iz,eo) = hatR(iz,eo)
phic(iz,eo) = z
Zc (iz,eo) = hatZ(iz,eo)
Antoine Cyril David Hoffmann
committed
Jacobian(iz,eo) = q0*hatR(iz,eo)
! Relative strengh of modulus of B
! Derivative of the magnetic field strenght
gradxB(iz,eo) = -COS(z) ! Gene put a factor hatB^2 or 1/hatR^2 in this
gradyB(iz,eo) = 0._dp
gradzB(iz,eo) = eps*SIN(z)/hatR(iz,eo) ! Gene put a factor hatB or 1/hatR in this
Gx = (gxz(iz,eo) * gxy(iz,eo) - gxx(iz,eo) * gyz(iz,eo)) *eps*SIN(Z) ! Kx
Gy = -COS(z) + (gxz(iz,eo) * gyy(iz,eo) - gxy(iz,eo) * gyz(iz,eo)) *eps*SIN(Z) ! Ky
DO iky = ikys, ikye
Ckxky(iky, ikx, iz,eo) = (-SIN(z)*kx - COS(z)*ky -(shear*z-alpha_MHD*SIN(z))*SIN(z)*ky)/ hatB(iz,eo)
! Ckxky(iky, ikx, iz,eo) = (Gx*kx + Gy*ky) * hatB(iz,eo) ! .. multiply by hatB to cancel the 1/ hatB factor in moments_eqs_rhs.f90 routine
! coefficient in the front of parallel derivative
Antoine Cyril David Hoffmann
committed
gradz_coeff(iz,eo) = 1._dp / Jacobian(iz,eo) / hatB(iz,eo)
Antoine Cyril David Hoffmann
committed
ENDDO parity
END SUBROUTINE eval_salphaB_geometry
!
!--------------------------------------------------------------------------------
!
REAL(dp) :: z, kx, ky, alpha_MHD
alpha_MHD = 0._dp
parity: DO eo = 0,1
zloop: DO iz = izgs,izge
z = zarray(iz,eo)
gxx(iz,eo) = 1._dp
gxy(iz,eo) = 0._dp
gxz(iz,eo) = 0._dp
gyy(iz,eo) = 1._dp
gyz(iz,eo) = 0._dp
gzz(iz,eo) = 1._dp
dxdR(iz,eo)= COS(z)
dxdZ(iz,eo)= SIN(z)
! Relative strengh of radius
! toroidal coordinates
Rc (iz,eo) = hatR(iz,eo)
Zc (iz,eo) = hatZ(iz,eo)
! Relative strengh of modulus of B
! Derivative of the magnetic field strenght
gradxB(iz,eo) = 0._dp ! Gene put a factor hatB^2 or 1/hatR^2 in this
gradyB(iz,eo) = 0._dp
gradzB(iz,eo) = 0._dp ! Gene put a factor hatB or 1/hatR in this
! Curvature operator
ky = kyarray(iky)
DO ikx= ikxs, ikxe
kx = kxarray(ikx)
Ckxky(iky, ikx, iz,eo) = -ky * hatB(iz,eo) ! .. multiply by hatB to cancel the 1/ hatB factor in moments_eqs_rhs.f90 routine
ENDDO
ENDDO
! coefficient in the front of parallel derivative
gradz_coeff(iz,eo) = 1._dp / Jacobian(iz,eo) / hatB(iz,eo)
Antoine Cyril David Hoffmann
committed
END SUBROUTINE eval_zpinch_geometry
!
!--------------------------------------------------------------------------------
!
subroutine eval_1D_geometry
! evaluate 1D perp geometry model
implicit none
REAL(dp) :: z, kx, ky
Antoine Cyril David Hoffmann
committed
parity: DO eo = 0,1
Antoine Cyril David Hoffmann
committed
z = zarray(iz,eo)
Antoine Cyril David Hoffmann
committed
gxx(iz,eo) = 1._dp
gxy(iz,eo) = 0._dp
gyy(iz,eo) = 1._dp
Antoine Cyril David Hoffmann
committed
hatR(iz,eo) = 1._dp
Antoine Cyril David Hoffmann
committed
Jacobian(iz,eo) = 1._dp
Antoine Cyril David Hoffmann
committed
hatB(iz,eo) = 1._dp
! Curvature operator
DO iky = ikys, ikye
ky = kyarray(iky)
DO ikx= ikxs, ikxe
kx = kxarray(ikx)
Antoine Cyril David Hoffmann
committed
Ckxky(ikx, iky, iz,eo) = -kx ! .. multiply by hatB to cancel the 1/ hatB factor in moments_eqs_rhs.f90 routine
ENDDO
! coefficient in the front of parallel derivative
Antoine Cyril David Hoffmann
committed
gradz_coeff(iz,eo) = 1._dp
ENDDO zloop
ENDDO parity
!
!--------------------------------------------------------------------------------
!
Antoine Cyril David Hoffmann
committed
SUBROUTINE set_ikx_zBC_map
IMPLICIT NONE
REAL :: shift, kx_shift
! For periodic CHI BC or 0 dirichlet

Antoine Cyril David Hoffmann
committed
ALLOCATE(ikx_zBC_R(ikys:ikye,ikxs:ikxe))
ALLOCATE(ikx_zBC_L(ikys:ikye,ikxs:ikxe))
! No periodic connection for extension of the domain

Antoine Cyril David Hoffmann
committed
!! No shear case (simple id mapping)
!3 | 1 2 3 4 5 6 | ky = 3 dky
!2 ky | 1 2 3 4 5 6 | ky = 2 dky
!1 A | 1 2 3 4 5 6 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky
!(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=free)
DO iky = ikys,ikye
DO ikx = ikxs,ikxe
ikx_zBC_L(iky,ikx) = ikx
ikx_zBC_R(iky,ikx) = ikx
ENDDO

Antoine Cyril David Hoffmann
committed
! Modify connection map only at border of z
! connection map BC of the RIGHT boundary (z=pi*Npol-dz) (even NZ)

Antoine Cyril David Hoffmann
committed
!3 | 4 x x x 2 3 | ky = 3 dky
!2 ky | 3 4 x x 1 2 | ky = 2 dky
!1 A | 2 3 4 x 6 1 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky
!kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky)
! connection map BC of the RIGHT boundary (z=pi*Npol-dz) (ODD NZ)
!3 | x x x 2 3 | ky = 3 dky
!2 ky | 3 x x 1 2 | ky = 2 dky
!1 A | 2 3 x 5 1 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5 | ky = 0 dky
!kx = 0 0.1 0.2 -0.2 -0.1 (dkx=2pi*shear*npol*dky)

Antoine Cyril David Hoffmann
committed
IF(contains_zmax) THEN ! Check if the process is at the end of the FT
DO iky = ikys,ikye
shift = 2._dp*PI*shear*kyarray(iky)*Npol

Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe
kx_shift = kxarray(ikx) + shift
! We use EPSILON() to treat perfect equality case
IF( ((kx_shift-EPSILON(kx_shift)) .GT. kx_max) .AND. (.NOT. PERIODIC_CHI_BC) )THEN ! outside of the frequ domain

Antoine Cyril David Hoffmann
committed
ikx_zBC_R(iky,ikx) = -99
ELSE
ikx_zBC_R(iky,ikx) = ikx+(iky-1)*Nexc

Antoine Cyril David Hoffmann
committed
IF( ikx_zBC_R(iky,ikx) .GT. Nkx ) &
ikx_zBC_R(iky,ikx) = ikx_zBC_R(iky,ikx) - Nkx

Antoine Cyril David Hoffmann
committed
ENDIF
ENDDO
ENDDO
ENDIF
! connection map BC of the LEFT boundary (z=-pi*Npol)
!3 | x 5 6 1 x x | ky = 3 dky
!2 ky | 5 6 1 2 x x | ky = 2 dky
!1 A | 6 1 2 3 x 5 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky
!(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky)
IF(contains_zmin) THEN ! Check if the process is at the start of the FT
DO iky = ikys,ikye
shift = 2._dp*PI*shear*kyarray(iky)*Npol

Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe
kx_shift = kxarray(ikx) - shift
! We use EPSILON() to treat perfect equality case
IF( ((kx_shift+EPSILON(kx_shift)) .LT. kx_min) .AND. (.NOT. PERIODIC_CHI_BC) ) THEN ! outside of the frequ domain

Antoine Cyril David Hoffmann
committed
ikx_zBC_L(iky,ikx) = -99
ELSE
ikx_zBC_L(iky,ikx) = ikx-(iky-1)*Nexc
IF( ikx_zBC_L(iky,ikx) .LT. 1 ) &
ikx_zBC_L(iky,ikx) = ikx_zBC_L(iky,ikx) + Nkx

Antoine Cyril David Hoffmann
committed
ENDIF
ENDDO
ENDDO
ENDIF
ELSE
ENDIF
END SUBROUTINE set_ikx_zBC_map
!
!--------------------------------------------------------------------------------
!
Antoine Cyril David Hoffmann
committed
SUBROUTINE geometry_allocate_mem
! Curvature and geometry
CALL allocate_array( Ckxky, ikys,ikye, ikxs,ikxe,izgs,izge,0,1)
Antoine Cyril David Hoffmann
committed
CALL allocate_array( Jacobian,izgs,izge, 0,1)
CALL allocate_array( gxx,izgs,izge, 0,1)
CALL allocate_array( gxy,izgs,izge, 0,1)
CALL allocate_array( gxz,izgs,izge, 0,1)
CALL allocate_array( gyy,izgs,izge, 0,1)
CALL allocate_array( gyz,izgs,izge, 0,1)
CALL allocate_array( gzz,izgs,izge, 0,1)
CALL allocate_array( gradxB,izgs,izge, 0,1)
CALL allocate_array( gradyB,izgs,izge, 0,1)
CALL allocate_array( gradzB,izgs,izge, 0,1)
CALL allocate_array( hatB,izgs,izge, 0,1)
CALL allocate_array( hatB_NL,izgs,izge, 0,1)
Antoine Cyril David Hoffmann
committed
CALL allocate_array( hatR,izgs,izge, 0,1)
CALL allocate_array( hatZ,izgs,izge, 0,1)
CALL allocate_array( Rc,izgs,izge, 0,1)
CALL allocate_array( phic,izgs,izge, 0,1)
CALL allocate_array( Zc,izgs,izge, 0,1)
CALL allocate_array( dxdR,izgs,izge, 0,1)
CALL allocate_array( dxdZ,izgs,izge, 0,1)
call allocate_array(gradz_coeff,izgs,izge, 0,1)
CALL allocate_array( kparray, ikys,ikye, ikxs,ikxe,izgs,izge,0,1)
Antoine Cyril David Hoffmann
committed
END SUBROUTINE geometry_allocate_mem
SUBROUTINE geometry_outputinputs(fidres, str)
! Write the input parameters to the results_xx.h5 file
USE futils, ONLY: attach
USE prec_const
IMPLICIT NONE
INTEGER, INTENT(in) :: fidres
CHARACTER(len=256), INTENT(in) :: str
CALL attach(fidres, TRIM(str),"geometry", geom)
CALL attach(fidres, TRIM(str), "q0", q0)
CALL attach(fidres, TRIM(str), "shear", shear)
CALL attach(fidres, TRIM(str), "eps", eps)
END SUBROUTINE geometry_outputinputs
end module geometry