Newer
Older
MODULE numerics
USE basic
USE prec_const
USE grid
USE utility
USE coeff
implicit none
PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_poisson_op, compute_lin_coeff
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
CONTAINS
!******************************************************************************!
!!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin
!******************************************************************************!
SUBROUTINE build_dnjs_table
USE array, Only : dnjs
USE coeff
IMPLICIT NONE
INTEGER :: in, ij, is, J
INTEGER :: n_, j_, s_
J = max(jmaxe,jmaxi)
DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetry
n_ = in - 1
DO ij = in,J+1
j_ = ij - 1
DO is = ij,J+1
s_ = is - 1
dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0))
! By symmetry
dnjs(in,is,ij) = dnjs(in,ij,is)
dnjs(ij,in,is) = dnjs(in,ij,is)
dnjs(ij,is,in) = dnjs(in,ij,is)
dnjs(is,ij,in) = dnjs(in,ij,is)
dnjs(is,in,ij) = dnjs(in,ij,is)
ENDDO
ENDDO
ENDDO
END SUBROUTINE build_dnjs_table
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate the kernels once for all
!******************************************************************************!
SUBROUTINE evaluate_kernels
USE basic
USE array, Only : kernel_e, kernel_i
USE model, ONLY : tau_e, tau_i, sigma_e, sigma_i, q_e, q_i, &
lambdaD, CLOS, sigmae2_taue_o2, sigmai2_taui_o2, KIN_E
IMPLICIT NONE
Antoine Cyril David Hoffmann
committed
INTEGER :: j_int
REAL(dp) :: j_dp, y_, kp2_, kx_, ky_
Antoine Cyril David Hoffmann
committed
DO eo = 0,1
Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
DO iz = izs,ize
!!!!! Electron kernels !!!!!
IF(KIN_E) THEN
Antoine Cyril David Hoffmann
committed
DO ij = ijsg_e, ijeg_e
j_int = jarray_e(ij)
Antoine Cyril David Hoffmann
committed
j_dp = REAL(j_int,dp)
Antoine Cyril David Hoffmann
committed
y_ = sigmae2_taue_o2 * kparray(ikx,iky,iz,eo)**2
kernel_e(ij,ikx,iky,iz,eo) = y_**j_int*EXP(-y_)/GAMMA(j_dp+1._dp)!factj
!!!!! Ion kernels !!!!!
Antoine Cyril David Hoffmann
committed
DO ij = ijsg_i, ijeg_i
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
Antoine Cyril David Hoffmann
committed
y_ = sigmai2_taui_o2 * kparray(ikx,iky,iz,eo)**2
kernel_i(ij,ikx,iky,iz,eo) = y_**j_int*EXP(-y_)/GAMMA(j_dp+1._dp)!factj
Antoine Cyril David Hoffmann
committed
ENDDO
ENDDO
ENDDO
Antoine Cyril David Hoffmann
committed
ENDDO
Antoine Cyril David Hoffmann
committed
END SUBROUTINE evaluate_kernels
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_poisson_op
USE basic
USE array, Only : kernel_e, kernel_i, inv_poisson_op
USE grid
USE model, ONLY : tau_e, tau_i, q_e, q_i, KIN_E
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
zloop: DO iz = izs,ize
Antoine Cyril David Hoffmann
committed
! This term is evalued on the even z grid since poisson uses only p=0 and phi
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
inv_poisson_op(ikx, iky, iz) = 0._dp
ELSE
!!!!!!!!!!!!!!!!! Ion contribution
! loop over n only if the max polynomial degree
pol_i = 0._dp
DO ini=1,jmaxi+1
Antoine Cyril David Hoffmann
committed
pol_i = pol_i + qi2_taui*kernel_i(ini,ikx,iky,iz,0)**2 ! ... sum recursively ...
END DO
!!!!!!!!!!!!! Electron contribution\
pol_e = 0._dp
! Kinetic model
IF (KIN_E) THEN
! loop over n only if the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
Antoine Cyril David Hoffmann
committed
pol_e = pol_e + qe2_taue*kernel_e(ine,ikx,iky,iz,0)**2 ! ... sum recursively ...
END DO
! Adiabatic model
ELSE
pol_e = 1._dp - qe2_taue
ENDIF
inv_poisson_op(ikx, iky, iz) = 1._dp/(qe2_taue + qi2_taui - pol_i - pol_e)
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
END SUBROUTINE evaluate_poisson_op
!******************************************************************************!
SUBROUTINE compute_lin_coeff
USE model, ONLY: taue_qe, taui_qi, sqrtTaue_qe, sqrtTaui_qi, &
K_T, K_n, CurvB, GradB, KIN_E
USE prec_const
USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, &
ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i
IMPLICIT NONE
INTEGER :: p_int, j_int ! polynom. degrees
REAL(dp) :: p_dp, j_dp
REAL(dp) :: kx, ky, z
!! Electrons linear coefficients for moment RHS !!!!!!!!!!
IF(KIN_E)THEN
DO ip = ips_e, ipe_e
p_int= parray_e(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
DO ij = ijs_e, ije_e
j_int= jarray_e(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! All Napj terms
xnepj(ip,ij) = taue_qe*(CurvB*(2._dp*p_dp + 1._dp) &
+GradB*(2._dp*j_dp + 1._dp))
Antoine Cyril David Hoffmann
committed
! Mirror force terms
ynepp1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp+1._dp)
ynepm1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp)
ynepp1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp+1._dp)
ynepm1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp)
zNepm1j (ip,ij) = +SQRT(tau_e)/sigma_e * (2._dp*j_dp+1_dp)*SQRT(p_dp)
zNepm1jp1(ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1_dp)*SQRT(p_dp)
zNepm1jm1(ip,ij) = -SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp)
ENDDO
ENDDO
DO ip = ips_e, ipe_e
p_int= parray_e(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
Antoine Cyril David Hoffmann
committed
! Landau damping coefficients (ddz napj term)
xnepp1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp + 1_dp)
xnepm1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp)
! Magnetic curvature term
xnepp2j(ip) = taue_qe * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp))
xnepm2j(ip) = taue_qe * CurvB * SQRT(p_dp * (p_dp - 1._dp))
ENDDO
DO ij = ijs_e, ije_e
j_int= jarray_e(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! Magnetic gradient term
xnepjp1(ij) = -taue_qe * GradB * (j_dp + 1._dp)
xnepjm1(ij) = -taue_qe * GradB * j_dp
ENDIF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! Ions linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_i, ipe_i
p_int= parray_i(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
DO ij = ijs_i, ije_i
j_int= jarray_i(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! All Napj terms
xnipj(ip,ij) = taui_qi*(CurvB*(2._dp*p_dp + 1._dp) &
+GradB*(2._dp*j_dp + 1._dp))
Antoine Cyril David Hoffmann
committed
! Mirror force terms
ynipp1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp+1._dp)
ynipm1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp)
ynipp1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp+1._dp)
ynipm1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp)
! Trapping terms
zNipm1j (ip,ij) = +SQRT(tau_i)/sigma_i* (2._dp*j_dp+1_dp)*SQRT(p_dp)
zNipm1jp1(ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1_dp)*SQRT(p_dp)
zNipm1jm1(ip,ij) = -SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp)
ENDDO
ENDDO
DO ip = ips_i, ipe_i
p_int= parray_i(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
Antoine Cyril David Hoffmann
committed
! Landau damping coefficients (ddz napj term)
xnipp1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp + 1._dp)
xnipm1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp)
! Magnetic curvature term
xnipp2j(ip) = taui_qi * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp))
xnipm2j(ip) = taui_qi * CurvB * SQRT(p_dp * (p_dp - 1._dp))
ENDDO
DO ij = ijs_i, ije_i
j_int= jarray_i(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
Antoine Cyril David Hoffmann
committed
! Magnetic gradient term
xnipjp1(ij) = -taui_qi * GradB * (j_dp + 1._dp)
xnipjm1(ij) = -taui_qi * GradB * j_dp
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ES linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_i, ipe_i
p_int= parray_i(ip) ! Hermite degree
DO ij = ijs_i, ije_i
j_int= jarray_i(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 0) THEN ! kronecker p0
xphij(ip,ij) =+K_n + 2.*j_dp*K_T
xphijp1(ip,ij) =-K_T*(j_dp+1._dp)
xphijm1(ip,ij) =-K_T* j_dp
ELSE IF (p_int .EQ. 2) THEN ! kronecker p2
xphij(ip,ij) =+K_T/SQRT2
xphijp1(ip,ij) = 0._dp; xphijm1(ip,ij) = 0._dp;
ELSE
xphij(ip,ij) = 0._dp; xphijp1(ip,ij) = 0._dp
xphijm1(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
END SUBROUTINE compute_lin_coeff
!******************************************************************************!
!!!!!!! Routine that can artificially increase or wipe modes
!******************************************************************************!
SUBROUTINE save_EM_ZF_modes
USE fields
USE array, ONLY : moments_e_ZF, moments_i_ZF, phi_ZF, moments_e_EM,moments_i_EM,phi_EM
USE grid
USE time_integration, ONLY: updatetlevel
USE initial_par, ONLY: ACT_ON_MODES
IMPLICIT NONE
! Store Zonal and entropy modes
moments_e_ZF(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,izs:ize) = moments_e(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,iky_0,izs:ize,updatetlevel)
moments_i_ZF(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,izs:ize) = moments_i(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,iky_0,izs:ize,updatetlevel)
phi_ZF(ikxs:ikxe,izs:ize) = phi(ikxs:ikxe,iky_0,izs:ize)
IF(contains_kx0) THEN
moments_e_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize) = moments_e(ips_e:ipe_e,ijs_e:ije_e,ikx_0,ikys:ikye,izs:ize,updatetlevel)
moments_i_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize) = moments_i(ips_i:ipe_i,ijs_i:ije_i,ikx_0,ikys:ikye,izs:ize,updatetlevel)
phi_EM(ikys:ikye,izs:ize) = phi(ikx_0,ikys:ikye,izs:ize)
ELSE
moments_e_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize) = 0._dp
moments_i_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize) = 0._dp
phi_EM(ikys:ikye,izs:ize) = 0._dp
ENDIF
END SUBROUTINE
SUBROUTINE play_with_modes
USE fields
USE array, ONLY : moments_e_ZF, moments_i_ZF, phi_ZF, moments_e_EM,moments_i_EM,phi_EM
USE grid
USE time_integration, ONLY: updatetlevel
USE initial_par, ONLY: ACT_ON_MODES
IMPLICIT NONE
REAL(dp) :: AMP = 1.5_dp
SELECT CASE(ACT_ON_MODES)
CASE('wipe_zonal') ! Errase the zonal flow
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,iky_0,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,iky_0,izs:ize,updatetlevel) = 0._dp
phi(ikxs:ikxe,iky_0,izs:ize) = 0._dp
CASE('wipe_entropymode')
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikx_0,ikys:ikye,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikx_0,ikys:ikye,izs:ize,updatetlevel) = 0._dp
phi(ikx_0,ikys:ikye,izs:ize) = 0._dp
CASE('wipe_turbulence')
DO ikx = ikxs,ikxe
DO iky = ikys, ikye
IF ( (ikx .NE. ikx_0) .AND. (iky .NE. iky_0) ) THEN
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikx,iky,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikx,iky,izs:ize,updatetlevel) = 0._dp
phi(ikx,iky,izs:ize) = 0._dp
ENDIF
ENDDO
ENDDO
CASE('wipe_nonzonal')
DO ikx = ikxs,ikxe
DO iky = ikys, ikye
IF ( (ikx .NE. ikx_0) ) THEN
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikx,iky,izs:ize,updatetlevel) = 0._dp
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikx,iky,izs:ize,updatetlevel) = 0._dp
phi(ikx,iky,izs:ize) = 0._dp
ENDIF
ENDDO
ENDDO
CASE('freeze_zonal')
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,iky_0,izs:ize,updatetlevel) = moments_e_ZF(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,izs:ize)
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,iky_0,izs:ize,updatetlevel) = moments_i_ZF(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,izs:ize)
phi(ikxs:ikxe,iky_0,izs:ize) = phi_ZF(ikxs:ikxe,izs:ize)
CASE('freeze_entropymode')
IF(contains_kx0) THEN
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikx_0,ikys:ikye,izs:ize,updatetlevel) = moments_e_EM(ips_e:ipe_e,ijs_e:ije_e,ikys:ikye,izs:ize)
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikx_0,ikys:ikye,izs:ize,updatetlevel) = moments_i_EM(ips_i:ipe_i,ijs_i:ije_i,ikys:ikye,izs:ize)
phi(ikx_0,ikys:ikye,izs:ize) = phi_EM(ikys:ikye,izs:ize)
ENDIF
CASE('amplify_zonal')
moments_e(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,iky_0,izs:ize,updatetlevel) = AMP*moments_e_ZF(ips_e:ipe_e,ijs_e:ije_e,ikxs:ikxe,izs:ize)
moments_i(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,iky_0,izs:ize,updatetlevel) = AMP*moments_i_ZF(ips_i:ipe_i,ijs_i:ije_i,ikxs:ikxe,izs:ize)
phi(ikxs:ikxe,iky_0,izs:ize) = AMP*phi_ZF(ikxs:ikxe,izs:ize)
END SELECT
END SUBROUTINE
END MODULE numerics