Newer
Older
MODULE numerics
USE basic
USE prec_const
USE grid
USE utility

Antoine Cyril David Hoffmann
committed
implicit none
PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op
PUBLIC :: compute_lin_coeff, play_with_modes, save_EM_ZF_modes
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
CONTAINS
!******************************************************************************!
!!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin
!******************************************************************************!
SUBROUTINE build_dnjs_table
USE array, Only : dnjs
USE coeff
IMPLICIT NONE
INTEGER :: in, ij, is, J
INTEGER :: n_, j_, s_
J = max(jmaxe,jmaxi)
DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetry
n_ = in - 1
DO ij = in,J+1
j_ = ij - 1
DO is = ij,J+1
s_ = is - 1
dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0))
! By symmetry
dnjs(in,is,ij) = dnjs(in,ij,is)
dnjs(ij,in,is) = dnjs(in,ij,is)
dnjs(ij,is,in) = dnjs(in,ij,is)
dnjs(is,ij,in) = dnjs(in,ij,is)
dnjs(is,in,ij) = dnjs(in,ij,is)
ENDDO
ENDDO
ENDDO
END SUBROUTINE build_dnjs_table
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate the kernels once for all
!******************************************************************************!
SUBROUTINE evaluate_kernels
USE basic
USE array, Only : kernel_e, kernel_i, HF_phi_correction_operator

Antoine Cyril David Hoffmann
committed
USE model, ONLY : sigmae2_taue_o2, sigmai2_taui_o2, KIN_E
IMPLICIT NONE
Antoine Cyril David Hoffmann
committed
INTEGER :: j_int
Antoine Cyril David Hoffmann
committed
DO eo = 0,1
Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
DO iz = izgs,izge
!!!!! Electron kernels !!!!!
IF(KIN_E) THEN
DO ij = ijgs_e, ijge_e
j_int = jarray_e(ij)
Antoine Cyril David Hoffmann
committed
j_dp = REAL(j_int,dp)
y_ = sigmae2_taue_o2 * kparray(iky,ikx,iz,eo)**2
kernel_e(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/GAMMA(j_dp+1._dp)!factj
IF (ijs_e .EQ. 1) &
!!!!! Ion kernels !!!!!
DO ij = ijgs_i, ijge_i
Antoine Cyril David Hoffmann
committed
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
y_ = sigmai2_taui_o2 * kparray(iky,ikx,iz,eo)**2
kernel_i(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/GAMMA(j_dp+1._dp)!factj
IF (ijs_i .EQ. 1) &
Antoine Cyril David Hoffmann
committed
ENDDO
ENDDO
ENDDO
Antoine Cyril David Hoffmann
committed
ENDDO
!! Correction term for the evaluation of the heat flux
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = &
2._dp * Kernel_i(1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
-1._dp * Kernel_i(2,ikys:ikye,ikxs:ikxe,izs:ize,0)
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) &
- Kernel_i(ij,ikys:ikye,ikxs:ikxe,izs:ize,0) * (&
2._dp*(j_dp+1.5_dp) * Kernel_i(ij ,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- (j_dp+1.0_dp) * Kernel_i(ij+1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- j_dp * Kernel_i(ij-1,ikys:ikye,ikxs:ikxe,izs:ize,0))
ENDDO
Antoine Cyril David Hoffmann
committed
END SUBROUTINE evaluate_kernels
!******************************************************************************!
!******************************************************************************!
SUBROUTINE evaluate_EM_op
IMPLICIT NONE
CALL evaluate_poisson_op
CALL evaluate_ampere_op
END SUBROUTINE evaluate_EM_op
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_poisson_op
USE basic

Antoine Cyril David Hoffmann
committed
USE array, Only : kernel_e, kernel_i, inv_poisson_op, inv_pol_ion
USE grid

Antoine Cyril David Hoffmann
committed
USE model, ONLY : qe2_taue, qi2_taui, KIN_E
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
!!!!!!!!!!!!!!!!! Ion contribution
! loop over n only if the max polynomial degree
pol_i = 0._dp
DO ini=1,jmaxi+1
pol_i = pol_i + qi2_taui*kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
IF (KIN_E) THEN ! Kinetic model
! loop over n only if the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + qe2_taue*kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
ELSE ! Adiabatic model

Antoine Cyril David Hoffmann
committed
pol_e = qe2_taue - 1._dp
ENDIF
inv_poisson_op(iky, ikx, iz) = 1._dp/(qe2_taue + qi2_taui - pol_i - pol_e)

Antoine Cyril David Hoffmann
committed
inv_pol_ion (iky, ikx, iz) = 1._dp/(qi2_taui - pol_i)
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
END SUBROUTINE evaluate_poisson_op
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_ampere_op
USE basic
USE array, Only : kernel_e, kernel_i, inv_ampere_op
USE grid

Antoine Cyril David Hoffmann
committed
USE model, ONLY : q_e, q_i, beta, sigma_e, sigma_i
USE geometry, ONLY : hatB
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e, kperp2 ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! We do not solve Ampere if beta = 0 to spare waste of ressources
IF(SOLVE_AMPERE) THEN
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
zloop: DO iz = izs,ize
kperp2 = kparray(iky,ikx,iz,0)**2
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
inv_ampere_op(iky, ikx, iz) = 0._dp
ELSE
!!!!!!!!!!!!!!!!! Ion contribution
pol_i = 0._dp
! loop over n only up to the max polynomial degree
DO ini=1,jmaxi+1
pol_i = pol_i + kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_i = q_i**2/(sigma_i**2) * pol_i
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
! loop over n only up to the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_e = q_e**2/(sigma_e**2) * pol_e
inv_ampere_op(iky, ikx, iz) = 1._dp/(2._dp*kperp2*hatB(iz,0)**2 + beta*(pol_i + pol_e))
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
ENDIF
END SUBROUTINE evaluate_ampere_op
!******************************************************************************!
SUBROUTINE compute_lin_coeff

Antoine Cyril David Hoffmann
committed
USE model, ONLY: taue_qe, taui_qi, &
k_Te, k_Ti, k_Ne, k_Ni, CurvB, GradB, KIN_E,&

Antoine Cyril David Hoffmann
committed
tau_e, tau_i, sigma_e, sigma_i
USE prec_const
USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, &
ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i
IMPLICIT NONE
INTEGER :: p_int, j_int ! polynom. degrees
REAL(dp) :: p_dp, j_dp
!! Electrons linear coefficients for moment RHS !!!!!!!!!!
IF(KIN_E)THEN
DO ip = ips_e, ipe_e
p_int= parray_e(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
DO ij = ijs_e, ije_e
j_int= jarray_e(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! All Napj terms
xnepj(ip,ij) = taue_qe*(CurvB*(2._dp*p_dp + 1._dp) &
+GradB*(2._dp*j_dp + 1._dp))
Antoine Cyril David Hoffmann
committed
! Mirror force terms
ynepp1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp+1._dp)
ynepm1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp)
ynepp1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp+1._dp)
ynepm1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp)
zNepm1j (ip,ij) = +SQRT(tau_e)/sigma_e * (2._dp*j_dp+1_dp)*SQRT(p_dp)
zNepm1jp1(ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1_dp)*SQRT(p_dp)
zNepm1jm1(ip,ij) = -SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp)
ENDDO
ENDDO
DO ip = ips_e, ipe_e
p_int= parray_e(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
Antoine Cyril David Hoffmann
committed
! Landau damping coefficients (ddz napj term)
xnepp1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp + 1_dp)
xnepm1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp)
! Magnetic curvature term
xnepp2j(ip) = taue_qe * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp))
xnepm2j(ip) = taue_qe * CurvB * SQRT(p_dp * (p_dp - 1._dp))
ENDDO
DO ij = ijs_e, ije_e
j_int= jarray_e(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! Magnetic gradient term
xnepjp1(ij) = -taue_qe * GradB * (j_dp + 1._dp)
xnepjm1(ij) = -taue_qe * GradB * j_dp
ENDIF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! Ions linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_i, ipe_i
p_int= parray_i(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
DO ij = ijs_i, ije_i
j_int= jarray_i(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! All Napj terms
xnipj(ip,ij) = taui_qi*(CurvB*(2._dp*p_dp + 1._dp) &
+GradB*(2._dp*j_dp + 1._dp))
Antoine Cyril David Hoffmann
committed
! Mirror force terms
ynipp1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp+1._dp)
ynipm1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp)
ynipp1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp+1._dp)
ynipm1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp)
! Trapping terms
zNipm1j (ip,ij) = +SQRT(tau_i)/sigma_i* (2._dp*j_dp+1_dp)*SQRT(p_dp)
zNipm1jp1(ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1_dp)*SQRT(p_dp)
zNipm1jm1(ip,ij) = -SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp)
ENDDO
ENDDO
DO ip = ips_i, ipe_i
p_int= parray_i(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
Antoine Cyril David Hoffmann
committed
! Landau damping coefficients (ddz napj term)
xnipp1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp + 1._dp)
xnipm1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp)
! Magnetic curvature term
xnipp2j(ip) = taui_qi * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp))
xnipm2j(ip) = taui_qi * CurvB * SQRT(p_dp * (p_dp - 1._dp))
ENDDO
DO ij = ijs_i, ije_i
j_int= jarray_i(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! Magnetic gradient term
xnipjp1(ij) = -taui_qi * GradB * (j_dp + 1._dp)
xnipjm1(ij) = -taui_qi * GradB * j_dp
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ES linear coefficients for moment RHS !!!!!!!!!!
IF (KIN_E) THEN
DO ip = ips_e, ipe_e
p_int= parray_e(ip) ! Hermite degree
DO ij = ijs_e, ije_e
j_int= jarray_e(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 0) THEN ! kronecker p0
xphij_e(ip,ij) = +k_Ne+ 2.*j_dp*k_Te
xphijp1_e(ip,ij) = -k_Te*(j_dp+1._dp)
xphijm1_e(ip,ij) = -k_Te* j_dp
ELSE IF (p_int .EQ. 2) THEN ! kronecker p2
xphij_e(ip,ij) = +k_Te/SQRT2
xphijp1_e(ip,ij) = 0._dp; xphijm1_e(ip,ij) = 0._dp;
ELSE
xphij_e(ip,ij) = 0._dp; xphijp1_e(ip,ij) = 0._dp
xphijm1_e(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
ENDIF
DO ip = ips_i, ipe_i
p_int= parray_i(ip) ! Hermite degree
DO ij = ijs_i, ije_i
j_int= jarray_i(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 0) THEN ! kronecker p0
xphij_i(ip,ij) = +k_Ni + 2._dp*j_dp*k_Ti
xphijp1_i(ip,ij) = -k_Ti*(j_dp+1._dp)
xphijm1_i(ip,ij) = -k_Ti* j_dp
ELSE IF (p_int .EQ. 2) THEN ! kronecker p2
xphij_i(ip,ij) = +k_Ti/SQRT2
xphijp1_i(ip,ij) = 0._dp; xphijm1_i(ip,ij) = 0._dp;
xphij_i(ip,ij) = 0._dp; xphijp1_i(ip,ij) = 0._dp
xphijm1_i(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! EM linear coefficients for moment RHS !!!!!!!!!!
IF (KIN_E) THEN
DO ip = ips_e, ipe_e
p_int= parray_e(ip) ! Hermite degree
DO ij = ijs_e, ije_e
j_int= jarray_e(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 1) THEN ! kronecker p1
xpsij_e (ip,ij) = +(k_Ne + (2._dp*j_dp+1._dp)*k_Te)* SQRT(tau_e)/sigma_e
xpsijp1_e(ip,ij) = - k_Te*(j_dp+1._dp) * SQRT(tau_e)/sigma_e
xpsijm1_e(ip,ij) = - k_Te* j_dp * SQRT(tau_e)/sigma_e
ELSE IF (p_int .EQ. 3) THEN ! kronecker p3
xpsij_e (ip,ij) = + k_Te*SQRT3/SQRT2 * SQRT(tau_e)/sigma_e
xpsijp1_e(ip,ij) = 0._dp; xpsijm1_e(ip,ij) = 0._dp;
ELSE
xpsij_e (ip,ij) = 0._dp; xpsijp1_e(ip,ij) = 0._dp
xpsijm1_e(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
ENDIF
DO ip = ips_i, ipe_i
p_int= parray_i(ip) ! Hermite degree
DO ij = ijs_i, ije_i
j_int= jarray_i(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 1) THEN ! kronecker p1
xpsij_i (ip,ij) = +(k_Ni + (2._dp*j_dp+1._dp)*k_Ti)* SQRT(tau_i)/sigma_i
xpsijp1_i(ip,ij) = - k_Ti*(j_dp+1._dp) * SQRT(tau_i)/sigma_i
xpsijm1_i(ip,ij) = - k_Ti* j_dp * SQRT(tau_i)/sigma_i
ELSE IF (p_int .EQ. 3) THEN ! kronecker p3
xpsij_i (ip,ij) = + k_Ti*SQRT3/SQRT2 * SQRT(tau_i)/sigma_i
xpsijp1_i(ip,ij) = 0._dp; xpsijm1_i(ip,ij) = 0._dp;
ELSE
xpsij_i (ip,ij) = 0._dp; xpsijp1_i(ip,ij) = 0._dp
xpsijm1_i(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
END SUBROUTINE compute_lin_coeff
!******************************************************************************!
!!!!!!! Routine that can artificially increase or wipe modes
!******************************************************************************!
SUBROUTINE save_EM_ZF_modes
USE fields
USE array, ONLY : moments_e_ZF, moments_i_ZF, phi_ZF, moments_e_EM,moments_i_EM,phi_EM
USE grid
USE time_integration, ONLY: updatetlevel
IMPLICIT NONE
! Store Zonal and entropy modes
moments_e_ZF(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,izs:ize) = moments_e(ips_e:ipe_e,ijs_e:ije_e,iky_0,ikxs:ikxe,izs:ize,updatetlevel)
moments_i_ZF(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,izs:ize) = moments_i(ips_i:ipe_i,ijs_i:ije_i,iky_0,ikxs:ikxe,izs:ize,updatetlevel)
phi_ZF(ikxs:ikxe,izs:ize) = phi(iky_0,ikxs:ikxe,izs:ize)
ELSE
IF(KIN_E) &
moments_e_ZF(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,izs:ize) = 0._dp
moments_i_ZF(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,izs:ize) = 0._dp
phi_ZF(ikxs:ikxe,izs:ize) = 0._dp
ENDIF
IF(contains_kx0) THEN
moments_e_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize) = moments_e(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,ikx_0,izs:ize,updatetlevel)
moments_i_EM(ips_i:ipe_i,ijs_i:ije_i,ikys:ikye,izs:ize) = moments_i(ips_i:ipe_i,ijs_i:ije_i,ikys:ikye,ikx_0,izs:ize,updatetlevel)
phi_EM(ikys:ikye,izs:ize) = phi(ikys:ikye,ikx_0,izs:ize)
moments_e_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize) = 0._dp
moments_i_EM(ips_e:ipe_e,ijs_i:ije_i,ikys:ikye,izs:ize) = 0._dp
phi_EM(ikys:ikye,izs:ize) = 0._dp
ENDIF
END SUBROUTINE
SUBROUTINE play_with_modes
USE fields
USE array, ONLY : moments_e_ZF, moments_i_ZF, phi_ZF, moments_e_EM,moments_i_EM,phi_EM
USE grid
USE time_integration, ONLY: updatetlevel
USE initial_par, ONLY: ACT_ON_MODES
IMPLICIT NONE
REAL(dp) :: AMP = 1.5_dp
SELECT CASE(ACT_ON_MODES)
CASE('wipe_zonal') ! Errase the zonal flow
moments_e(ips_e:ipe_e,ijs_e:ije_e,iky_0,ikxs:ikxe,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,iky_0,ikxs:ikxe,izs:ize,updatetlevel) = 0._dp
phi(iky_0,ikxs:ikxe,izs:ize) = 0._dp
CASE('wipe_entropymode')
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,ikx_0,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikys:ikye,ikx_0,izs:ize,updatetlevel) = 0._dp
phi(ikys:ikye,ikx_0,izs:ize) = 0._dp
CASE('wipe_turbulence')
DO ikx = ikxs,ikxe
DO iky = ikys, ikye
IF ( (ikx .NE. ikx_0) .AND. (iky .NE. iky_0) ) THEN
moments_e(ips_e:ipe_e,ijs_e:ije_e,iky,ikx,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,iky,ikx,izs:ize,updatetlevel) = 0._dp
phi(iky,ikx,izs:ize) = 0._dp
ENDIF
ENDDO
ENDDO
CASE('wipe_nonzonal')
DO ikx = ikxs,ikxe
DO iky = ikys, ikye
IF ( (ikx .NE. ikx_0) ) THEN
moments_e(ips_e:ipe_e,ijs_e:ije_e,iky,ikx,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,iky,ikx,izs:ize,updatetlevel) = 0._dp
phi(iky,ikx,izs:ize) = 0._dp
ENDIF
ENDDO
ENDDO
CASE('freeze_zonal')
moments_e(ips_e:ipe_e,ijs_e:ije_e,iky_0,ikxs:ikxe,izs:ize,updatetlevel) = moments_e_ZF(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,izs:ize)
moments_i(ips_i:ipe_i,ijs_i:ije_i,iky_0,ikxs:ikxe,izs:ize,updatetlevel) = moments_i_ZF(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,izs:ize)
phi(iky_0,ikxs:ikxe,izs:ize) = phi_ZF(ikxs:ikxe,izs:ize)
CASE('freeze_entropymode')
IF(contains_kx0) THEN
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,ikx_0,izs:ize,updatetlevel) = moments_e_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize)
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikys:ikye,ikx_0,izs:ize,updatetlevel) = moments_i_EM(ips_i:ipe_i,ijs_i:ije_i,ikys:ikye,izs:ize)
phi(ikys:ikye,ikx_0,izs:ize) = phi_EM(ikys:ikye,izs:ize)
ENDIF
CASE('amplify_zonal')
moments_e(ips_e:ipe_e,ijs_e:ije_e,iky_0,ikxs:ikxe,izs:ize,updatetlevel) = AMP*moments_e_ZF(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,izs:ize)
moments_i(ips_i:ipe_i,ijs_i:ije_i,iky_0,ikxs:ikxe,izs:ize,updatetlevel) = AMP*moments_i_ZF(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,izs:ize)
phi(iky_0,ikxs:ikxe,izs:ize) = AMP*phi_ZF(ikxs:ikxe,izs:ize)
END SUBROUTINE
END MODULE numerics