Skip to content
Snippets Groups Projects
lin_Ivanov.m 4.61 KiB
Newer Older
%% Set simulation parameters
SIMID = 'lin_Ivanov'; % Name of the simulation

%% Set up physical parameters
CLUSTER.TIME = '99:00:00';  % Allocation time hh:mm:ss
TAU = 0.001;                  % e/i temperature ratio
NU = 1.0*3/2/TAU/4;                 % Collision frequency
K_Ne = 0*2.22;              % ele Density
K_Te = 0*6.96;              % ele Temperature
K_Ni = 0*2.22;              % ion Density gradient drive
K_Ti = 1.0*2/TAU+0*5*TAU;     % ion Temperature
SIGMA_E = 0.0233380;        % mass ratio sqrt(m_a/m_i) (correct = 0.0233380)
NA = 1;                     % number of kinetic species
ADIAB_E = (NA==1);          % adiabatic electron model
BETA = 0.0;                 % electron plasma beta
RM_LD_T_EQ = 1;             % to remove Landau damping in temperature and higher eq.
%% Set up grid parameters
P = 2;
J = 1;%P/2;
PMAX = P;                   % Hermite basis size
JMAX = J;                   % Laguerre basis size
NX = 2;                     % real space x-gridpoints
NY = 120;                    % real space y-gridpoints
LX = 2*pi/0.1;              % Size of the squared frequency domain in x direction
LY = 2*pi/0.05;              % Size of the squared frequency domain in y direction
NZ = 1;                    % number of perpendicular planes (parallel grid)
SG = 0;                     % Staggered z grids option
NEXC = 0;                   % To extend Lx if needed (Lx = Nexc/(kymin*shear))

%% GEOMETRY
GEOMETRY= 'Z-pinch';
% GEOMETRY= 'miller';
EPS     = 0.0;   % inverse aspect ratio
Q0      = 0.0;    % safety factor
SHEAR   = 0.0;    % magnetic shear
KAPPA   = 1.0;    % elongation
S_KAPPA = 0.0;
DELTA   = 0.0;    % triangularity
S_DELTA = 0.0;
ZETA    = 0.0;    % squareness
S_ZETA  = 0.0;
PARALLEL_BC = 'dirichlet'; % Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected')
SHIFT_Y = 0.0;    % Shift in the periodic BC in z
NPOL   = 1;       % Number of poloidal turns

%% TIME PARAMETERS
TMAX     = 50;  % Maximal time unit
DT       = 1e-3;   % Time step
DTSAVE0D = 1;      % Sampling time for 0D arrays
DTSAVE2D = -1;     % Sampling time for 2D arrays
DTSAVE3D = 1;      % Sampling time for 3D arrays
DTSAVE5D = 25;     % Sampling time for 5D arrays
JOB2LOAD = -1;     % Start a new simulation serie

%% OPTIONS
LINEARITY = 'linear';   % activate non-linearity (is cancelled if KXEQ0 = 1)
CO        = 'DG';       % Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau)
GKCO      = 1;          % Gyrokinetic operator
ABCO      = 1;          % INTERSPECIES collisions
INIT_ZF   = 0;          % Initialize zero-field quantities
% HRCY_CLOS = 'max_degree';   % Closure model for higher order moments
HRCY_CLOS = 'max_degree';   % Closure model for higher order moments
DMAX      = -1;
NLIN_CLOS = 'truncation';   % Nonlinear closure model for higher order moments
NMAX      = 0;
KERN      = 0;   % Kernel model (0 : GK)
INIT_OPT  = 'phi';   % Start simulation with a noisy mom00/phi/allmom
NUMERICAL_SCHEME = 'RK4'; % Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5)

%% OUTPUTS
W_DOUBLE = 1;     % Output flag for double moments
W_GAMMA  = 1;     % Output flag for gamma (Gyrokinetic Energy)
W_HF     = 1;     % Output flag for high-frequency potential energy
W_PHI    = 1;     % Output flag for potential
W_NA00   = 1;     % Output flag for nalpha00 (density of species alpha)
W_DENS   = 1;     % Output flag for total density
W_TEMP   = 1;     % Output flag for temperature
W_NAPJ   = 1;     % Output flag for nalphaparallel (parallel momentum of species alpha)
W_SAPJ   = 0;     % Output flag for saparallel (parallel current of species alpha)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% UNUSED PARAMETERS
% These parameters are usually not to play with in linear runs
MU      = 0.0;    % Hyperdiffusivity coefficient
MU_X    = MU;     % Hyperdiffusivity coefficient in x direction
MU_Y    = MU;     % Hyperdiffusivity coefficient in y direction
N_HD    = 4;      % Degree of spatial-hyperdiffusivity
MU_Z    = 2.0;    % Hyperdiffusivity coefficient in z direction
HYP_V   = 'dvpar4'; % Kinetic-hyperdiffusivity model
MU_P    = 0.0;    % Hyperdiffusivity coefficient for Hermite
MU_J    = 0.0;    % Hyperdiffusivity coefficient for Laguerre
LAMBDAD = 0.0;    % Lambda Debye
NOISE0  = 1.0e-5; % Initial noise amplitude
BCKGD0  = 0.0;    % Initial background
k_gB   = 1.0;     % Magnetic gradient strength
k_cB   = 1.0;     % Magnetic curvature strength
COLL_KCUT = 1.0; % Cutoff for collision operator
PB_PHASE = 0.0;
ADIAB_I = 0;
MHD_PD  = 0;
EXBRATE = 0;