Newer
Older
%% Set simulation parameters
SIMID = 'lin_Ivanov'; % Name of the simulation
%% Set up physical parameters
CLUSTER.TIME = '99:00:00'; % Allocation time hh:mm:ss
TAU = 0.001; % e/i temperature ratio
NU = 1.0*3/2/TAU/4; % Collision frequency
K_Ne = 0*2.22; % ele Density
K_Te = 0*6.96; % ele Temperature
K_Ni = 0*2.22; % ion Density gradient drive
SIGMA_E = 0.0233380; % mass ratio sqrt(m_a/m_i) (correct = 0.0233380)
NA = 1; % number of kinetic species
ADIAB_E = (NA==1); % adiabatic electron model
BETA = 0.0; % electron plasma beta
RM_LD_T_EQ = 1; % to remove Landau damping in temperature and higher eq.
%% Set up grid parameters
P = 2;
J = 1;%P/2;
PMAX = P; % Hermite basis size
JMAX = J; % Laguerre basis size
NX = 2; % real space x-gridpoints
LX = 2*pi/0.1; % Size of the squared frequency domain in x direction
LY = 2*pi/0.05; % Size of the squared frequency domain in y direction
NZ = 1; % number of perpendicular planes (parallel grid)
SG = 0; % Staggered z grids option
NEXC = 0; % To extend Lx if needed (Lx = Nexc/(kymin*shear))
%% GEOMETRY
GEOMETRY= 'Z-pinch';
% GEOMETRY= 'miller';
EPS = 0.0; % inverse aspect ratio
Q0 = 0.0; % safety factor
SHEAR = 0.0; % magnetic shear
KAPPA = 1.0; % elongation
DELTA = 0.0; % triangularity
PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected')
SHIFT_Y = 0.0; % Shift in the periodic BC in z
NPOL = 1; % Number of poloidal turns
%% TIME PARAMETERS
TMAX = 50; % Maximal time unit
DTSAVE0D = 1; % Sampling time for 0D arrays
DTSAVE2D = -1; % Sampling time for 2D arrays
DTSAVE3D = 1; % Sampling time for 3D arrays
DTSAVE5D = 25; % Sampling time for 5D arrays
JOB2LOAD = -1; % Start a new simulation serie
%% OPTIONS
LINEARITY = 'linear'; % activate non-linearity (is cancelled if KXEQ0 = 1)
CO = 'DG'; % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau)
GKCO = 1; % Gyrokinetic operator
ABCO = 1; % INTERSPECIES collisions
INIT_ZF = 0; % Initialize zero-field quantities
% HRCY_CLOS = 'max_degree'; % Closure model for higher order moments
HRCY_CLOS = 'max_degree'; % Closure model for higher order moments
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
DMAX = -1;
NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments
NMAX = 0;
KERN = 0; % Kernel model (0 : GK)
INIT_OPT = 'phi'; % Start simulation with a noisy mom00/phi/allmom
NUMERICAL_SCHEME = 'RK4'; % Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5)
%% OUTPUTS
W_DOUBLE = 1; % Output flag for double moments
W_GAMMA = 1; % Output flag for gamma (Gyrokinetic Energy)
W_HF = 1; % Output flag for high-frequency potential energy
W_PHI = 1; % Output flag for potential
W_NA00 = 1; % Output flag for nalpha00 (density of species alpha)
W_DENS = 1; % Output flag for total density
W_TEMP = 1; % Output flag for temperature
W_NAPJ = 1; % Output flag for nalphaparallel (parallel momentum of species alpha)
W_SAPJ = 0; % Output flag for saparallel (parallel current of species alpha)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% UNUSED PARAMETERS
% These parameters are usually not to play with in linear runs
MU = 0.0; % Hyperdiffusivity coefficient
MU_X = MU; % Hyperdiffusivity coefficient in x direction
MU_Y = MU; % Hyperdiffusivity coefficient in y direction
N_HD = 4; % Degree of spatial-hyperdiffusivity
MU_Z = 2.0; % Hyperdiffusivity coefficient in z direction
HYP_V = 'dvpar4'; % Kinetic-hyperdiffusivity model
MU_P = 0.0; % Hyperdiffusivity coefficient for Hermite
MU_J = 0.0; % Hyperdiffusivity coefficient for Laguerre
LAMBDAD = 0.0; % Lambda Debye
NOISE0 = 1.0e-5; % Initial noise amplitude
BCKGD0 = 0.0; % Initial background
k_gB = 1.0; % Magnetic gradient strength
k_cB = 1.0; % Magnetic curvature strength
COLL_KCUT = 1.0; % Cutoff for collision operator
PB_PHASE = 0.0;
ADIAB_I = 0;
MHD_PD = 0;
EXBRATE = 0;