Skip to content
Snippets Groups Projects
moments_eq_rhs.F90 10 KiB
Newer Older
SUBROUTINE moments_eq_rhs

  USE basic
  USE time_integration
  USE array
  USE fields
  USE model
  USE prec_const
  IMPLICIT NONE

  INTEGER     :: ip,ij, ikr,ikz ! loops indices
  REAL(dp)    :: kr, kz, kperp2
  REAL(dp)    :: taue_qe_etaB, taui_qi_etaB
  REAL(dp)    :: kernelj, kerneljp1, kerneljm1, b_e2, b_i2 ! Kernel functions and variable
  REAL(dp)    :: factj, sigmae2_taue_o2, sigmai2_taui_o2 ! Auxiliary variables
  REAL(dp)    :: xNapj, xNapp2j, xNapm2j, xNapjp1, xNapjm1 ! factors depending on the pj loop
  REAL(dp)    :: xphij, xphijp1, xphijm1, xColl
  COMPLEX(dp) :: TNapj, TNapp2j, TNapm2j, TNapjp1, TNapjm1, Tphi
  COMPLEX(dp) :: TColl, TColl20, TColl01, TColl10 ! terms of the rhs
  !Precompute species dependant factors
  taue_qe_etaB    = tau_e/q_e * eta_B ! factor of the magnetic moment coupling
  taui_qi_etaB    = tau_i/q_i * eta_B
  sigmae2_taue_o2 = sigma_e**2 * tau_e/2.0 ! factor of the Kernel argument
  sigmai2_taui_o2 = sigma_i**2 * tau_i/2.0
  !!!!!!!!! Electrons moments RHS !!!!!!!!!
  ploope : DO ip = ips_e, ipe_e ! This loop is from 1 to pmaxe+1
    ip_dp = REAL(ip-1,dp) ! REAL index is one minus the loop index (0 to pmax)
    ! N_e^{p+2,j} multiplicator
    IF (ip+2 .LE. pmaxe+1) THEN
      xNapp2j = -taue_qe_etaB * SQRT((ip_dp + 1.) * (ip_dp + 2.))
    ! N_e^{p-2,j} multiplicator
    IF (ip-2 .GE. 1) THEN
      xNapm2j = -taue_qe_etaB * SQRT(ip_dp*(ip_dp - 1.))
    factj = 1.0 ! Start of the recursive factorial

    jloope : DO ij = ijs_e, ije_e ! This loop is from 1 to jmaxe+1
      ij_dp = REAL(ij-1,dp) ! REAL index is one minus the loop index (0 to jmax)

      IF (ij_dp .GT. 0) THEN
        factj = factj * ij_dp; ! Recursive factorial
      ENDIF
      ! N_e^{p,j+1} multiplicator
      IF (ij+1 .LE. jmaxe+1) THEN
        xNapjp1 = taue_qe_etaB * (ij_dp + 1.)
      ! N_e^{p,j-1} multiplicator
      IF (ij-1 .GE. 1) THEN
        xNapjm1 = taue_qe_etaB * ij_dp
      ! N_e^{pj} multiplicator
      xNapj = -taue_qe_etaB * 2.*(ip_dp + ij_dp + 1.)
      ! Collision operator (DK Lenard-Bernstein basis)
      xColl = ip_dp + 2.*ij_dp

      ! phi multiplicator for different kernel numbers
      IF (ip .EQ. 1) THEN !(kronecker delta_p^0)
        xphij   =  (eta_n + 2.*ij_dp*eta_T - 2.*eta_B*(ij_dp+1.) )
        xphijp1 = -(eta_T - eta_B)*(ij_dp+1.)
        xphijm1 = -(eta_T - eta_B)* ij_dp
      ELSE IF (ip .EQ. 3) THEN !(kronecker delta_p^2)
        xphij   =  (eta_T/SQRT2 - SQRT2*eta_B)
        xphijp1 = 0.; xphijm1 = 0.
      ELSE
        xphij = 0.; xphijp1 = 0.; xphijm1 = 0.
      ! Loop on kspace
      krloope : DO ikr = ikrs,ikre
        kzloope : DO ikz = ikzs,ikze
          kr     = krarray(ikr)   ! Poloidal wavevector
          kz     = kzarray(ikz)   ! Toroidal wavevector
          kperp2 = kr**2 + kz**2  ! perpendicular wavevector
          b_e2   = kperp2 * sigmae2_taue_o2 ! Bessel argument

          !! Compute moments and mixing terms
          ! term propto N_e^{p,j}
          TNapj = moments_e(ip,ij,ikr,ikz,updatetlevel) * xNapj
          IF (ip+2 .LE. pmaxe+1) THEN
            TNapp2j = moments_e(ip+2,ij,ikr,ikz,updatetlevel) * xNapp2j
          ELSE
            TNapp2j = 0.
          IF (ip-2 .GE. 1) THEN
            TNapm2j = moments_e(ip-2,ij,ikr,ikz,updatetlevel) * xNapm2j
          ELSE
            TNapm2j = 0.
          IF (ij+1 .LE. jmaxe+1) THEN
            TNapjp1 = moments_e(ip,ij+1,ikr,ikz,updatetlevel) * xNapjp1
          IF (ij-1 .GE. 1) THEN
            TNapjm1 = moments_e(ip,ij-1,ikr,ikz,updatetlevel) * xNapjm1
          ! Dougherty Collision terms
          IF ( (ip .EQ. 1) .AND. (ij .EQ. 2) .AND. (pmaxe .GE. 2) ) THEN ! kronecker p0 * j1
            TColl01 = 2.0/3.0*(SQRT2*moments_e(3,1,ikr,ikz,updatetlevel)&
            - 2.0*moments_e(1,2,ikr,ikz,updatetlevel))
            TColl20 = 0.0; TColl10 = 0.0;
          ELSEIF ( (ip .EQ. 3) .AND. (ij .EQ. 1) .AND. (jmaxe .GE. 1)) THEN ! kronecker p2 * j0
            TColl20 = -SQRT2/3.0*(SQRT2*moments_e(3,1,ikr,ikz,updatetlevel)&
            - 2.0*moments_e(1,2,ikr,ikz,updatetlevel))
            TColl10 = 0.0; TColl01 = 0.0;
          ELSEIF ( (ip .EQ. 2) .AND. (ij .EQ. 1) ) THEN ! kronecker p1 * j0
            TColl10 = moments_e(2,1,ikr,ikz,updatetlevel)
            TColl20 = 0.0; TColl01 = 0.0;
          ELSE
            TColl10 = 0.0; TColl20 = 0.0; TColl01 = 0.0;
          ENDIF
          ! Total collisional term
          TColl = -nu * (xColl * moments_e(ip,ij,ikr,ikz,updatetlevel) &
                           + TColl01 + TColl10 + TColl20)
          IF ( (ip .EQ. 1) .OR. (ip .EQ. 3) ) THEN ! kronecker delta_p^0, delta_p^2
            kernelj    = b_e2**(ij-1) * exp(-b_e2)/factj
            kerneljp1  = kernelj * b_e2  /(ij_dp + 1.)
            kerneljm1  = kernelj * ij_dp / b_e2
            Tphi = (xphij*kernelj + xphijp1*kerneljp1 + xphijm1*kerneljm1) * phi(ikr,ikz)
          ELSE
            Tphi = 0
          ENDIF

          ! Sum of all precomputed terms
          moments_rhs_e(ip,ij,ikr,ikz,updatetlevel) = &
              imagu * kz * (TNapj + TNapp2j + TNapm2j + TNapjp1 + TNapjm1 + Tphi) + TColl
        END DO kzloope
      END DO krloope

    END DO jloope
  END DO ploope

  !!!!!!!!! Ions moments RHS !!!!!!!!!
  ploopi : DO ip = ips_i, ipe_i
    ip_dp = REAL(ip-1,dp)
    IF (ip+2 .LE. pmaxi+1) THEN
      xNapp2j = -taui_qi_etaB * SQRT((ip_dp + 1.) * (ip_dp + 2.))
    IF (ip-2 .GE. 1) THEN
      xNapm2j = -taui_qi_etaB * SQRT(ip_dp * (ip_dp - 1.))
    factj = 1.0 ! Start of the recursive factorial

      ij_dp = REAL(ij-1,dp)

      IF (ij_dp .GT. 0) THEN
        factj = factj * ij_dp; ! Recursive factorial
      ENDIF
      IF (ij+1 .LE. jmaxi+1) THEN
        xNapjp1 = taui_qi_etaB * (ij_dp + 1.)
      IF (ij-1 .GE. 1) THEN
        xNapjm1 = taui_qi_etaB * ij_dp
      xNapj   = -taui_qi_etaB * 2.*(ip_dp + ij_dp + 1.)
      ! Collision operator (DK Lenard-Bernstein basis)
      xColl = ip_dp + 2.*ij_dp

      ! x phi
      IF (ip .EQ. 1) THEN !(krokecker delta_p^0)
        xphij   =  (eta_n + 2.*ij_dp*eta_T - 2.*eta_B*(ij_dp+1.) )
        xphijp1 = -(eta_T - eta_B)*(ij_dp+1.)
        xphijm1 = -(eta_T - eta_B)* ij_dp
      ELSE IF (ip .EQ. 3) THEN !(krokecker delta_p^2)
        xphij   =  (eta_T/SQRT2 - SQRT2*eta_B)
        xphijp1 = 0.; xphijm1 = 0.
      ELSE
        xphij = 0.; xphijp1 = 0.; xphijm1 = 0.
      krloopi : DO ikr = ikrs,ikre
        kzloopi : DO ikz = ikzs,ikze
          kr     = krarray(ikr)   ! Poloidal wavevector
          kz     = kzarray(ikz)   ! Toroidal wavevector
          kperp2 = kr**2 + kz**2  ! perpendicular wavevector
          b_i2   = kperp2 * sigmai2_taui_o2 ! Bessel argument

          !! Compute moments and mixing terms
          ! term propto N_i^{p,j}
          TNapj = moments_i(ip,ij,ikr,ikz,updatetlevel) * xNapj
          ! term propto N_i^{p+2,j}
          IF (ip+2 .LE. pmaxi+1) THEN
            TNapp2j = moments_i(ip+2,ij,ikr,ikz,updatetlevel) * xNapp2j
          ELSE
            TNapp2j = 0.
          ! term propto N_i^{p-2,j}
          IF (ip-2 .GE. 1) THEN
            TNapm2j = moments_i(ip-2,ij,ikr,ikz,updatetlevel) * xNapm2j
          ELSE
            TNapm2j = 0.
          ! xterm propto N_i^{p,j+1}
          IF (ij+1 .LE. jmaxi+1) THEN
            TNapjp1 = moments_i(ip,ij+1,ikr,ikz,updatetlevel) * xNapjp1
          ! term propto N_i^{p,j-1}
          IF (ij-1 .GE. 1) THEN
            TNapjm1 = moments_i(ip,ij-1,ikr,ikz,updatetlevel) * xNapjm1
          ! Dougherty Collision terms
          IF ( (ip .EQ. 1) .AND. (ij .EQ. 2) .AND. (pmaxi .GE. 2)) THEN ! kronecker p0 * j1
            TColl01 = 2.0/3.0*(SQRT2*moments_i(3,1,ikr,ikz,updatetlevel)&
            - 2.0*moments_i(1,2,ikr,ikz,updatetlevel))
            TColl20 = 0.0; TColl10 = 0.0;
          ELSEIF ( (ip .EQ. 3) .AND. (ij .EQ. 1) .AND. (jmaxi .GE. 1)) THEN ! kronecker p2 * j0
            TColl20 = -SQRT2/3.0*(SQRT2*moments_i(3,1,ikr,ikz,updatetlevel)&
            - 2.0*moments_i(1,2,ikr,ikz,updatetlevel))
            TColl10 = 0.0; TColl01 = 0.0;
          ELSEIF ( (ip .EQ. 2) .AND. (ij .EQ. 1) ) THEN ! kronecker p1 * j0
            TColl10 = moments_i(2,1,ikr,ikz,updatetlevel)
            TColl20 = 0.0; TColl01 = 0.0;
          ELSE
            TColl10 = 0.0; TColl20 = 0.0; TColl01 = 0.0;
          ENDIF
          ! Total collisional term
          TColl = -nu * (xColl * moments_e(ip,ij,ikr,ikz,updatetlevel) &
                           + TColl01 + TColl10 + TColl20)
          IF ( (ip .eq. 1) .or. (ip .eq. 3) ) THEN ! kronecker delta_p^0, delta_p^2
            kernelj    = b_i2**(ij-1) * exp(-b_i2)/factj
            kerneljp1  = kernelj * b_i2  /(ij_dp + 1.)
            Tphi = (xphij*kernelj + xphijp1*kerneljp1 + xphijm1*kerneljm1) * phi(ikr,ikz)
          ELSE
            Tphi = 0
          ENDIF
          ! Sum of all precomputed terms
          moments_rhs_i(ip,ij,ikr,ikz,updatetlevel) = &
              imagu * kz * (TNapj + TNapp2j + TNapm2j + TNapjp1 + TNapjm1 + Tphi) + TColl
        END DO kzloopi
      END DO krloopi

    END DO jloopi
  END DO ploopi

END SUBROUTINE moments_eq_rhs